In limit that  $n \rightarrow \infty$ ,

quantum mechanics must agree with classical physics

$$E_{\text{photon}} = 13.6 \,\text{eV}\left(\frac{1}{n_{\text{f}}^2} - \frac{1}{n_{\text{i}}^2}\right) = hf_{\text{photon}}$$

In this limit,  $n_i \rightarrow n_f$ , and then  $f_{photon} \rightarrow$  electron's frequency of revolution in orbit.  $\checkmark$ 

Extension of Bohr theory to other "Hydrogen-like" atoms

In limit that  $n \rightarrow \infty$ ,

quantum mechanics must agree with classical physics

$$E_{\text{photon}} = 13.6 \,\text{eV}\left(\frac{1}{n_{\text{f}}^2} - \frac{1}{n_{\text{i}}^2}\right) = hf_{\text{photon}}$$

In this limit,  $n_i \rightarrow n_f$ , and then  $f_{photon} \rightarrow$  electron's frequency of revolution in orbit.

Extension of Bohr theory to other "Hydrogen-like" atoms

**He**<sup>+</sup>, **Li**<sup>++</sup>, **Be**<sup>+++</sup>, etc. (one electron "orbiting" nucleus of Q = +Ze)

In limit that  $n \rightarrow \infty$ ,

quantum mechanics must agree with classical physics

$$E_{\text{photon}} = 13.6 \,\text{eV}\left(\frac{1}{n_{\text{f}}^2} - \frac{1}{n_{\text{i}}^2}\right) = hf_{\text{photon}}$$

In this limit,  $n_i \rightarrow n_f$ , and then  $f_{photon} \rightarrow$  electron's frequency of revolution in orbit.

Extension of Bohr theory to other "Hydrogen-like" atoms

**He**<sup>+</sup>, **Li**<sup>++</sup>, **Be**<sup>+++</sup>, etc. (one electron "orbiting" nucleus of Q = +Ze)

$$E_n = -\left(\frac{1}{n^2}\right) \left(\frac{m_e k_e^2 Z^2 e^4}{2\hbar^2}\right)$$

In limit that  $n \rightarrow \infty$ ,

quantum mechanics must agree with classical physics

$$E_{\text{photon}} = 13.6 \,\text{eV}\left(\frac{1}{n_{\text{f}}^2} - \frac{1}{n_{\text{i}}^2}\right) = hf_{\text{photon}}$$

In this limit,  $n_i \rightarrow n_f$ , and then  $f_{photon} \rightarrow$  electron's frequency of revolution in orbit.

Extension of Bohr theory to other "Hydrogen-like" atoms

**He**<sup>+</sup>, **Li**<sup>++</sup>, **Be**<sup>+++</sup>, etc. (one electron "orbiting" nucleus of Q = +Ze)

$$E_{n} = -\left(\frac{1}{n^{2}}\right)\left(\frac{m_{e}k_{e}^{2}Z^{2}e^{4}}{2\hbar^{2}}\right) = -Z^{2}\frac{13.6\,\text{eV}}{n^{2}}$$







**Time-energy uncertainty principle:** 





The excited state of an atom is short lived  $(Dt_i \sim 10^{-8} \text{ s})$  before a photon is emitted.



The excited state of an atom is short lived ( $Dt_i \sim 10^{-8} s$ ) before a photon is emitted. This causes an uncertainty in  $E_i$  ( $DE_i$ ) that induces an uncertainty in  $E_{photon}$ , which in turn produces an uncertainty in  $\lambda$ .



The excited state of an atom is short lived ( $Dt_i \sim 10^{-8} s$ ) before a photon is emitted. This causes an uncertainty in  $E_i$  ( $DE_i$ ) that induces an uncertainty in  $E_{photon}$ , which in turn produces an uncertainty in  $\lambda$ .

For  $E_{photon} \sim 2 \text{ eV}$  (visible spectrum),  $Dl/l \sim 10^{-8}$ .

**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?



**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

Analogy with standing waves on a vibrating string—get standing waves if have integer number of 1's, in this case 31.



Instead wrap string into circle, – standing wave pattern is similar.



**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

Analogy with standing waves on a vibrating string—get standing waves if have integer number of **1**'s, in this case 31.



Instead wrap string into circle, – standing wave pattern is similar.



**Meaning of**:  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

Analogy with standing waves on a vibrating string—get standing waves if have integer number of 1's, in this case 31.



Instead wrap string into circle, – standing wave pattern is similar.

$$2\pi r = n\lambda$$



**Meaning of**:  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

Analogy with standing waves on a vibrating string—get standing waves if have integer number of 1's, in this case 31.



Instead wrap string into circle, – standing wave pattern is similar.

$$2\pi r = n\lambda$$
$$n = 1, 2, 3...$$



**Meaning of**:  $m_e \cdot v \cdot r = n \cdot \hbar$  ?

Analogy with standing waves on a vibrating string—get standing waves if have integer number of **1**'s, in this case **31**.



Instead wrap string into circle, – standing wave pattern is similar.

$$2\pi r = n\lambda$$
$$n = 1, 2, 3...$$



$$\lambda = \frac{h}{m_e v}$$

**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?



**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?



**Meaning of:**  $m_e \cdot v \cdot r = n \cdot \hbar$  ?



Schrodinger wave equation was solved for Hydrogen atom

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = 1 state actually has **zero angular momentum**!

