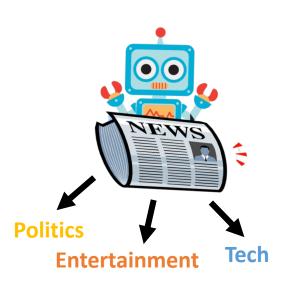
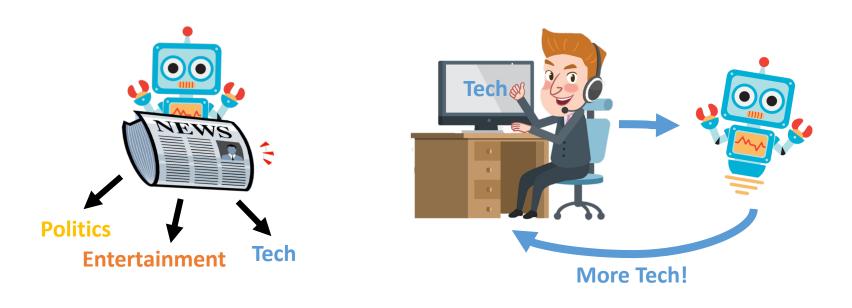
BOND:

BERT-Assisted **O**pen-Domain **N**amed Entity Recognition with **D**istant Supervision


Chen Liang*, Yue Yu*, Haoming Jiang*, Siawpeng Er, Ruijia Wang, Tuo Zhao, Chao Zhang

Georgia Institute of Technology



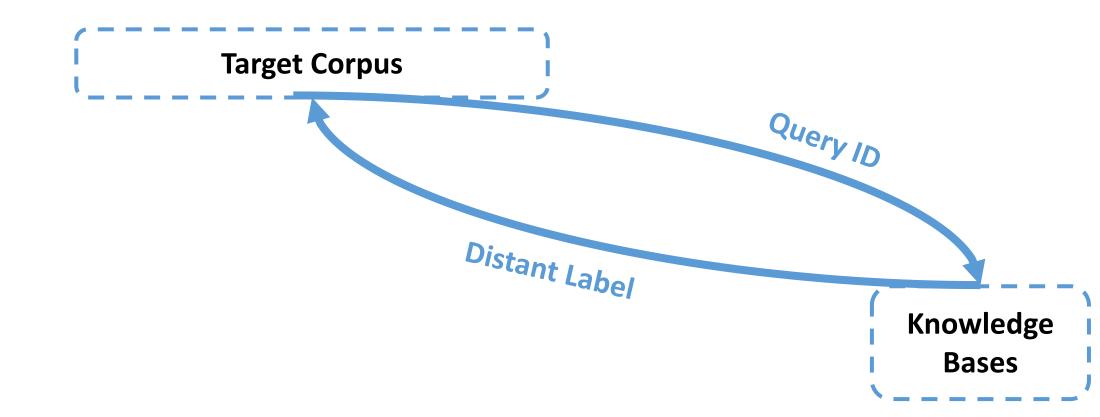
When Sebastian Thrun Person started at Google or in 2007 DATE, few people outside of the company took him seriously. "I can tell you very senior CEOs of major American Nor car companies would shake my hand and turn away because I wasn't worth talking to," said Thrun Person, now the co-founder and CEO of online higher education startup Udacity, in an interview with Recode or earlier this week DATE.

When Sebastian Thrun Person started at Google ord in 2007 DATE, few people outside of the company took him seriously. "I can tell you very senior CEOs of major American NORP car companies would shake my hand and turn away because I wasn't worth talking to," said Thrun Person, now the co-founder and CEO of online higher education startup Udacity, in an interview with Recode ORG earlier this week DATE.

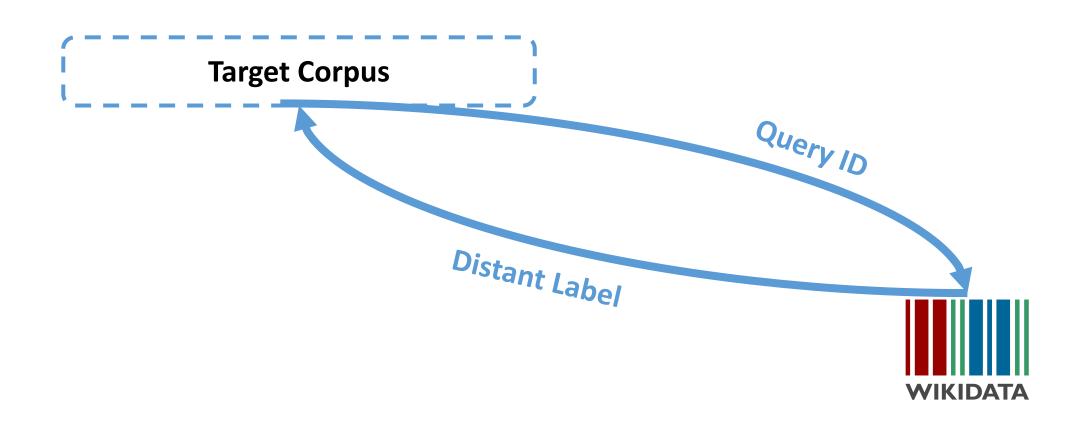
When Sebastian Thrun Person started at Google ord in 2007 DATE, few people outside of the company took him seriously. "I can tell you very senior CEOs of major American Nord car companies would shake my hand and turn away because I wasn't worth talking to," said Thrun Person, now the co-founder and CEO of online higher education startup Udacity, in an interview with Recode org earlier this week DATE.

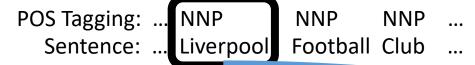
When Sebastian Thrun Person started at Google ord in 2007 DATE, few people outside of the company took him seriously. "I can tell you very senior CEOs of major American NORP car companies would shake my hand and turn away because I wasn't worth talking to," said Thrun Person, now the co-founder and CEO of online higher education startup Udacity, in an interview with Recode ord earlier this week DATE.

prodigy PROJECT INFO ner_fashion_brands VIEW ID ner_manual **PROGRESS** THIS SESSION 00 ACCEPT REJECT HISTORY Which company? Cowboy hat from Gucci Lagree fully, I'm younger than ... I take pride in my work © 2019 Explosion Al (Prodigy v1.8.5)


