Bonding Answers

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
1	а	i	shared <u>pair of electrons</u>	1	Can have one electron from each atom contributes to the bond Not both electrons from one atom
1	а	ii	$\frac{1}{2} \operatorname{Cl}_2 + \frac{3}{2} \operatorname{F}_2 \rightarrow \operatorname{CIF}_3$	1	Only Ignore state symbols even if wrong
1	b		$F \xrightarrow{F} CI$ $F \xrightarrow{F} CI$ $F \xrightarrow{F} CI$ $F \xrightarrow{F} F$ $F \xrightarrow{CI} F$ $F \xrightarrow{F} F$	1	Allow any structure with 4 bp Watch for CI in centre- it must be C Ignore wrong bond angles Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe. Also they can show the lone pair for either structure by two crosses /dots or a line with two crosses/dots on it e.g. $F \xrightarrow{XX}_{F} F^{Or}_{F} F^{O}_{F} F^{O}$
1	С		Dipole – dipole	1	Allow van der Waals/ vdw/ London/ dispersion/ temporary dipole - induced dipole Not dipole alone

1	d	i	Coordinate/ dative (covalent)	1	If wrong $CE = 0/3$ but if 'covalent' or left top line blank, mark on.
			(Lone) pair of electrons/ both electrons (on F^-)	1	CE if lone pair is from B
			Donated from F^- / fluoride or donated to the BF_3	1	Must have the – sign on the F ie F ⁻ Ignore FI ⁻ M3 dependent on M2
1	d	ii	109° to 109.5°	1	
1	е		<u>238 x 100</u> 438	1	For 1 mark allow 238 as numerator and 438 as denominator or correct strings
			= 54.3%	1	2 marks if correct answer to 3 sig figs. 54% or greater than 3 sig figs = 1 mark

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
7	а		Iodine – <u>molecular</u>	1	Not covalent lattice
			Graphite- macromolecular/giant covalent/giant atomic	1	
7	b		Layers of (C atoms)	1	If any other element mentioned other than C, $CE = 0$
			Connected by covalent bonds within each layer	1	Ignore the no of covalent bonds around the C if mentioned
			Van der Waals forces/ IMF between layers/ weak forces between layers	1	Need to label or state covalent bonds within the layers. Covalent or ionic or metallic bonds between molecules $CE = 0$
			Many/strong covalent bonds need to be broken	1	
7	С		Van der Waals forces are weak or easily broken	1	Not vdw between atoms
			Van der Waals between molecules (or implied)	1	Allow weak IMF = 2
7	d		Does not have delocalised/free electrons	1	Only allow answer with respect to iodine Not all electrons used in bonding Ignore free ions

Question	Part	Sub Part	Marking Guidance	Mark	Comments
3	(a)		Hydrogen/H bonds	1	Not just hydrogen
			van der Waals/vdw/ dipole-dipole/London/temporarily induced dipole/dispersion forces	1	Not just dipole
3	(b)		$H H \delta_{+} \delta_{-}$	3	M1 for partial charges as indicated in diagram (correct minimum) M2 for all four lone pairs M3 for H bond from the lp to the H (δ^+) on the other molecule Lone pair on hydrogen CE = 0 OHO CE = 0 If only one molecule of water shown CE = 0
3	(C)		Hydrogen bonds/IMF (in water) stronger <i>OR</i> IMF / VDW / dipole-dipole forces (in H ₂ S) are weaker <i>OR</i> H bonding is the strongest IMF	1	Ignore energy references Comparison must be stated or implied
3	(d)		Atoms/molecules get larger/more shells/more electrons/ more surface area	1	Not heavier/greater Mr
			therefore increased Van der Waais/IMF forces	1	Ignore references to dipole-dipole forces

				If covalent or blank read on
		(Lone) pair/both electrons/two electrons on O(H ₂) donated (to H ⁺) OR pair/both electrons come from O(H ₂)	1	Explanation of a coordinate bond specific to oxygen or water required Not just H+ attracted to lone pair since that is nearer to a H bond
0	(0)	· ·	4	
3	(1)	ionic	1	IT NOT IONIC CE = 0
		oppositely charged ions /+ and – ions or particles	1	atoms or molecules loses M2 and
				M3
		ions attract strongly OR strong/many (ionic) bonds must be broken	1	S ⁻ loses M2
			•	Peterence to IME loses M2 and M3