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Invoke Heisenberg Uncertainty Principle

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Invoke Heisenberg Uncertainty Principle As electron is localized near proton, the uncertainty of linear momentum will increase, causing its kinetic energy to rise.

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Invoke Heisenberg Uncertainty Principle As electron is localized near proton, the uncertainty of linear momentum will increase, causing its kinetic energy to

rise.

$$\Delta \mathbf{r} \cdot \Delta \mathbf{p}_{\mathbf{r}} \ge \frac{\mathbf{h}}{4\pi}$$

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Invoke Heisenberg Uncertainty Principle As electron is localized near proton, the uncertainty of linear momentum will increase, causing its kinetic energy to

rise.

$$\Delta \mathbf{r} \cdot \Delta \mathbf{p}_{\mathbf{r}} \ge \frac{\mathbf{h}}{4\pi}$$

Thus electron never "falls" into proton. Instead it forms a spherical "**probability cloud**" around nucleus.

Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:

**n** = **1** state actually has **zero angular momentum**!

How is this possible? Won't electron fall into proton?

Invoke Heisenberg Uncertainty Principle As electron is localized near proton, the uncertainty of linear momentum will increase, causing its kinetic energy to

rise.

 $\Delta \mathbf{r} \cdot \Delta \mathbf{p}_{\mathbf{r}} \ge \frac{\mathbf{h}}{4\pi}$ 

Thus electron never "falls" into proton. Instead it forms a spherical "**probability cloud**" around nucleus.



Quantum Mechanics and the Hydrogen Atom (cont.) Quantum numbers

#### **Quantum numbers**

| <b>TABLE 28.2</b> | Three Ouantum | Numbers for   | the Hydro | gen Atom  |
|-------------------|---------------|---------------|-----------|-----------|
|                   | Ince Zumitum  | i tumbers for | the hydro | Schritton |

| Quantum<br>Number | Name                            | Allowed Values                                       | Number of<br>Allowed States |
|-------------------|---------------------------------|------------------------------------------------------|-----------------------------|
| n                 | Principal quantum number        | 1, 2, 3,                                             | Any number                  |
| l                 | Orbital quantum number          | $0, 1, 2, \ldots, n-1$                               | n                           |
| $m_\ell$          | Orbital magnetic quantum number | $-\ell, -\ell+1, \ldots, \\ 0, \ldots, \ell-1, \ell$ | $2\ell + 1$                 |

#### **Quantum numbers**

| <b>TABLE 28.2</b> | Three Quantum Numbers for the Hydrogen Atom |
|-------------------|---------------------------------------------|
|                   |                                             |

| Quantum<br>Number | Name                            | Allowed Values                                       | Number of<br>Allowed States |
|-------------------|---------------------------------|------------------------------------------------------|-----------------------------|
| n                 | Principal quantum number        | 1, 2, 3,                                             | Any number                  |
| l                 | Orbital quantum number          | $0, 1, 2, \ldots, n-1$                               | n                           |
| $m_\ell$          | Orbital magnetic quantum number | $-\ell, -\ell+1, \ldots, \\ 0, \ldots, \ell-1, \ell$ | $2\ell + 1$                 |

© 2003 Thomson - Brooks Cole

Need to include Spin Magnetic Quantum Number:  $m_s = \pm \frac{1}{2}$ 

#### **Quantum numbers**

| ABLE 28.2 | Three Quantum | Numbers for the Hydrogen | Atom           |
|-----------|---------------|--------------------------|----------------|
| Juantum   |               |                          | Number of      |
| Number    | Name          | Allowed Values           | Allowed States |
|           |               |                          |                |

| I THIRDUT  | T (MILLO                 | imorreu vuines            | i moneu states |
|------------|--------------------------|---------------------------|----------------|
| n          | Principal quantum number | 1, 2, 3,                  | Any number     |
| l          | Orbital quantum number   | $0, 1, 2, \ldots, n-1$    | n              |
| $m_{\ell}$ | Orbital magnetic quantum | $-\ell, -\ell+1, \ldots,$ | $2\ell + 1$    |
|            | number                   | $0,\ldots,\ell-1,\ell$    |                |

© 2003 Thomson - Brooks Cole

Need to include Spin Magnetic Quantum Number:  $m_s = \pm \frac{1}{2}$ 



#### **Quantum numbers**

| TABLE 28.2        | Three Quantum Numbers for the Hydrogen Atom |                                                         |                             |  |  |  |  |
|-------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------|--|--|--|--|
| Quantum<br>Number | Name                                        | Allowed Values                                          | Number of<br>Allowed States |  |  |  |  |
| n                 | Principal quantum number                    | 1, 2, 3,                                                | Any number                  |  |  |  |  |
| l                 | Orbital quantum number                      | $0, 1, 2, \ldots, n-1$                                  | n                           |  |  |  |  |
| $m_\ell$          | Orbital magnetic quantum number             | $-\ell, -\ell + 1, \ldots, \\0, \ldots, \ell - 1, \ell$ | $2\ell + 1$                 |  |  |  |  |

© 2003 Thomson - Brooks Cole

#### Need to include Spin Magnetic Quantum Number: $m_s = \pm \frac{1}{2}$



Pauli Exclusion Principle (1925) and the Periodic Table Wolfgang Pauli (1900-1958) Pauli Exclusion Principle (1925) and the Periodic Table

Wolfgang Pauli (1900-1958)

No two electrons in an atom can ever be in the same quantum state; that is, no two electrons in the same atom can have exactly the same value for the set of quantum numbers: n, *l*,

m<sub>l</sub>, m<sub>s</sub>.