FASHION_BRAND 1

Sounds like a very confusing comment then


SECTION: malefashionadvice



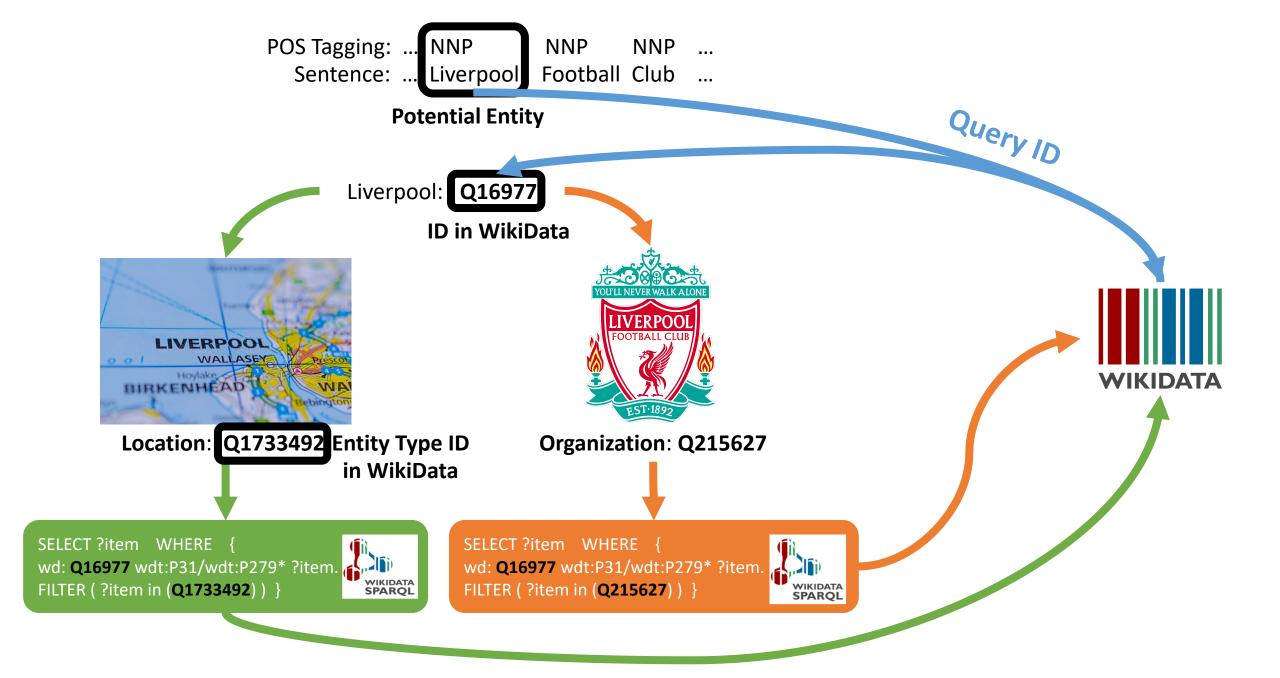
Distant Supervision

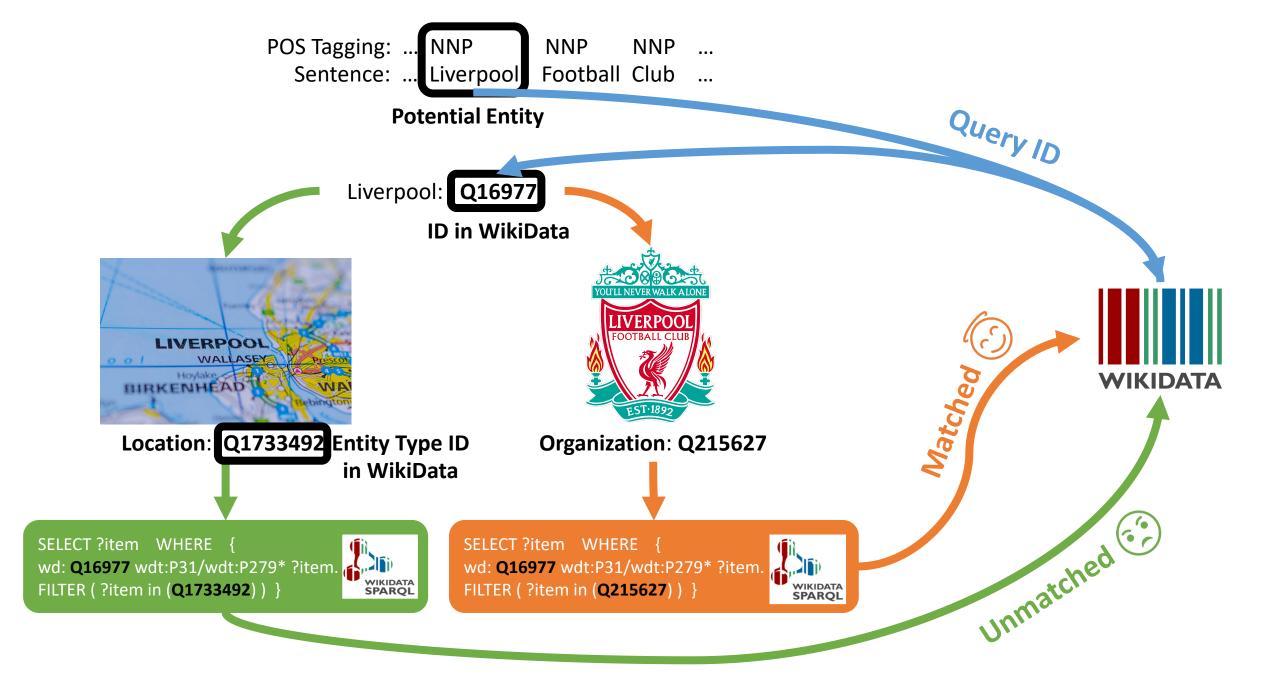
Distant Supervision

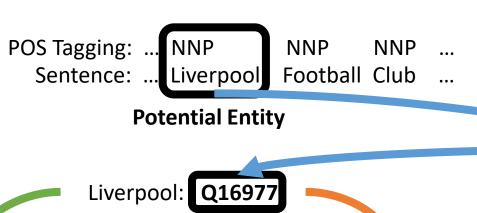
Potential **Entity**

Query ID

Distant Label


Potential Entity

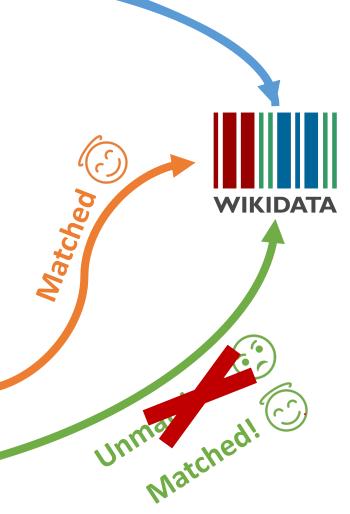

Liverpool: Q16977


ID in WikiData

Query ID

Noisy Annotation! Query ID

WIKIDATA SPARQL



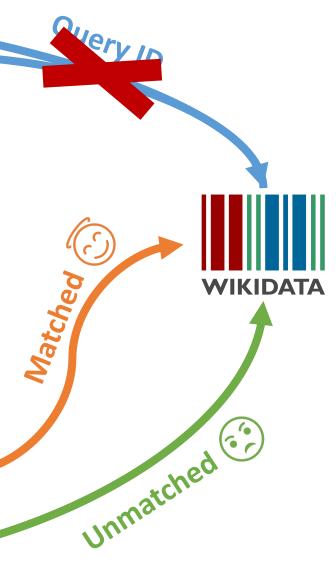
Organization: Q215627

SELECT ?item WHERE { wd: **Q16977** wdt:P31/wdt:P279* ?item. FILTER (?item in (Q215627)) }

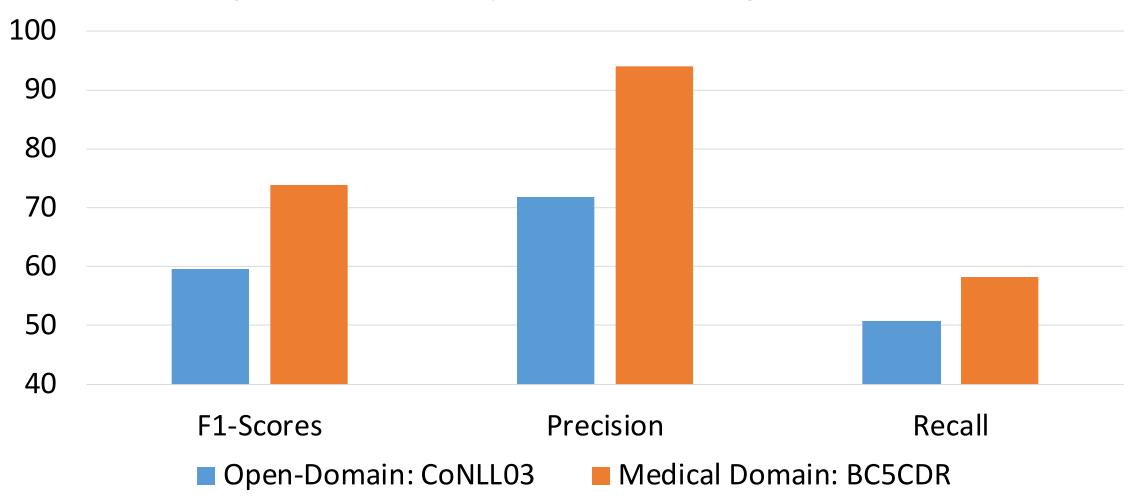
Potential Entity

Liverpool: **ID** in WikiData

Organization: Q215627


SELECT ?item WHERE wd: **Q16977** wdt:P31/wdt:P279* ?item. FILTER (?item in (Q1733492)) }