Question	Part	Sub Part	Marking Guidance	Mark	Comments
6			F, F As—F F F	1	Mark M1 – M5 independently M1 for 5 bond pairs around As Do not penalise A for As or FI for F
			trigonal / triangular bipyramid(al)	1	Allow trigonal dipyramid M3 for 2 bond pairs to F and 2 lone pairs Lone pairs can be shown as lobes with or without electrons or as xx or
			F F Bent / V shape / non-linear / triangular / angular	1	$\frac{x}{x}$ Bent-linear = contradiction
			$104^{\circ} - 106^{\circ}$ (For candidates who thought this was CIF_2^{+} which contained	1	Do not allow trigonal
			iodine allow I C F		
			Trigonal / triangular <u>planar</u>		Not just triangular
			120°		

Question	Marking Guidance	Mark	Comments
3(a)	lodine has more electrons / iodine is bigger (atom or molecule) / iodine has bigger M_r / bigger surface area	1	
	Stronger / more van der Waals forces / vdw / London / temporarily induced dipole / dispersion forces <u>between</u> molecules	1	Stronger VdW intermolecular forces = M2 If stated VdW between atoms lose M2
3(b)(i)	H F	1	Mark is for 3 bp and 1 lp attached to N (irrespective of shape)
	F F F	1	Mark is for 3 bp and 0 lp attached to B (irrespective of shape)
	NHF ₂ shape - pyramidal / trigonal pyramid	1	Accept tetrahedral / triangular pyramid
	BF ₃ shape - <u>trigonal planar</u>	1	Not triangular or triangular planar
3(b)(ii)	107°	1	Allow 106-108°
3(c)	Hydrogen bonds	1	Allow H-Bonds
			Not just Hydrogen
			Apply list principle eg Hydrogen bonding and dipole-dipole = 0

3(d)	Coordinate / dative covalent / dative	1	If covalent mark on If ionic / metallic CE = 0
	Lone pair / both electrons/ 2 electrons on $N(HF_2)$ donated (to BF ₃)	1	Direction of donation needed here

Question	Marking Guidance	Mark	Comments
4(a)(i)	Metallic	1	Allow body centred cubic
4(a)(ii)		1	One mark for regular arrangement of particles. Can have a space between them Do not allow hexagonal arrangement
	OR + + + + + Na ⁺ Na ⁺ Na ⁺ Na ⁺ Na ⁺ Na ⁺	1	One mark for + in each Ignore electrons If it looks like ionic bonding then CE = 0/2
4(b)(i)	lonic	1	CE = 0 for 4(b)(i) and 4(b)(ii) if not ionic
4(b)(ii)	Strong (electrostatic) attraction Between oppositely charged ions / particles	1	Any mention of IMF or molecules / metallic / covalent in 4(b)(ii) then CE 0/2 Or + and – ions
4(c)	$Iodide / I^{-}$ bigger (ion) (so less attraction to the Nation)	1	Need comparison
+(0)		I	Do not allow iodine is a bigger atom Ignore I ⁻ has one more e- shell CE = 0 if IMF / covalent / metallic mentioned

Question	Marking Guidance	Mark	Comments
1(a)	<u>Water</u> or <u>H₂O</u> or <u>molecules</u> (in ice) are held <u>further apart</u> (than in liquid water)/(more) <u>space/gaps/holes</u> in structure/	1	Allow water (liquid) is more compact / less space/gaps/holes
	<u>Water</u> or <u>H₂O</u> or <u>molecules</u> (in ice) are more spread out		CE if holes filled with air, O_2 etc
			CE if macromolecule
			CE if atoms further apart (since ambiguous)
			Ignore spaces filled with H_2O
			Ignore reference to H bonds
			Allow better tessellation in liquid water
1(b)(i)	Hydrogen bonding	1	Allow H bonds
			Do not allow 'hydrogen' only but mark on
1(b)(ii)	Van der Waals' / VdW	1	Allow London forces, dispersion forces, temporary induced dipole forces
1(b)(iii)	Hydrogen bonding is strong <u>er</u> (than van der Waals forces)	1	Not H Bonds are strong (needs comparison)
	/ IMF in ice stronger (than IMF in methane)/ H bonds take		If (b)(i) OR (ii) is incorrect, cannot award (b)(iii)
			If (b)(i) and /or (ii) is blank, can score (b)(iii)