Pauli Exclusion Principle (1925) and the Periodic Table

**TABLE 28.3** 

Wolfgang Pauli (1900-1958)

No two electrons in an atom can ever be in the same quantum state; that is, no two electrons in the same atom can have exactly the same value for the set of quantum numbers: n, l,  $m_l, m_s$ .

| Shell              | Subshell                                                         | Number of<br>Electrons in<br>Filled Subshell                     | Number of<br>Electrons in<br>Filled Shell |
|--------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|
| $\mathbf{K} (n=1)$ | $s(\ell = 0)$                                                    | 2                                                                | 2                                         |
| L(n=2)             | $s(\ell = 0)$ $p(\ell = 1)$                                      | $\begin{pmatrix} 2\\6 \end{pmatrix}$                             | 8                                         |
| $\mathbf{M}(n=3)$  | $s(\ell = 0)$<br>$p(\ell = 1)$<br>$d(\ell = 2)$                  | $\left. \begin{smallmatrix} 2\\6\\10 \end{smallmatrix} \right\}$ | 18                                        |
| N $(n = 4)$        | $s(\ell = 0)$<br>$p(\ell = 1)$<br>$d(\ell = 2)$<br>$f(\ell = 3)$ |                                                                  | 32                                        |

Number of Electrons in

J CL -II-

| TABL | E 28.4 | Electronic Configuration of Some Elements |                     |                           |    |        |              |                       |                           |
|------|--------|-------------------------------------------|---------------------|---------------------------|----|--------|--------------|-----------------------|---------------------------|
| z    | Symbol | Groun<br>Config                           | d-State<br>guration | Ionization<br>Energy (eV) | z  | Symbol | Grou<br>Conf | nd-State<br>iguration | Ionization<br>Energy (eV) |
| 1    | Н      |                                           | $1s^{1}$            | 13.595                    | 19 | K      | [Ar]         | $4s^{1}$              | 4.339                     |
| 2    | He     |                                           | $1s^{2}$            | 24.581                    | 20 | Ca     |              | $4s^2$                | 6.111                     |
|      |        |                                           |                     |                           | 21 | Sc     |              | $3d4s^{2}$            | 6.54                      |
| 3    | Li     | [He]                                      | $2s^1$              | 5.390                     | 22 | Ti     |              | $3d^{2}4s^{2}$        | 6.83                      |
| 4    | Be     |                                           | $2s^2$              | 9.320                     | 23 | V      |              | $3d^{3}4s^{2}$        | 6.74                      |
| 5    | В      |                                           | $2s^2 2p^1$         | 8.296                     | 24 | Cr     |              | $3d^{5}4s^{1}$        | 6.76                      |
| 6    | С      |                                           | $2s^2 2p^2$         | 11.256                    | 25 | Mn     |              | $3d^{5}4s^{2}$        | 7.432                     |
| 7    | N      |                                           | $2s^2 2p^3$         | 14.545                    | 26 | Fe     |              | $3d^{6}4s^{2}$        | 7.87                      |
| 8    | 0      |                                           | $2s^2 2p^4$         | 13.614                    | 27 | Co     |              | $3d^{7}4s^{2}$        | 7.86                      |
| 9    | F      |                                           | $2s^22p^5$          | 17.418                    | 28 | Ni     |              | $3d^{8}4s^{2}$        | 7.633                     |
| 10   | Ne     |                                           | $2s^2 2p^6$         | 21.559                    | 29 | Cu     |              | $3d^{10}4s^1$         | 7.724                     |
|      |        |                                           |                     |                           | 30 | Zn     |              | $3d^{10}4s^2$         | 9.391                     |
| 11   | Na     | [Ne]                                      | $3s^1$              | 5.138                     | 31 | Ga     |              | $3d^{10}4s^24p^1$     | 6.00                      |
| 12   | Mg     |                                           | $3s^2$              | 7.644                     | 32 | Ge     |              | $3d^{10}4s^24p^2$     | 7.88                      |
| 13   | Al     |                                           | $3s^23p^1$          | 5.984                     | 33 | As     |              | $3d^{10}4s^24p^3$     | 9.81                      |
| 14   | Si     |                                           | $3s^23p^2$          | 8.149                     | 34 | Se     |              | $3d^{10}4s^24p^4$     | 9.75                      |
| 15   | Р      |                                           | $3s^23p^3$          | 10.484                    | 35 | Br     |              | $3d^{10}4s^24p^5$     | 11.84                     |
| 16   | S      |                                           | $3s^23p^4$          | 10.357                    | 36 | Kr     |              | $3d^{10}4s^24p^6$     | 13.996                    |
| 17   | Cl     |                                           | $3s^23p^5$          | 13.01                     |    |        |              |                       |                           |
| 18   | Ar     |                                           | $3s^23p^6$          | 15.755                    |    |        |              |                       |                           |