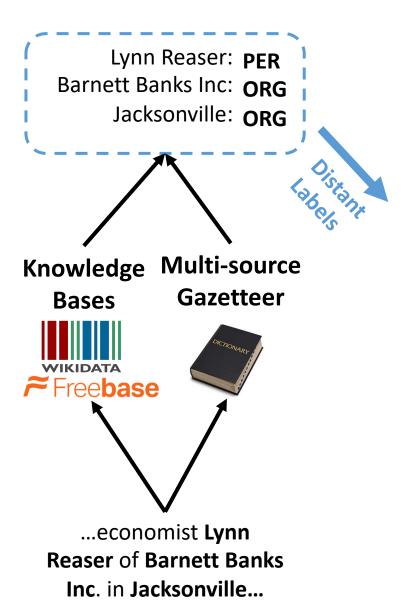
SELECT ?item WHERE { wd: **Q16977** wdt:P31/wdt:P279* ?item. FILTER (?item in (Q215627)) }



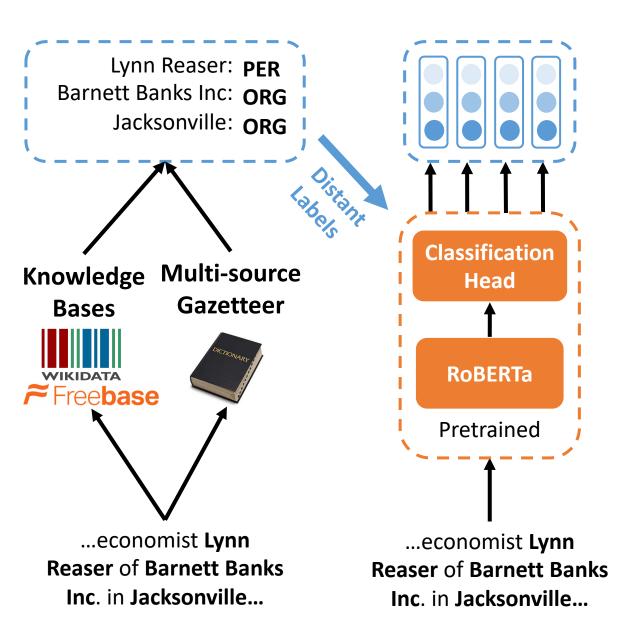
Incomplete Annotation!

Open Domain NER with Distant Supervision

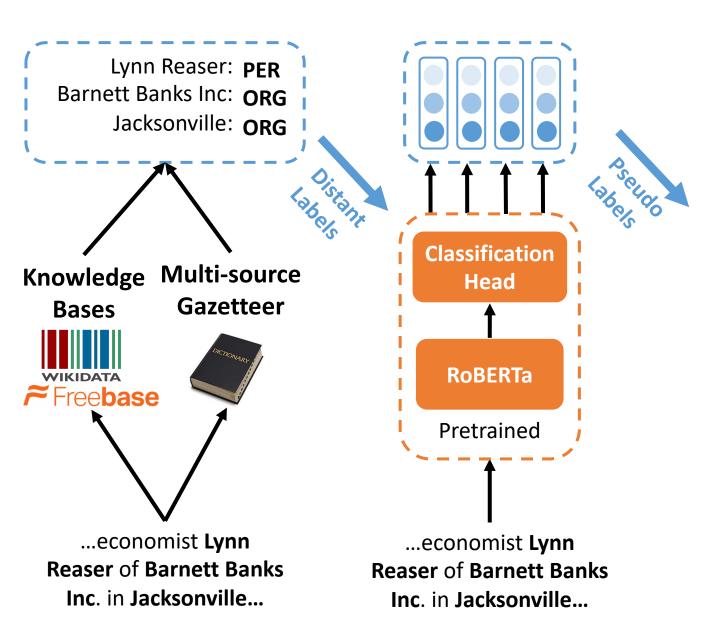
Matching Performance on Open-Domain vs. Single-Domain NER Data