1(c)(i)	Structure showing 3 bonds to H and 1 lone pair (trigonal) pyramid(al) /(distorted) tetrahedral	1	do not insist on the + sign Allow triangular pyramid Not square pyramid Ignore bond angles in structure M2 independent of M1
1(c)(ii)	107°	1	Allow range106 - 108° Ignore ° (C)
1(c)(iii)	NH ₃ /ammonia	1	Contradictions (eg NH_4 ammonia) CE = 0
1(d)	3	1	Allow three/ III/ 3 lone pairs/ 3lp/ 3 lone pairs of electrons

Question	Marking Guidance	Mark	Comments
3(a)	P H H	1	Need to see 3 P-H bonds and one lone pair (ignore shape).
3(b)	Coordinate / dative	1	If not coordinate / dative then chemical error CE=0 unless blank or covalent then $M1 = 0$ and mark on.
	Pair of electrons on $P(H_3)$ donated (to H+)	1	Do not allow a generic description of a coordinate bond.
3(c)	109.5° / 109½ / 109° 28'	1	Allow answers in range between 109° to 109.5°
3(d)	Difference in electronegativity between P and H is too small	1	Allow P not very electronegative / P not as electronegative as N, O and F / P not electronegative enough / P not one of the 3 most electronegative elements. Do not allow phosphine is not very electronegative.

Question	Marking Guidance	Mark	Comments
4(a)(i)	Macromolecular / giant covalent / giant molecular / giant atomic	1	If covalent, molecular, giant, lattice, hexagonal or blank mark on. If metallic, ionic or IMF chemical error $CE = 0$ for $4(a)(i)$, $4(a)(ii)$ and $4(a)(ii)$.
4(a)(ii)	Delocalised electrons / free electrons	1	
	Able to move / flow (through the crystal)	1	Allow M2 for electrons can move / flow. Ignore electrons can carry a current / charge.
4(a)(iii)	Covalent bonds	1	
	Many /strong / hard to break / need a lot of energy to break	1	M2 dependent on M1. Ignore van der Waals' forces.
4(b)(i)	(Giant) metallic / metal (lattice)	1	If FCC or BCC or HCP or giant or lattice, mark on. If incorrect 4(b)(i), chemical error CE for 4(b)(ii) and 4(c)(ii).
4(b)(ii)	Nucleus / protons / positive ions and <u>delocalised</u> <u>electrons (are attracted)</u>	1	QWC Must be delocalised electrons – not just electrons. Chemical error = 0/2 for 4(b)(ii) if other types of bonding or IMF mentioned.
	Strong attraction	1	Allow strong metallic bonding for one mark if M1 and M2 are not awarded.
4(c)(i)	Layers of atoms/ions slide (over one another)	1	Do not allow just layers.

4(c)(ii)	(Strong) (metallic) bonding re-formed / same (metallic) bonding / retains same (crystal) structure / same <u>bond</u> <u>strength</u> / same attraction between protons and delocalised electrons as before being hammered or words to that effect	1	 If IMF, molecules, chemical error CE = 0/1 for 4(c)(ii). If metallic not mentioned in 4(b)(i) or 4(b)(ii) it must be mentioned here in 4(c)(ii) to gain this mark. Do not allow metallic bonds broken alone. Ignore same shape or same strength.
4(d)	(giant) Ionic	1	If not ionic, chemical error $CE = 0/3$
	Between + and – ions / oppositely charged ions or Mg ²⁺ and O ²⁻ <u>Strong attraction</u>	1	If molecules mentioned in explanation lose M2 and M3 Allow one mark for a strong attraction between incorrect charges on the ions.

Question	Marking Guidance	Mark	Comments
1(a)	Covalent	1	If not covalent $CE = 0/2$
			If dative covalent $CE = 0/2$
			If blank mark on
			Ignore polar
			If number of pairs of electrons specified, must be 3
	Shared <u>pair</u> (s) of electrons / one electron from Br and one	1	Not 2 electrons from 1 atom
	electron from F		Not shared pair between ions/molecules
1(b)(i)	F = Br - F or $F = Br - F$ $F = F$	1	BrF ₃ should have 3 bp and 2 lp and correct atoms for the mark Penalise FI Allow 84 - 90° or 120° and ignore 180° Irrespective of shape drawn