| TABL | E 28.4 | Electronic Configuration of Some Elements |                      |                           |    |        |              |                       |                           |
|------|--------|-------------------------------------------|----------------------|---------------------------|----|--------|--------------|-----------------------|---------------------------|
| z    | Symbol | Groun<br>Config                           | nd-State<br>guration | Ionization<br>Energy (eV) | z  | Symbol | Grou<br>Conf | nd-State<br>iguration | Ionization<br>Energy (eV) |
| 1    | Н      |                                           | $1s^1$               | 13.595                    | 19 | K      | [Ar]         | $4s^{1}$              | 4.339                     |
| 2    | He     |                                           | $1s^{2}$             | 24.581                    | 20 | Ca     |              | $4s^2$                | 6.111                     |
|      |        |                                           |                      |                           | 21 | Sc     |              | $3d4s^{2}$            | 6.54                      |
| 3    | Li     | [He]                                      | $2s^1$               | 5.390                     | 22 | Ti     |              | $3d^{2}4s^{2}$        | 6.83                      |
| 4    | Be     |                                           | $2s^2$               | 9.320                     | 23 | V      |              | $3d^{3}4s^{2}$        | 6.74                      |
| 5    | В      |                                           | $2s^2 2p^1$          | 8.296                     | 24 | Cr     |              | $3d^{5}4s^{1}$        | 6.76                      |
| 6    | С      |                                           | $2s^2 2p^2$          | 11.256                    | 25 | Mn     |              | $3d^{5}4s^{2}$        | 7.432                     |
| 7    | N      |                                           | $2s^2 2p^3$          | 14.545                    | 26 | Fe     |              | $3d^{6}4s^{2}$        | 7.87                      |
| 8    | 0      |                                           | $2s^22p^4$           | 13.614                    | 27 | Co     |              | $3d^{7}4s^{2}$        | 7.86                      |
| 9    | F      |                                           | $2s^22p^5$           | 17.418                    | 28 | Ni     |              | $3d^{8}4s^{2}$        | 7.633                     |
| 10   | Ne     |                                           | $2s^2 2p^6$          | 21.559                    | 29 | Cu     |              | $3d^{10}4s^1$         | 7.724                     |
|      |        |                                           |                      |                           | 30 | Zn     |              | $3d^{10}4s^2$         | 9.391                     |
| 11   | Na     | [Ne]                                      | $3s^1$               | 5.138                     | 31 | Ga     |              | $3d^{10}4s^24p^1$     | 6.00                      |
| 12   | Mg     |                                           | $3s^{2}$             | 7.644                     | 32 | Ge     |              | $3d^{10}4s^24p^2$     | 7.88                      |
| 13   | Al     |                                           | $3s^23p^1$           | 5.984                     | 33 | As     |              | $3d^{10}4s^24p^3$     | 9.81                      |
| 14   | Si     |                                           | $3s^23p^2$           | 8.149                     | 34 | Se     |              | $3d^{10}4s^24p^4$     | 9.75                      |
| 15   | Р      |                                           | $3s^23p^3$           | 10.484                    | 35 | Br     |              | $3d^{10}4s^24p^5$     | 11.84                     |
| 16   | S      |                                           | $3s^23p^4$           | 10.357                    | 36 | Kr     |              | $3d^{10}4s^24p^6$     | 13.996                    |
| 17   | Cl     |                                           | $3s^23p^5$           | 13.01                     |    |        |              |                       |                           |
| 18   | Ar     |                                           | $3s^23p^6$           | 15.755                    |    |        |              |                       |                           |

| TABL | E 28.4 | Electronic Configuration of Some Elements |                      |                           |    |        |              |                       |                           |
|------|--------|-------------------------------------------|----------------------|---------------------------|----|--------|--------------|-----------------------|---------------------------|
| z    | Symbol | Grow<br>Confi                             | nd-State<br>guration | Ionization<br>Energy (eV) | z  | Symbol | Grou<br>Conf | nd-State<br>iguration | Ionization<br>Energy (eV) |
| 1    | Н      |                                           | $1s^1$               | 13.595                    | 19 | K      | [Ar]         | $4s^{1}$              | 4.339                     |
| 2    | He     |                                           | $1s^{2}$             | 24.581                    | 20 | Ca     |              | $4s^{2}$              | 6.111                     |
|      |        |                                           |                      |                           | 21 | Sc     |              | $3d4s^2$              | 6.54                      |
| 3    | Li     | [He]                                      | $2s^1$               | 5.390                     | 22 | Ti     |              | $3d^{2}4s^{2}$        | 6.83                      |
| 4    | Be     |                                           | $2s^2$               | 9.320                     | 23 | V      |              | $3d^{3}4s^{2}$        | 6.74                      |
| 5    | В      |                                           | $2s^2 2p^1$          | 8.296                     | 24 | Cr     |              | $3d^{5}4s^{1}$        | 6.76                      |
| 6    | С      |                                           | $2s^2 2p^2$          | 11.256                    | 25 | Mn     |              | $3d^{5}4s^{2}$        | 7.432                     |
| 7    | N      |                                           | $2s^2 2p^3$          | 14.545                    | 26 | Fe     |              | $3d^{6}4s^{2}$        | 7.87                      |
| 8    | 0      |                                           | $2s^2 2p^4$          | 13.614                    | 27 | Co     |              | $3d^{7}4s^{2}$        | 7.86                      |
| 9    | F      |                                           | $2s^2 2p^5$          | 17.418                    | 28 | Ni     |              | $3d^{8}4s^{2}$        | 7.633                     |
| 10   | Ne     |                                           | $2s^2 2p^6$          | 21.559                    | 29 | Cu     |              | $3d^{10}4s^1$         | 7.724                     |
|      |        |                                           |                      |                           | 30 | Zn     |              | $3d^{10}4s^2$         | 9.391                     |
| 11   | Na     | [Ne]                                      | $3s^1$               | 5.138                     | 31 | Ga     |              | $3d^{10}4s^24p^1$     | 6.00                      |
| 12   | Mg     |                                           | $3s^2$               | 7.644                     | 32 | Ge     |              | $3d^{10}4s^24p^2$     | 7.88                      |
| 13   | Al     |                                           | $3s^23p^1$           | 5.984                     | 33 | As     |              | $3d^{10}4s^24p^3$     | 9.81                      |
| 14   | Si     |                                           | $3s^23p^2$           | 8.149                     | 34 | Se     |              | $3d^{10}4s^24p^4$     | 9.75                      |
| 15   | Р      |                                           | $3s^23p^3$           | 10.484                    | 35 | Br     |              | $3d^{10}4s^24p^5$     | 11.84                     |
| 16   | S      |                                           | $3s^23p^4$           | 10.357                    | 36 | Kr     |              | $3d^{10}4s^24p^6$     | 13.996                    |
| 17   | Cl     |                                           | $3s^23p^5$           | 13.01                     |    |        |              |                       |                           |
| 18   | Ar     |                                           | $3s^23p^6$           | 15.755                    |    |        |              |                       |                           |