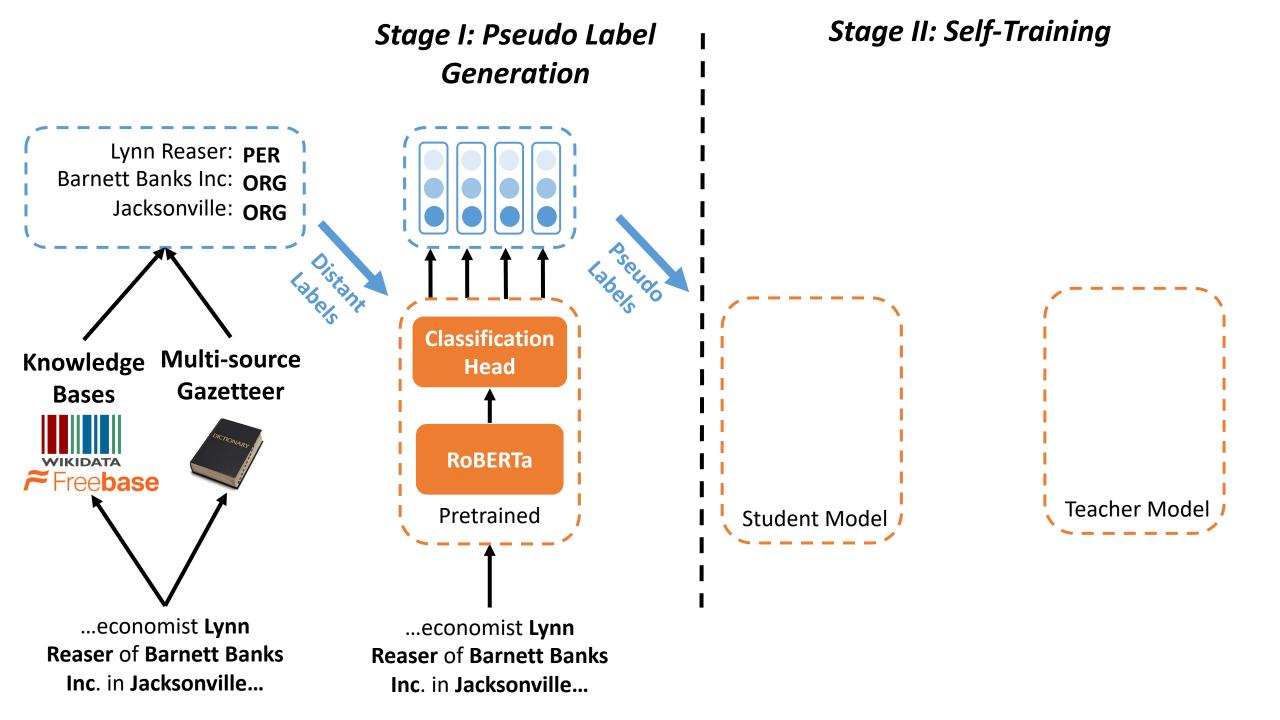

BOND: BERT-Assisted **O**pen Domain **N**ER with **D**istant Supervision

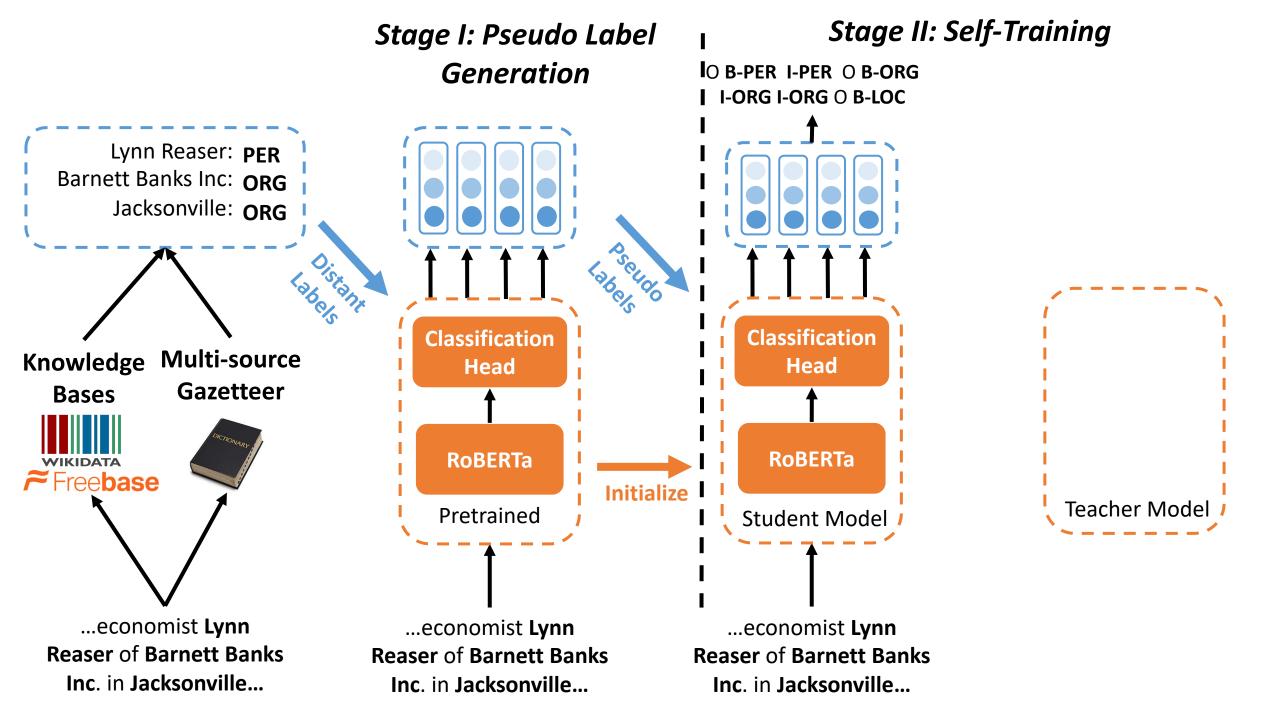
BOND: BERT-Assisted **O**pen Domain **N**ER with **D**istant Supervision


• Leverage power of **pre-trained language models** (e.g. BERT, RoBERTa)

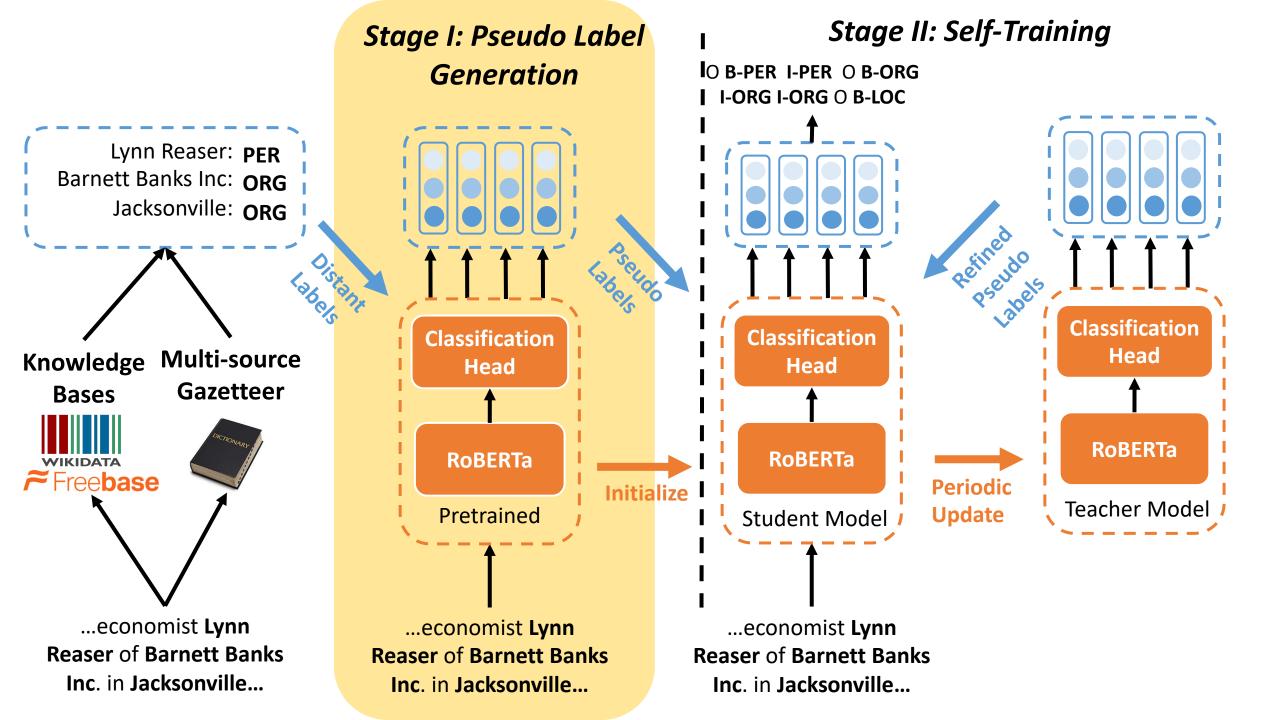
BOND: BERT-Assisted **O**pen Domain **N**ER with **D**istant Supervision

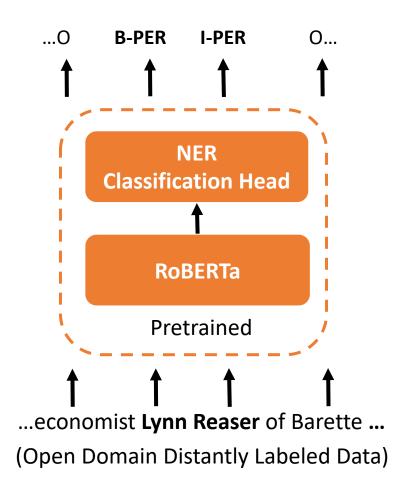

- Leverage power of pre-trained language models (e.g. RoBERTa)
- Two-stage self-training framework