1(b)(ii)	F F F F	1	BrF ₄ should have 4 bp and 2 lp and all atoms for the mark (ignore sign) Allow FI
	BrF ₄ ⁻ 90°	1	Only Ignore 180°
1(c)	Ionic or (forces of) attraction between ions / bonds between ions	1	If molecules, IMF, metallic, CE =0 If covalent bonds mentioned, 0/3, unless specified within the BrF_4^- ion and not broken
	Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds Between K^+ and BrF_4^- ions/oppositely charged ions / + and - ions	1	If ions mentioned they must be correct Strong bonds between + and – ions =3/3
1(d)(i)	Hydrogen <u>bonds</u> /hydrogen <u>bonding</u> /H <u>bonds</u> /H <u>bonding</u>	1	Not just hydrogen
1(d)(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	One mark for 4 partial charges One mark for 6 lone pairs One mark for H bond from the <u>lone pair to the Hδ+</u> Allow Fl If more than 2 molecules are shown they must all be correct. Treat any errors as contradictions within each marking point. CE = 0/3 if incorrect molecules shown.

1(e)	vdw / van der Waals forces between molecules	1	QoL
			Not vdw between HF molecules, $CE = 0/2$
			vdw between atoms, $CE = 0/2$
			If covalent, ionic, metallic, CE=0/2
	IMF are weak / need little energy to break IMF / easy to overcome IMF	1	

Question	Marking Guidance	Mark	Comments
3(a)	Giant covalent / giant molecular / macromolecular	1	Not giant alone. Not covalent alone.
3(b)	Shared pair of electrons / one electron from each C atom	1	
3(c)	No delocalised / free / mobile electrons	1	Allow all (outer) electrons involved in (covalent) bonds. Ignore ions.
3(d)	СН	1	Allow HC C and H must be capital letters.

Question	Marking Guidance	Mark	Comments
4(a)	Hydrogen bonding / hydrogen bonds / H-bonding / H-Bonds	1	Not just hydrogen.
4(b)	0	3	One mark for minimum of 4 correct partial charges shown on the N-H and O-H
	$\delta \mathbf{N} \sim 1 \cdot \delta^+$		One mark for the 3 lone pairs.
	$H^{\delta+}$ $H^{\delta+}$		One mark for H bond from the lone pair on O or N to the $H^{\delta_{+}}$
	$ \begin{array}{c} $		The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded torthe H If wrong molecules or wrong formula, CE = 0/3

4(c)	(Phosphine) does not form hydrogen bonds (with water)	1	
------	---	---	--

Question	Marking Guidance	Mark	Comments
5(a)	$AI + 1.5CI_2 \rightarrow AICI_3$	1	Accept multiples. Also $2AI + 3CI_2 \rightarrow AI_2CI_6$ Ignore state symbols.
5(b)	Coordinate / dative (covalent) Electron pair on CI ⁻ donated to AI(CI ₃)	1 1	If wrong CE=0/2 if covalent mark on. QoL Lone pair from CI [−] not just CI Penalise wrong species.
5(c)	Al ₂ Cl ₆ or AlBr ₃	1	Allow Br_3AI or CI_6AI_2 Upper and lower case letters must be as shown. Not $2AICI_3$
5(d)	SiCl ₄ / silicon tetrachloride	1	Accept silicon(4) chloride or silicon(IV) chloride. Upper and lower case letters must be as shown. Not silicon chloride.
5(e)	Br Br Br Br Trigonal bipyramid(al)	1	Accept shape containing 5 bonds and no lone pairs from TI to each of 5 Br atoms. Ignore charge.

5(f)(i)	СІ ТІ СІ	1	Accept this linear structure only with no lone pair on TI
5(f)(ii)	(Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible	1	Dependent on linear structure in 5(f)(i). Do not allow electrons /electron pairs repel alone.
5(g)	Second	1	