| TABL | E 28.4 | Electronic Configuration of Some Elements |                           |    |        |                               |                           |  |
|------|--------|-------------------------------------------|---------------------------|----|--------|-------------------------------|---------------------------|--|
| z    | Symbol | Ground-State<br>Configuration             | Ionization<br>Energy (eV) | Z  | Symbol | Ground-State<br>Configuration | Ionization<br>Energy (eV) |  |
| 1    | Н      | 1 <i>s</i> <sup>1</sup>                   | 13.595                    | 19 | K      | [Ar] $4s^1$                   | 4.339                     |  |
| 2    | He     | $1s^{2}$                                  | 24.581                    | 20 | Ca     | $4s^{2}$                      | 6.111                     |  |
|      |        |                                           |                           | 21 | Sc     | $3d4s^2$                      | 6.54                      |  |
| 3    | Li     | $[He] + 2s^1$                             | 5.390                     | 22 | Ti     | $3d^24s^2$                    | 6.83                      |  |
| 4    | Be     | $2s^2$                                    | 9.320                     | 23 | V      | $3d^{3}4s^{2}$                | 6.74                      |  |
| 5    | В      | $2s^22p^1$                                | 8.296                     | 24 | Cr     | $3d^{5}4s^{1}$                | 6.76                      |  |
| 6    | С      | $2s^2 2p^2$                               | 11.256                    | 25 | Mn     | $3d^{5}4s^{2}$                | 7.432                     |  |
| 7    | N      | $2s^22p^3$                                | 14.545                    | 26 | Fe     | $3d^{6}4s^{2}$                | 7.87                      |  |
| 8    | 0      | $2s^2 2p^4$                               | 13.614                    | 27 | Со     | $3d^{7}4s^{2}$                | 7.86                      |  |
| 9    | F      | $2s^2 2p^5$                               | 17.418                    | 28 | Ni     | $3d^{8}4s^{2}$                | 7.633                     |  |
| 10   | Ne     | $2s^2 2p^6$                               | 21.559                    | 29 | Cu     | $3d^{10}4s^1$                 | 7.724                     |  |
|      |        |                                           |                           | 30 | Zn     | $3d^{10}4s^2$                 | 9.391                     |  |
| 11   | Na     | [Ne] $3s^1$                               | 5.138                     | 31 | Ga     | $3d^{10}4s^24p^1$             | 6.00                      |  |
| 12   | Mg     | $3s^2$                                    | 7.644                     | 32 | Ge     | $3d^{10}4s^24p^2$             | 7.88                      |  |
| 13   | Al     | $3s^23p^1$                                | 5.984                     | 33 | As     | $3d^{10}4s^24p^3$             | 9.81                      |  |
| 14   | Si     | $3s^23p^2$                                | 8.149                     | 34 | Se     | $3d^{10}4s^24p^4$             | 9.75                      |  |
| 15   | Р      | $3s^23p^3$                                | 10.484                    | 35 | Br     | $3d^{10}4s^24p^5$             | 11.84                     |  |
| 16   | S      | $3s^23p^4$                                | 10.357                    | 36 | Kr     | $3d^{10}4s^24p^6$             | 13.996                    |  |
| 17   | Cl     | $3s^23p^5$                                | 13.01                     |    |        |                               |                           |  |
| 18   | Ar     | $3s^23p^6$                                | 15.755                    |    |        |                               |                           |  |