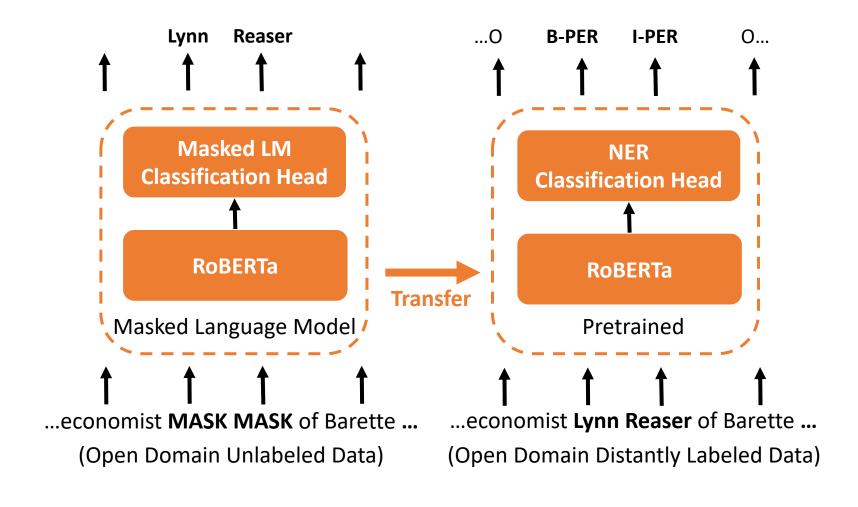

Stage I: Pseudo Label Generation

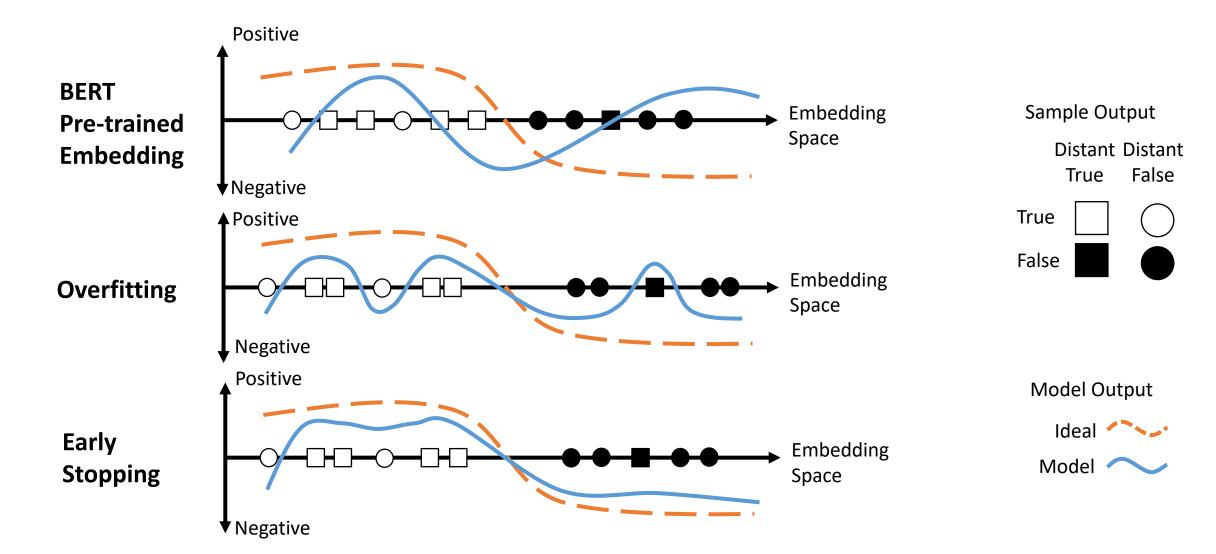
Stage I: Pseudo Label Generation





Stage II: Self-Training Stage I: Pseudo Label **Generation** IO B-PER I-PER O B-ORG -ORG I-ORG O B-LOC Lynn Reaser: **PER** Barnett Banks Inc: ORG Jacksonville: **ORG** Classification Classification Classification Head **Multi-source** Knowledge Head Head Gazetteer **Bases RoBERTa RoBERTa RoBERTa Freebase Periodic Initialize** Teacher Model **Update** Pretrained Student Model / ...economist **Lynn** ...economist **Lynn** ...economist **Lynn Reaser** of **Barnett Banks Reaser of Barnett Banks Reaser** of **Barnett Banks** Inc. in Jacksonville... Inc. in Jacksonville... Inc. in Jacksonville...


Stage II: Self-Training Stage I: Pseudo Label **Generation** IO B-PER I-PER O B-ORG -ORG I-ORG O B-LOC Lynn Reaser: **PER** Barnett Banks Inc: ORG Jacksonville: **ORG** Refined Pseudo Classification Classification Classification Head **Multi-source** Knowledge Head Head Gazetteer **Bases RoBERTa RoBERTa RoBERTa Freebase Periodic** Initialize Teacher Model **Update** Pretrained Student Model / ...economist **Lynn** ...economist **Lynn** ...economist Lynn **Reaser** of **Barnett Banks Reaser of Barnett Banks Reaser** of **Barnett Banks** Inc. in Jacksonville... Inc. in Jacksonville... Inc. in Jacksonville...


Stage I: BERT-Assisted Distantly Supervised Learning

Stage I: BERT-Assisted Distantly Supervised Learning

Stage I: Early Stopping

Stage II: Self-Training Stage I: Pseudo Label **Generation** IO B-PER I-PER O B-ORG I-ORG I-ORG O B-LOC Lynn Reaser: **PER** Barnett Banks Inc: ORG Jacksonville: **ORG** Refined Pseudo Classification Classification Classification Head **Multi-source** Knowledge Head Head Gazetteer **Bases RoBERTa RoBERTa RoBERTa Freebase Periodic Initialize** Teacher Model **Update** Pretrained Student Model / ...economist **Lynn** ...economist **Lynn** ...economist Lynn **Reaser** of **Barnett Banks Reaser of Barnett Banks Reaser of Barnett Banks** Inc. in Jacksonville... Inc. in Jacksonville... Inc. in Jacksonville...

• Initialize the teacher model $f(\cdot; \theta_{tea})$ and the student model $f(\cdot; \theta_{stu})$ with the early stopped model $f(\cdot; \hat{\theta})$ obtained in Stage I

$$\theta_{tea}^{(0)} = \theta_{stu}^{(0)} = \hat{\theta}$$

• Initialize the teacher model $f(\cdot; \theta_{tea})$ and the student model $f(\cdot; \theta_{stu})$ with the early stopped model $f(\cdot; \hat{\theta})$ obtained in Stage I

$$\theta_{tea}^{(0)} = \theta_{stu}^{(0)} = \hat{\theta}$$

- At the *t*-th iteration
 - The teacher model generates pseudo labeled data $\{X_m, \tilde{Y}_m\}_{m=1}^M$

$$\tilde{y}_{m,n}^{(t)} = \underset{c}{\operatorname{argmax}} f_{n,c}(X_m; \theta_{tea}^{(t)})$$

• Initialize the teacher model $f(\cdot; \theta_{tea})$ and the student model $f(\cdot; \theta_{stu})$ with the early stopped model $f(\cdot; \hat{\theta})$ obtained in Stage I

$$\theta_{tea}^{(0)} = \theta_{stu}^{(0)} = \hat{\theta}$$

- At the *t*-th iteration
 - The teacher model generates pseudo labeled data $\{X_m, \tilde{Y}_m\}_{m=1}^M$

$$\tilde{y}_{m,n}^{(t)} = \underset{c}{\operatorname{argmax}} f_{n,c}(X_m; \theta_{tea}^{(t)})$$

The student model fits these pseudo-labels by solving

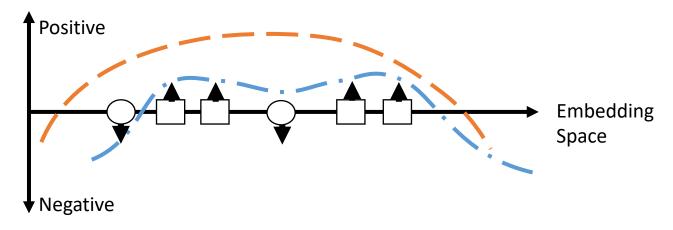
$$\theta_{stu}^{(t)} = \underset{\theta}{\operatorname{argmin}} \frac{1}{M} \sum_{m=1}^{M} \ell(\tilde{Y}_{m}^{(t)}, f(X_{m}; \theta))$$