Question	Marking Guidance	Mark	Comments
3(a)(i)	The power of an <u>atom</u> or <u>nucleus</u> to withdraw or attract electrons <i>OR</i> electron density <i>OR</i> a pair of electrons (towards itself)	1	Ignore retain
	In a <u>covalent</u> bond	1	
3(a)(ii)	More protons / bigger nuclear charge	1	
	Same or similar shielding / electrons in the same shell or principal energy level / atoms get smaller	1	Not same sub–shell Ignore more electrons
3(b)	Ionic	1	If not ionic then CE = 0/3 If blank lose M1 and mark on
	Strong or many or lots of (electrostatic) <u>attractions</u> (between ions)	1	If molecules / IMF / metallic / atoms lose M2 + M3, penalise incorrect ions by 1 mark
	Between + and – ions / between Li^+ and F^- ions / oppositely charged ions	1	Allow strong (ionic) bonds for max 1 out of M2 and M3
3(c)	Small electronegativity difference / difference = 0.5	1	Must be comparative
			Allow 2 non-metals
3(d)(i)	(simple) <u>molecular</u>	1	Ignore simple covalent
3(d)(ii)	$OF_2 + H_2O \longrightarrow O_2 + 2HF$	1	Ignore state symbols Allow multiples Allow OF_2 written as F_2O

3(d)(iii)	45.7% O	1	
	$ \begin{array}{cccc} (& O & F &) \\ (& \underline{45.7} & & \underline{54.3} &) \\ (& 16 & & 19 &) \\ (& 2.85 & 2.85 &) \\ (& 1 & 1 &) \end{array} $	1	If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2
	EF = <u>OF or FO</u>	1	Calculation of OF by other correct method = 3 marks Penalise FI by 1 mark
	MF (= 70.0/35) = O_2F_2 or F_2O_2	1	

Question	Marking Guidance	Mark	Comments
6(a)	CIAs CI CI	1	Mark is for 3 As-CI bonds and 1 lone pair
	(Trigonal) pyramid(al) / tetrahedral	1	Allow triangular pyramid
	CI CI	1	Mark is for 2 CI-CI bonds and 2 lone pairs Do not penalise if + not shown
	Bent / V-shaped / triangular	1	Not trigonal
6(b)	There are 4 bonds or 4 pairs of electrons (around As) (Electron pairs / bonds) repel equally	1 1	Can show in a diagram. If lone pair included in shape, $CE = 0/2$ QoL

Question	Marking Guidance	Mark	Comments
3(a)(i)	d (block) OR D (block)	1	Ignore transition metals / series. Do not allow any numbers in the answer.
3(a)(ii)	Contains positive (metal) ions or protons or nuclei and <u>delocalised / mobile / free / sea of</u> electrons	1	Ignore atoms.
	Strong attraction between them or strong metallic bonds	1	Allow 'needs a lot of energy to break / overcome' instead of 'strong'. If strong attraction between incorrect particles, then $CE = 0/2$ If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then $CE=0$
3(a)(iii)	$\begin{array}{c} + + + \\ + + + \\ + + + \end{array} \qquad \qquad$	2	M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion. Allow 2+ sign.
3(a)(iv)	Layers / planes / sheets of atoms or ions can slide over one another	1	QoL
3(b)(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ (4s ⁰)	1	Only.

3(b)(ii)	$\operatorname{NiCl}_2 \cdot 6\operatorname{H}_2\operatorname{O} + 6\operatorname{SOCl}_2 \longrightarrow \operatorname{NiCl}_2 + 6\operatorname{SO}_2 + 12\operatorname{HCl}$	1	Allow multiples.
	NaOH / NH $_3$ / CaCO $_3$ / CaO	1	Allow any name or formula of alkali or base. Allow water.

Question	Marking Guidance	Mark	Comments
4(a)(i)	Hydrogen bonds / H bonds	1	Not just hydrogen.
4(a)(ii)	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	3	M1 – lone pair on each N M2 – correct partial charges must be shown on the N and H of a bond in each molecule. M3 – for the H bond from lone pair on N to the H δ + on the other NH ₃ molecule. If not ammonia molecules, CE = 0/3
4(b)	Lone pair / both electrons / 2 electrons / electron pair on $N(H_3)$ is donated to $B(CI_3)$	1	Allow both electrons in the bond come from N(H ₃)

4(c)(i)	The power of an <u>atom</u> or <u>nucleus</u> to withdraw or attract electron <u>s</u> or electron density or a pair of electrons (towards itself) in a <u>covalent</u> bond	1	
4(c)(ii)	LiF OR Li ₂ O OR LiH	1	Allow Li ₂ O ₂ , allow correct lithium carbide formula.
4(c)(iii)	BH ₃ / H ₃ B	1	Allow B_2H_6 / H_6B_2 Do not allow lower case letters.