| TABLE 28.4 |        | Electronic Configuration of Some Elements |                     |                           |    |        |              |                       |                           |  |
|------------|--------|-------------------------------------------|---------------------|---------------------------|----|--------|--------------|-----------------------|---------------------------|--|
| z          | Symbol | Groun<br>Config                           | d-State<br>guration | Ionization<br>Energy (eV) | z  | Symbol | Grou<br>Conf | nd-State<br>iguration | Ionization<br>Energy (eV) |  |
| 1          | Н      |                                           | $1s^1$              | 13.595                    | 19 | K      | [Ar]         | $4s^{1}$              | 4.339                     |  |
| 2          | He     |                                           | $1s^{2}$            | 24.581                    | 20 | Ca     |              | $4s^2$                | 6.111                     |  |
|            |        |                                           |                     |                           | 21 | Sc     |              | $3d4s^{2}$            | 6.54                      |  |
| 3          | Li     | [He]                                      | $2s^1$              | 5.390                     | 22 | Ti     |              | $3d^{2}4s^{2}$        | 6.83                      |  |
| 4          | Be     |                                           | $2s^2$              | 9.320                     | 23 | V      |              | $3d^{3}4s^{2}$        | 6.74                      |  |
| 5          | В      |                                           | $2s^2 2p^1$         | 8.296                     | 24 | Cr     |              | $3d^{5}4s^{1}$        | 6.76                      |  |
| 6          | С      |                                           | $2s^2 2p^2$         | 11.256                    | 25 | Mn     |              | $3d^{5}4s^{2}$        | 7.432                     |  |
| 7          | N      |                                           | $2s^2 2p^3$         | 14.545                    | 26 | Fe     |              | $3d^{6}4s^{2}$        | 7.87                      |  |
| 8          | 0      |                                           | $2s^2 2p^4$         | 13.614                    | 27 | Co     |              | $3d^{7}4s^{2}$        | 7.86                      |  |
| 9          | F      |                                           | $2s^22p^5$          | 17.418                    | 28 | Ni     |              | $3d^{8}4s^{2}$        | 7.633                     |  |
| 10         | Ne     |                                           | $2s^2 2p^6$         | 21.559                    | 29 | Cu     |              | $3d^{10}4s^1$         | 7.724                     |  |
|            |        |                                           |                     |                           | 30 | Zn     |              | $3d^{10}4s^2$         | 9.391                     |  |
| 11         | Na     | [Ne]                                      | $3s^1$              | 5.138                     | 31 | Ga     |              | $3d^{10}4s^24p^1$     | 6.00                      |  |
| 12         | Mg     |                                           | $3s^2$              | 7.644                     | 32 | Ge     |              | $3d^{10}4s^24p^2$     | 7.88                      |  |
| 13         | Al     |                                           | $3s^23p^1$          | 5.984                     | 33 | As     |              | $3d^{10}4s^24p^3$     | 9.81                      |  |
| 14         | Si     |                                           | $3s^23p^2$          | 8.149                     | 34 | Se     |              | $3d^{10}4s^24p^4$     | 9.75                      |  |
| 15         | Р      |                                           | $3s^23p^3$          | 10.484                    | 35 | Br     |              | $3d^{10}4s^24p^5$     | 11.84                     |  |
| 16         | S      |                                           | $3s^23p^4$          | 10.357                    | 36 | Kr     |              | $3d^{10}4s^24p^6$     | 13.996                    |  |
| 17         | Cl     |                                           | $3s^23p^5$          | 13.01                     |    |        |              |                       |                           |  |
| 18         | Ar     |                                           | $3s^23p^6$          | 15.755                    |    |        |              |                       |                           |  |

| TABLE 28.4 |        | Electronic Configuration of Some Elements |                           |    |        |                               |                           |  |  |  |
|------------|--------|-------------------------------------------|---------------------------|----|--------|-------------------------------|---------------------------|--|--|--|
| z          | Symbol | Ground-State<br>Configuration             | Ionization<br>Energy (eV) | Z  | Symbol | Ground-State<br>Configuration | Ionization<br>Energy (eV) |  |  |  |
| 1          | Н      | $1s^{1}$                                  | 13.595                    | 19 | K      | [Ar] $4s^1$                   | 4.339                     |  |  |  |
| 2          | He     | $1s^{2}$                                  | 24.581                    | 20 | Ca     | $4s^2$                        | 6.111                     |  |  |  |
|            |        |                                           |                           | 21 | Sc     | $3d4s^2$                      | 6.54                      |  |  |  |
| 3          | Li     | [He] 2s <sup>1</sup>                      | 5.390                     | 22 | Ti     | $3d^24s^2$                    | 6.83                      |  |  |  |
| 4          | Be     | $2s^{2}$                                  | 9.320                     | 23 | V      | $3d^{3}4s^{2}$                | 6.74                      |  |  |  |
| 5          | В      | $2s^22p^1$                                | 8.296                     | 24 | Cr     | $3d^{5}4s^{1}$                | 6.76                      |  |  |  |
| 6          | С      | $2s^22p^2$                                | 11.256                    | 25 | Mn     | $3d^{5}4s^{2}$                | 7.432                     |  |  |  |
| 7          | N      | $2s^22p^3$                                | 14.545                    | 26 | Fe     | $3d^{6}4s^{2}$                | 7.87                      |  |  |  |
| 8          | 0      | $2s^22p^4$                                | 13.614                    | 27 | Со     | $3d^{7}4s^{2}$                | 7.86                      |  |  |  |
| 9          | F      | $2s^22p^5$                                | 17.418                    | 28 | Ni     | $3d^{8}4s^{2}$                | 7.633                     |  |  |  |
| 10         | Ne     | $2s^22p^6$                                | 21.559                    | 29 | Cu     | $3d^{10}4s^1$                 | 7.724                     |  |  |  |
|            |        |                                           |                           | 30 | Zn     | $3d^{10}4s^2$                 | 9.391                     |  |  |  |
| 11         | Na     | $[Ne] + 3s^1$                             | 5.138                     | 31 | Ga     | $3d^{10}4s^24p^1$             | 6.00                      |  |  |  |
| 12         | Mg     | $3s^2$                                    | 7.644                     | 32 | Ge     | $3d^{10}4s^24p^2$             | 7.88                      |  |  |  |
| 13         | Al     | $3s^23p^1$                                | 5.984                     | 33 | As     | $3d^{10}4s^24p^3$             | 9.81                      |  |  |  |
| 14         | Si     | $3s^23p^2$                                | 8.149                     | 34 | Se     | $3d^{10}4s^24p^4$             | 9.75                      |  |  |  |
| 15         | Р      | $3s^23p^3$                                | 10.484                    | 35 | Br     | $3d^{10}4s^24p^5$             | 11.84                     |  |  |  |
| 16         | S      | $3s^23p^4$                                | 10.357                    | 36 | Kr     | $3d^{10}4s^24p^6$             | 13.996                    |  |  |  |
| 17         | Cl     | $3s^23p^5$                                | 13.01                     |    |        |                               |                           |  |  |  |
| 18         | Ar     | $3s^23p^6$                                | 15.755                    |    |        |                               |                           |  |  |  |