• Initialize the teacher model $f(\cdot; \theta_{tea})$ and the student model $f(\cdot; \theta_{stu})$ with the early stopped model $f(\cdot; \hat{\theta})$ obtained in Stage I

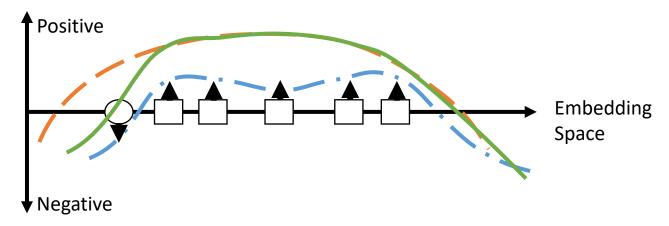
$$\theta_{tea}^{(0)} = \theta_{stu}^{(0)} = \hat{\theta}$$

- At the *t*-th iteration
 - The teacher model generates pseudo labeled data $\{X_m, \tilde{Y}_m\}_{m=1}^M$

$$\tilde{y}_{m,n}^{(t)} = \underset{c}{\operatorname{argmax}} f_{n,c}(X_m; \theta_{tea}^{(t)})$$


The student model fits these pseudo-labels by solving

$$\theta_{stu}^{(t)} = \underset{\theta}{\operatorname{argmin}} \frac{1}{M} \sum_{m=1}^{M} \ell(\tilde{Y}_{m}^{(t)}, f(X_{m}; \theta))$$


Update the teacher model and the student model by

$$\theta_{tea}^{(t+1)} = \theta_{stu}^{(t+1)} = \hat{\theta}_{stu}^{(t)}$$

Stage II: With Distant Labels

Stage II: With Pseudo-Labels

Model Output

Stage II: Soft Labels w/ Confidence Re-weighting

- At the *t*-th iteration
 - Denote the output probability simplex over C classes as $[f_{n,c}(X_m;\theta)]_{c=1}^C$

Stage II: Soft Labels w/ Confidence Re-weighting

- At the *t*-th iteration
 - Denote the output probability simplex over C classes as $[f_{n,c}(X_m;\theta)]_{c=1}^C$
 - The teacher model compute the unnormalized frequency of the tokens belonging to the c-th class as

$$p_c = \sum_{m=1}^{M} \sum_{n=1}^{N} f_{n,c}(X_m; \theta_{tea}^{(t)})$$

Stage II: Soft Labels w/ Confidence Re-weighting

- At the *t*-th iteration
 - Denote the output probability simplex over C classes as $[f_{n,c}(X_m;\theta)]_{c=1}^C$
 - The teacher model compute the unnormalized frequency of the tokens belonging to the c-th class as

$$p_{c} = \sum_{m=1}^{M} \sum_{n=1}^{N} f_{n,c}(X_{m}; \theta_{tea}^{(t)})$$

• The teacher model generates soft labels $\left\{S_m^{(t)} = \left[s_{m,n}^{(t)}\right]_{n=1}^N\right\}_{m=1}^M$ by

$$s_{m,n}^{(t)} = \left[s_{m,n,c}^{(t)}\right]_{c=1}^{C} = \left[\frac{f_{n,c}^{2}(X_m; \theta_{tea}^{(t)})/p_c}{\sum_{c'=1}^{C} f_{n,c'}^{2}(X_m; \theta_{tea}^{(t)})/p_{c'}}\right]_{c=1}^{C}$$

Stage II: Soft Labels w/ Confidence Re-weighting

- At the *t*-th iteration
 - Denote the output probability simplex over C classes as $[f_{n,c}(X_m;\theta)]_{c=1}^C$
 - The teacher model compute the unnormalized frequency of the tokens belonging to the c-th class as

$$p_{c} = \sum_{m=1}^{M} \sum_{n=1}^{N} f_{n,c}(X_{m}; \theta_{tea}^{(t)})$$

• The teacher model generates soft labels $\left\{S_m^{(t)} = \left[s_{m,n}^{(t)}\right]_{n=1}^N\right\}_{m=1}^M$ by

$$s_{m,n}^{(t)} = \left[s_{m,n,c}^{(t)}\right]_{c=1}^{C} = \left[\frac{f_{n,c}^{2}(X_m; \theta_{tea}^{(t)})/p_c}{\sum_{c'=1}^{C} f_{n,c'}^{2}(X_m; \theta_{tea}^{(t)})/p_{c'}}\right]_{c=1}^{C}$$

• The student model fit the soft labels by solving

$$\theta_{stu}^{(t)} = \underset{\theta}{\operatorname{argmin}} \frac{1}{M} \sum_{m=1}^{M} \ell_{KL}(S_m^{(t)}, f(X_m; \theta)),$$

where
$$\ell_{KL}(S_m^{(t)}, f(X_m; \theta)) = \frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} -s_{m,n,c}^{(t)} \log f_{n,c}(X_m; \theta)$$

Stage II: High-Confidence Selection

- At the *t*-th iteration
 - Select a set of high confidence tokens from the m-th sentence by

$$H_m^{(t)} = \left\{ n: \max_{c} s_{m,n,c}^{(t)} > \epsilon \right\},$$
where $\epsilon \in (0,1)$

Stage II: High-Confidence Selection

- At the *t*-th iteration
 - Select a set of high confidence tokens from the m-th sentence by

$$H_m^{(t)} = \left\{ n: \max_{c} s_{m,n,c}^{(t)} > \epsilon \right\},$$
where $\epsilon \in (0,1)$

The student model fit the high-confidence labels of the selected tokens by solving

$$\theta_{stu}^{(t)} = \underset{\theta}{\operatorname{argmin}} \frac{1}{M|H_m^{(t)}|} \sum_{m=1}^{M} \sum_{n \in H_m^{(t)}} -s_{m,n,c}^{(t)} \log f_{n,c}(X_m; \theta)$$

Table 2: Main Results on Testing Set: F₁ **Score (Precision/Recall) (in %)**

Method	CoNLL03	Tweet	OntoNote5.0	Webpage	Wikigold
Entity Types	4	10	18	4	4
KB Matching	71.40(81.13/63.75)	35.83(40.34/32.22)	59.51(63.86/55.71)	52.45(62.59/45.14)	47.76(47.90/47.63)
Fully-Supervi	sed (Our implementa	tion)			
RoBERTa	90.11(89.14/91.10)	52.19(51.76/52.63)	86.20(84.59/87.88)	72.39(66.29/79.73)	86.43(85.33/87.56)
BiLSTM-CRF	91.21(91.35/91.06)	52.18(60.01/46.16)	86.17(85.99/86.36)	52.34(50.07/54.76)	54.90(55.40/54.30)
Baseline (Our	implementation)				
BiLSTM-CRF	59.50(75.50/49.10)	21.77(46.91/14.18)	66.41(68.44/64.50)	43.34(58.05/34.59)	42.92(47.55/39.11)
AutoNER	67.00(75.21/60.40)	26.10(43.26/18.69)	67.18(64.63/69.95)	51.39(48.82/54.23)	47.54(43.54/52.35)
LRNT	69.74(79.91/61.87)	23.84(46.94/15.98)	67.69(67.36/68.02)	47.74(46.70/48.83)	46.21(45.60/46.84)
Other Baseline (Reported Results)					
KALM [†]	76.00(- / -)			-	
ConNET [♦]	75.57(84.11/68.61)				
Our BOND Framework					
Stage I	75.61(83.76/68.90)	46.61(53.11/41.52)	68.11(66.71/69.56)	59.11(60.14/58.11)	51.55(49.17/54.50)
BOND	81.48(82.05/80.92)	48.01(53.16/43.76)	68.35(67.14/69.61)	65.74(67.37/64.19)	60.07(53.44/68.58)

