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For Ephoton ~ 2 eV (visible spectrum),    ∆λ/λ ~ 10-8. 
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Schrodinger wave equation was solved for Hydrogen atom

A revision of Bohr theory:  
n = 1 state actually has zero angular momentum!

How is this possible?  Won’t electron fall into proton?

Invoke Heisenberg Uncertainty Principle
As electron is localized near proton, the 
uncertainty of linear momentum will 
increase, causing its kinetic energy to 
rise.  

“probability cloud”

nucleus

Thus electron never “falls” into proton.  
Instead it forms a spherical 
“probability cloud” around nucleus.
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n = 1
K shell

n = 2
L shell
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L shell

In K shell for State 1, each electron partially shields the other. Thus 
effective nuclear charge ≡ Zeff = 42 – 1 = 41.  In State 2, there is 
only one electron between L-shell electrons and nucleus, 
thus Zeff = 42 –1 = 41.

State 1 State 2 State 3
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