| TABLE 28.4 |        | Electronic Configuration of Some Elements |             |                           |          |    |                               |                   |                           |  |
|------------|--------|-------------------------------------------|-------------|---------------------------|----------|----|-------------------------------|-------------------|---------------------------|--|
| Z          | Symbol | Ground-State<br>abol Configuration        |             | Ionization<br>Energy (eV) | Z Symbol |    | Ground-State<br>Configuration |                   | Ionization<br>Energy (eV) |  |
| 1          | Н      |                                           | $1s^1$      | 13.595                    | 19       | K  | [Ar]                          | $4s^{1}$          | 4.339                     |  |
| 2          | He     |                                           | $1s^{2}$    | 24.581                    | 20       | Ca |                               | $4s^{2}$          | 6.111                     |  |
|            |        |                                           |             |                           | 21       | Sc |                               | $3d4s^{2}$        | 6.54                      |  |
| 3          | Li     | [He]                                      | $2s^1$      | 5.390                     | 22       | Ti |                               | $3d^{2}4s^{2}$    | 6.83                      |  |
| 4          | Be     |                                           | $2s^2$      | 9.320                     | 23       | V  |                               | $3d^{3}4s^{2}$    | 6.74                      |  |
| 5          | В      |                                           | $2s^2 2p^1$ | 8.296                     | 24       | Cr |                               | $3d^{5}4s^{1}$    | 6.76                      |  |
| 6          | С      |                                           | $2s^2 2p^2$ | 11.256                    | 25       | Mn |                               | $3d^{5}4s^{2}$    | 7.432                     |  |
| 7          | N      |                                           | $2s^2 2p^3$ | 14.545                    | 26       | Fe |                               | $3d^{6}4s^{2}$    | 7.87                      |  |
| 8          | 0      |                                           | $2s^2 2p^4$ | 13.614                    | 27       | Co |                               | $3d^{7}4s^{2}$    | 7.86                      |  |
| 9          | F      |                                           | $2s^2 2p^5$ | 17.418                    | 28       | Ni |                               | $3d^{8}4s^{2}$    | 7.633                     |  |
| 10         | Ne     |                                           | $2s^2 2p^6$ | 21.559                    | 29       | Cu |                               | $3d^{10}4s^1$     | 7.724                     |  |
|            |        |                                           |             |                           | 30       | Zn |                               | $3d^{10}4s^2$     | 9.391                     |  |
| 11         | Na     | [Ne]                                      | $3s^1$      | 5.138                     | 31       | Ga |                               | $3d^{10}4s^24p^1$ | 6.00                      |  |
| 12         | Mg     |                                           | $3s^2$      | 7.644                     | 32       | Ge |                               | $3d^{10}4s^24p^2$ | 7.88                      |  |
| 13         | Al     |                                           | $3s^23p^1$  | 5.984                     | 33       | As |                               | $3d^{10}4s^24p^3$ | 9.81                      |  |
| 14         | Si     |                                           | $3s^23p^2$  | 8.149                     | 34       | Se |                               | $3d^{10}4s^24p^4$ | 9.75                      |  |
| 15         | Р      |                                           | $3s^23p^3$  | 10.484                    | 35       | Br |                               | $3d^{10}4s^24p^5$ | 11.84                     |  |
| 16         | S      |                                           | $3s^23p^4$  | 10.357                    | 36       | Kr |                               | $3d^{10}4s^24p^6$ | 13.996                    |  |
| 17         | Cl     |                                           | $3s^23p^5$  | 13.01                     |          |    |                               |                   |                           |  |
| 18         | Ar     |                                           | $3s^23p^6$  | 15.755                    |          |    |                               |                   |                           |  |