Table 2: Main Results on Testing Set: F₁ **Score (Precision/Recall) (in %)**

Method	CoNLL03	Tweet	OntoNote5.0	Webpage	Wikigold
Entity Types	4	10	18	4	4
KB Matching	71.40(81.13/63.75)	35.83(40.34/32.22)	59.51(63.86/55.71)	52.45(62.59/45.14)	47.76(47.90/47.63)
Fully-Supervi	sed (Our implementa	tion)			
RoBERTa	90.11(89.14/91.10)	52.19(51.76/52.63)	86.20(84.59/87.88)	72.39(66.29/79.73)	86.43(85.33/87.56)
BiLSTM-CRF	91.21(91.35/91.06)	52.18(60.01/46.16)	86.17(85.99/86.36)	52.34(50.07/54.76)	54.90(55.40/54.30)
Baseline (Our	implementation)				
BiLSTM-CRF	59.50(75.50/49.10)	21.77(46.91/14.18)	66.41(68.44/64.50)	43.34(58.05/34.59)	42.92(47.55/39.11)
AutoNER	67.00(75.21/60.40)	26.10(43.26/18.69)	67.18(64.63/69.95)	51.39(48.82/54.23)	47.54(43.54/52.35)
LRNT	69.74(79.91/61.87)	23.84(46.94/15.98)	67.69(67.36/68.02)	47.74(46.70/48.83)	46.21(45.60/46.84)
Other Baseline (Reported Results)					
KALM [†]	76.00(- / -)				
ConNET [♦]	75.57(84.11/68.61)	_	_	_	_
Our BOND Framework					
Stage I	75.61(83.76/68.90)	46.61(53.11/41.52)	68.11(66.71/69.56)	59.11(60.14/58.11)	51.55(49.17/54.50)
BOND	81.48(82.05/80.92)	48.01(53.16/43.76)	68.35(67.14/69.61)	65.74(67.37/64.19)	60.07(53.44/68.58)

Table 2: Main Results on Testing Set: F₁ Score (Precision/Recall) (in %)

Method	CoNLL03	Tweet	OntoNote5.0	Webpage	Wikigold
Entity Types	4	10	18	4	4
KB Matching	71.40(81.13/63.75)	35.83(40.34/32.22)	59.51(63.86/55.71)	52.45(62.59/45.14)	47.76(47.90/47.63)
Fully-Supervi	sed (Our implementa	tion)			
RoBERTa	90.11(89.14/91.10)	52.19(51.76/52.63)	86.20(84.59/87.88)	72.39(66.29/79.73)	86.43(85.33/87.56)
BiLSTM-CRF	91.21(91.35/91.06)	52.18(60.01/46.16)	86.17(85.99/86.36)	52.34(50.07/54.76)	54.90(55.40/54.30)
Baseline (Our	implementation)				
BiLSTM-CRF	59.50(75.50/49.10)	21.77(46.91/14.18)	66.41(68.44/64.50)	43.34(58.05/34.59)	42.92(47.55/39.11)
AutoNER	67.00(75.21/60.40)	26.10(43.26/18.69)	67.18(64.63/69.95)	51.39(48.82/54.23)	47.54(43.54/52.35)
LRNT	69.74(79.91/61.87)	23.84(46.94/15.98)	67.69(67.36/68.02)	47.74(46.70/48.83)	46.21(45.60/46.84)
Other Baselin	Other Baseline (Reported Results)				
KALM [†]	76.00(- / -)				
ConNET [♦]	75.57(84.11/68.61)				
Our BOND Framework					
Stage I	75.61(83.76/68.90)	46.61(53.11/41.52)	68.11(66.71/69.56)	59.11(60.14/58.11)	51.55(49.17/54.50)
BOND	81.48(82.05/80.92)	48.01(53.16/43.76)	68.35(67.14/69.61)	65.74(67.37/64.19)	60.07(53.44/68.58)

Table 2: Main Results on Testing Set: F₁ **Score (Precision/Recall) (in %)**

Method	CoNLL03	Tweet	OntoNote5.0	Webpage	Wikigold	
Entity Types	4	10	18	4	4	
KB Matching	71.40(81.13/63.75)	35.83(40.34/32.22)	59.51(63.86/55.71)	52.45(62.59/45.14)	47.76(47.90/47.63)	
Fully-Supervi	sed (Our implementa	tion)				
RoBERTa	90.11(89.14/91.10)	52.19(51.76/52.63)	86.20(84.59/87.88)	72.39(66.29/79.73)	86.43(85.33/87.56)	
BiLSTM-CRF	91.21(91.35/91.06)	52.18(60.01/46.16)	86.17(85.99/86.36)	52.34(50.07/54.76)	54.90(55.40/54.30)	
Baseline (Our	implementation)					
BiLSTM-CRF	59.50(75.50/49.10)	21.77(46.91/14.18)	66.41(68.44/64.50)	43.34(58.05/34.59)	42.92(47.55/39.11)	
AutoNER	67.00(75.21/60.40)	26.10(43.26/18.69)	67.18(64.63/69.95)	51.39(48.82/54.23)	47.54(43.54/52.35)	
LRNT	69.74(79.91/61.87)	23.84(46.94/15.98)	67.69(67.36/68.02)	47.74(46.70/48.83)	46.21(45.60/46.84)	
Other Baseline (Reported Results)						
KALM [†]	76.00(- / -)	_	_	_	_	
ConNET [⋄]	75.57(84.11/68.61)					
Our BOND Fra	Our BOND Framework					
Stage I	75.61(83.76/68.90)	46.61(53.11/41.52)	68.11(66.71/69.56)	59.11(60.14/58.11)	51.55(49.17/54.50)	
BOND	81.48(82.05/80.92)	48.01(53.16/43.76)	68.35(67.14/69.61)	65.74(67.37/64.19)	60.07(53.44/68.58)	
-						

Table 3: Ablation Study: F₁ **Score (Precision/Recall) (in** %)

26.411	O MI I 00	TT7:1 : 1 1
Method	CoNLL03	Wikigold
Stage I		
Stage I	75.61(83.76/68.90)	51.55(49.17/54.50)
Stage I w/o pre-train	36.66(37.49/35.75)	18.31(18.14/18.50)
Stage I w/o early stop	72.11(81.65/64.57)	49.68(48.67/50.74)
Stage I w/ MT	76.30(82.92/70.67)	46.68(49.82/43.91)
Stage I w/ VAT	76.38(82.58/71.04)	47.54(50.02/45.30)
Stage I + Stage II		
BOND [†]	77.28(83.42/71.98)	56.90(54.32/59.74)
BOND w/ soft	80.18(81.56/78.84)	58.64(58.29/65.79)
BOND w/ soft+high conf	81.48(82.05/80.92)	60.07(53.44/68.58)
BOND w/ reinit	78.17(85.05/72.31)	58.55(55.31/62.19)
BOND w/ soft+reinit	76.92(83.39/71.38)	54.09(50.72/57.94)
BOND w/ MT	77.16(82.79/72.25)	57.93(55.66/60.39)
BOND w/ VAT	77.64 (85.62/70.69)	57.39(55.05/59.41)

Table 3: Ablation Study: F₁ **Score (Precision/Recall) (in** %)