Question	Marking Guidance	Mark	Comments
7(a)	$Br \xrightarrow{CI}_{Br} Br \xrightarrow{CI}_{CI}_{CI}$	2	Mark is for correct number of bonds and lone pair in each case. Ignore charges if shown.
	Pyramidal/ trigonal pyramid	1	Allow tetrahedral.
	107 ⁰	1	Allow 107 to 107.5°
7(b)	M1 Ionic	1	CE = 0/3 if not ionic.
	M2 Oppositely charged ions / TI^+ and Br^- ions	1	If molecules / intermolecular forces / metallic bonding, CE=0
	M3 Strong attraction between ions	1	M3 dependent on M2
			Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
7(c)	$TI + \frac{1}{2}Br_2 \longrightarrow TIBr$	1	Allow multiples. Ignore state symbols even if incorrect.

Question	Marking Guidance	Mark	Comments
3(a)	Macromolecular / giant covalent / giant molecule	1	Not giant atomic
3(b)	No delocalised electrons / no free ions / no free charged particles	1	
3(c)	$SiO_2 + 6HF \longrightarrow H_2SiF_6 + 2H_2O$	1	Accept multiples

	M1: record an IR spectrum
	M2: peak between 3230 and 3550 (cm ⁻¹)

Question	Marking Guidance	Mark	Comments
5(a)	94–105.5°	1	
5(b)(i)	Hydrogen bond(ing) / H bonding/H bonds	1	Not just hydrogen

5(b)(ii)	$\frac{1}{46+} + \frac{1}{6+} + \frac{1}{6+}$	3	 1 mark for all lone pairs 1 mark for partial charges on the O and the H that are involved in H bonding 1 mark for the H-bond, from Hδ+ on one molecule to lone pair on O of other molecule
5(c)	Electronegativity of S lower than O or electronegativity difference between H and S is lower No hydrogen bonding <u>between H_2S_2 molecules</u> Or <u>only</u> van der Waals / <u>only</u> dipole-dipole forces <u>between H_2S_2 molecules</u>	1 1	Mark independently If breaking covalent bonds CE = 0

Question	Marking Guidance	Mark	Comments
	Electron movement in first molecule / temporary dipole	1	allow description
2(a)	Induces a dipole in another molecule	1	allow description
	(induced-temporary) attraction or δ + attracts δ - in different/adjacent molecules	1	M3 dependent on M1 <u>and</u> M2 allow electrostatic attraction M3 could be scored in diagram
			If other type of force / metallic / ionic / polar bonds / permanent dipoles / difference in electronegativity mentioned CE = 0
	(methanol) H-bonds / hydrogen bonding	1	
	(methanethiol) dipole-dipole forces or van der Waals	1	
2(b)(i)	H-bonds are a strong <u>er</u> / are the strongest IMF	1	Allow H-bonds require more energy to overcome
			If M1 and M2 not scored, allow 1 for methanol has stronger IMFs
			If breaking covalent bonds then CE=0
2(b)(ii)	(Fractional) distillation	1	Allow description Do not allow heating unqualified

2(c)	(Methaneselenol is a) bigger molecule / larger Mr / larger no of electrons / Se bigger atom	1	
	With <u>stronger/more</u> <u>vdw</u> forces <u>between molecules</u>	1	If breaking covalent bonds then CE=0
	$ \begin{array}{c c} F \\ F \\ F \\ F \\ F \\ F \end{array} \\ F \\ F \\ F \\ F$	1	diagram showing 6 bond pairs
	(bond angle) 90° for SF ₆	1	ignore 180°
	Octahedral	1	
2(d)(i)	$ \begin{array}{c} F \\ C \\ S \\ F \\ F$	1	diagram showing 4 bond pairs <u>and 1 lone</u> <u>pair</u>
	(bond angles) for SF₄ Any two from: • Allow 85 – 89° • Allow 100 – 119° • Allow 170 – 179°	2	If shape of SF₄ is not based on 4 bond pairs <u>and 1 lone pair</u> cannot score M4 or M5 Do not allow 90° Do not allow 120° Do not allow 180°
2(d)(ii)	NaCl (as product in any equation) 3 SCl ₂ + 4 NaF \rightarrow SF ₄ + S ₂ Cl ₂ + 4 NaCl	1 1	Allow multiples Ignore states

-6