| TABLE 28.4 |        | Electronic Configuration of Some Elements |             |                              |    |                               |                           |        |  |  |
|------------|--------|-------------------------------------------|-------------|------------------------------|----|-------------------------------|---------------------------|--------|--|--|
| z          | Symbol | Ground-State<br>Configuration             |             | IonizationEnergy (eV)ZSymbol |    | Ground-State<br>Configuration | Ionization<br>Energy (eV) |        |  |  |
| 1          | Н      |                                           | $1s^1$      | 13.595                       | 19 | K                             | $[Ar] + 4s^1$             | 4.339  |  |  |
| 2          | He     |                                           | $1s^{2}$    | 24.581                       | 20 | Ca                            | $4s^2$                    | 6.111  |  |  |
|            |        |                                           |             |                              | 21 | Sc                            | $3d4s^{2}$                | 6.54   |  |  |
| 3          | Li     | [He]                                      | $2s^1$      | 5.390                        | 22 | Ti                            | $3d^24s^2$                | 6.83   |  |  |
| 4          | Be     |                                           | $2s^2$      | 9.320                        | 23 | V                             | $3d^{3}4s^{2}$            | 6.74   |  |  |
| 5          | В      |                                           | $2s^2 2p^1$ | 8.296                        | 24 | Cr                            | $3d^{5}4s^{1}$            | 6.76   |  |  |
| 6          | С      |                                           | $2s^2 2p^2$ | 11.256                       | 25 | Mn                            | $3d^{5}4s^{2}$            | 7.432  |  |  |
| 7          | N      |                                           | $2s^2 2p^3$ | 14.545                       | 26 | Fe                            | $3d^{6}4s^{2}$            | 7.87   |  |  |
| 8          | 0      |                                           | $2s^2 2p^4$ | 13.614                       | 27 | Со                            | $3d^{7}4s^{2}$            | 7.86   |  |  |
| 9          | F      |                                           | $2s^2 2p^5$ | 17.418                       | 28 | Ni                            | $3d^{8}4s^{2}$            | 7.633  |  |  |
| 10         | Ne     |                                           | $2s^2 2p^6$ | 21.559                       | 29 | Cu                            | $3d^{10}4s^1$             | 7.724  |  |  |
|            |        |                                           |             |                              | 30 | Zn                            | $3d^{10}4s^2$             | 9.391  |  |  |
| 11         | Na     | [Ne]                                      | $3s^1$      | 5.138                        | 31 | Ga                            | $3d^{10}4s^24p^1$         | 6.00   |  |  |
| 12         | Mg     |                                           | $3s^2$      | 7.644                        | 32 | Ge                            | $3d^{10}4s^24p^2$         | 7.88   |  |  |
| 13         | Al     |                                           | $3s^23p^1$  | 5.984                        | 33 | As                            | $3d^{10}4s^24p^3$         | 9.81   |  |  |
| 14         | Si     |                                           | $3s^23p^2$  | 8.149                        | 34 | Se                            | $3d^{10}4s^24p^4$         | 9.75   |  |  |
| 15         | Р      |                                           | $3s^23p^3$  | 10.484                       | 35 | Br                            | $3d^{10}4s^24p^5$         | 11.84  |  |  |
| 16         | S      |                                           | $3s^23p^4$  | 10.357                       | 36 | Kr                            | $3d^{10}4s^24p^6$         | 13.996 |  |  |
| 17         | Cl     |                                           | $3s^23p^5$  | 13.01                        |    |                               |                           |        |  |  |
| 18         | Ar     |                                           | $3s^23p^6$  | 15.755                       |    |                               |                           |        |  |  |

State 1















In K shell for State 1, each electron partially shields the other. Thus effective nuclear charge  $\equiv Z_{eff} = 42 - 1 = 41$ . In State 2, there is only one electron between L-shell electrons and nucleus, thus  $Z_{eff} = 42 - 1 = 41$ .

$$E_{K} = -13.6 \text{ eV} \cdot \frac{Z_{eff}^{2}}{n^{2}} = -13.6 \text{ eV} \cdot Z_{eff}^{2}$$

$$E_{\rm K} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot Z_{\rm eff}^2$$
$$E_{\rm L} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{4}$$

$$E_{\rm K} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot Z_{\rm eff}^2$$

$$E_{\rm L} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{4}$$

$$E_{\rm ph} = E_{\rm L} - E_{\rm K} = 17.1 \,\text{keV}$$

$$E_{K} = -13.6 \text{ eV} \cdot \frac{Z_{eff}^{2}}{n^{2}} = -13.6 \text{ eV} \cdot Z_{eff}^{2}$$

$$E_{L} = -13.6 \text{ eV} \cdot \frac{Z_{eff}^{2}}{n^{2}} = -13.6 \text{ eV} \cdot \frac{Z_{eff}^{2}}{4}$$

$$E_{ph} = E_{L} - E_{K} = 17.1 \text{ keV}$$

$$\lambda_{K_{\alpha}} = \frac{h \cdot c}{E_{ph}} = \frac{1.24 \times 10^{-6} \text{ eV} \cdot \text{m}}{17.1 \text{ keV}}$$

$$E_{\rm K} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot Z_{\rm eff}^2$$

$$E_{\rm L} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{n^2} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{4}$$

$$E_{\rm ph} = E_{\rm L} - E_{\rm K} = 17.1 \,\text{keV}$$

$$E_{\rm L} = -13.6 \,\text{eV} \cdot \frac{Z_{\rm eff}^2}{4}$$

$$\lambda_{K_{\alpha}} = \frac{h \cdot c}{E_{ph}} = \frac{1.24 \times 10^{-6} \text{ eV} \cdot \text{m}}{17.1 \text{ keV}}$$

$$\lambda_{K_{\alpha}} = 72 \text{ pm}$$