Method	CoNLL03	Wikigold
	CONLLUS	Wikigolu
Stage I		
Stage I	75.61(83.76/68.90)	51.55(49.17/54.50)
Stage I w/o pre-train	36.66(37.49/35.75)	18.31(18.14/18.50)
Stage I w/o early stop	72.11(81.65/64.57)	49.68(48.67/50.74)
Stage I w/ MT	76.30(82.92/70.67)	46.68(49.82/43.91)
Stage I w/ VAT	76.38(82.58/71.04)	47.54(50.02/45.30)
Stage I + Stage II		
BOND [†]	77.28(83.42/71.98)	56.90(54.32/59.74)
BOND w/ soft	80.18(81.56/78.84)	58.64(58.29/65.79)
BOND w/ soft+high conf	81.48(82.05/80.92)	60.07(53.44/68.58)
BOND w/ reinit	78.17(85.05/72.31)	58.55(55.31/62.19)
BOND w/ soft+reinit	76.92(83.39/71.38)	54.09(50.72/57.94)
BOND w/ MT	77.16(82.79/72.25)	57.93(55.66/60.39)
BOND w/ VAT	77.64 (85.62/70.69)	57.39(55.05/59.41)

Table 3: Ablation Study: F₁ **Score (Precision/Recall) (in** %)

Method	CoNLL03	Wikigold
Stage I		
Stage I	75.61(83.76/68.90)	51.55(49.17/54.50)
Stage I w/o pre-train	36.66(37.49/35.75)	18.31(18.14/18.50)
Stage I w/o early stop	72.11(81.65/64.57)	49.68(48.67/50.74)
Stage I w/ MT	76.30(82.92/70.67)	46.68(49.82/43.91)
Stage I w/ VAT	76.38(82.58/71.04)	47.54(50.02/45.30)
Stage I + Stage II		
BOND [†]	77.28(83.42/71.98)	56.90(54.32/59.74)
BOND w/ soft	80.18(81.56/78.84)	58.64(58.29/65.79)
BOND w/ soft+high conf	81.48(82.05/80.92)	60.07(53.44/68.58)
BOND w/ reinit	78.17(85.05/72.31)	58.55(55.31/62.19)
BOND w/ soft+reinit	76.92(83.39/71.38)	54.09(50.72/57.94)
BOND w/ MT	77.16(82.79/72.25)	57.93(55.66/60.39)
BOND w/ VAT	77.64(85.62/70.69)	57.39(55.05/59.41)

Table 3: Ablation Study: F₁ **Score (Precision/Recall) (in** %)

Method	CoNLL03	Wikigold
Stage I		
Stage I	75.61(83.76/68.90)	51.55(49.17/54.50)
Stage I w/o pre-train	36.66(37.49/35.75)	18.31(18.14/18.50)
Stage I w/o early stop	72.11(81.65/64.57)	49.68(48.67/50.74)
Stage I w/ MT	76.30(82.92/70.67)	46.68(49.82/43.91)
Stage I w/ VAT	76.38(82.58/71.04)	47.54(50.02/45.30)
Stage I + Stage II		
BOND [†]	77.28(83.42/71.98)	56.90(54.32/59.74)
BOND w/ soft	80.18(81.56/78.84)	58.64(58.29/65.79)
BOND w/ soft+high conf	81.48(82.05/80.92)	60.07(53.44/68.58)
BOND w/ reinit	78.17(85.05/72.31)	58.55(55.31/62.19)
BOND w/ soft+reinit	76.92(83.39/71.38)	54.09(50.72/57.94)
BOND w/ MT	77.16(82.79/72.25)	57.93(55.66/60.39)
BOND w/ VAT	77.64(85.62/70.69)	57.39(55.05/59.41)

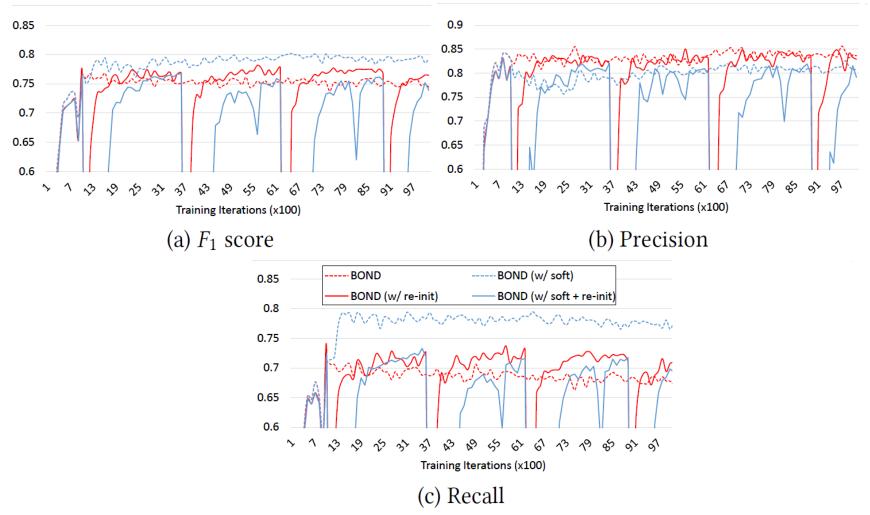
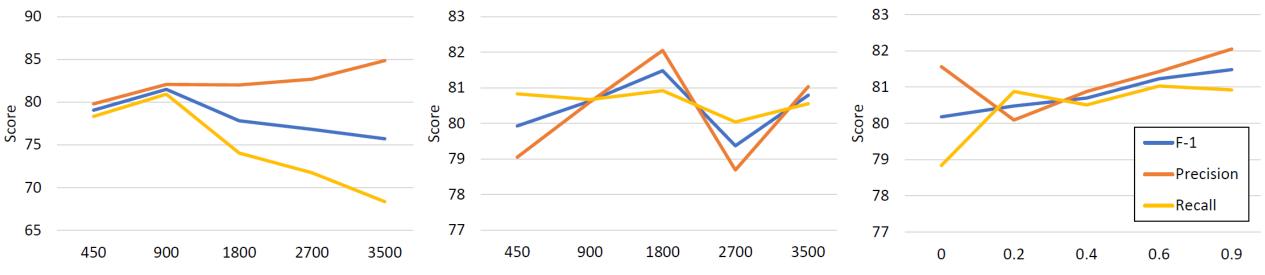



Figure 6: Learning Curves of BOND, BOND (w/ reinit), BOND (w/ soft) and BOND (w/ soft + reinit)

Experiment: Parameter Study

(a) The Early Stopping Time of Stage I – T_1 (b) The Early Stopping Time in Stage II – T_3 (c) The Confidence Threshold of Stage II – ϵ Figure 7: Parameter Study using CoNLL03: F_1 , Precision, Recall on Testing Set (in %)

Experiment: Error Analysis

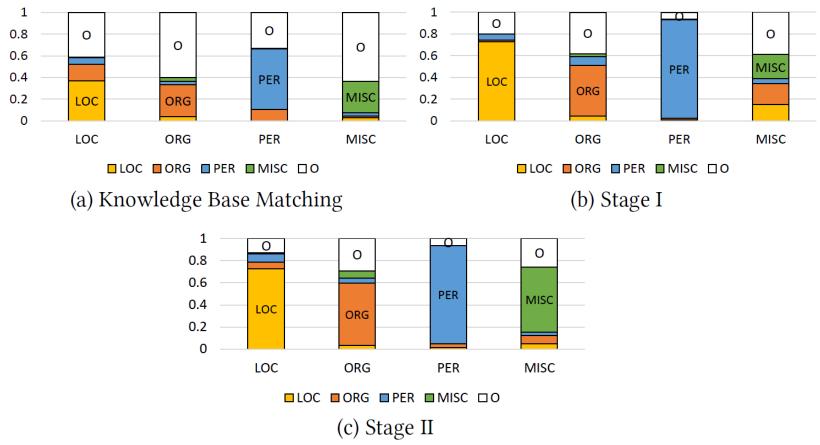


Figure 8: Recall of Knowledge Base Matching and different stages of BOND.

The horizontal axis denotes the true entity type.

The segments in a bar denote the portions of the entities being classified into different entity types.

• Arxiv: https://arxiv.org/abs/2006.15509

• Git: https://github.com/cliang1453/BOND