Bonding Answers

\begin{tabular}{|c|c|c|c|c|c|}
\hline Qu \& Part \& $$
\begin{array}{|l}
\hline \text { Sub } \\
\text { Part } \\
\hline
\end{array}
$$ \& Marking Guidance \& Mark \& Comments

\hline 1 \& a \& i \& shared pair of electrons \& 1 \& Can have one electron from each atom contributes to the bond Not both electrons from one atom

\hline 1 \& a \& ii \& $$
\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3}
$$ \& 1 \& Only Ignore state symbols even if wrong

\hline 1 \& b \& \&

 \& 1

1 \& | Allow any structure with 4 bp |
| :--- |
| Watch for Cl in centre- it must be C |
| Ignore wrong bond angles |
| Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe. |
| Also they can show the lone pair for either structure by two crosses /dots or a line with two crosses/dots on it e.g. |
| Or a structure with 3 bp and 2 lp |

\hline 1 \& c \& \& Dipole - dipole \& 1 \& | Allow van der Waals/ vdw/ London/ dispersion/ temporary dipole induced dipole |
| :--- |
| Not dipole alone |

\hline
\end{tabular}

1	d	i	Coordinate/ dative (covalent) (Lone) pair of electrons/ both electrons (on F) Donated from F^{-}/ fluoride or donated to the BF_{3}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If wrong CE = $0 / 3$ but if 'covalent' or left top line blank, mark on. $C E$ if lone pair is from B Must have the - sign on the F ie F^{-} Ignore Fl^{-} M3 dependent on M2
1	d	ii	109° to 109.5°	1	
1	e		$\begin{aligned} & \frac{238 \times 100}{438} \\ & =54.3 \% \end{aligned}$	1 1	For 1 mark allow 238 as numerator and 438 as denominator or correct strings 2 marks if correct answer to 3 sig figs. 54% or greater than 3 sig figs = 1 mark

Qu	Part	Sub Part	Marking Guidance	Mark	Comments		
7	a		lodine - molecular Graphite- macromolecular/giant covalent/giant atomic	1	1		
7	b		Layers of (C atoms) Connected by covalent bonds within each layer Van der Waals forces/ IMF between layers/ weak forces between layers Many/strong covalent bonds need to be broken	1	1		Not covalent lattice
:---							
7							

Question	Part	$\begin{array}{\|l} \hline \text { Sub } \\ \text { Part } \\ \hline \end{array}$	Marking Guidance	Mark	Comments
3	(a)		Hydrogen/H bonds van der Waals/vdw/ dipole-dipole/London/temporarily induced dipole/dispersion forces	1 1	Not just hydrogen Not just dipole
3	(b)			3	M1 for partial charges as indicated in diagram (correct minimum) M2 for all four lone pairs M3 for H bond from the Ip to the H ($\delta+$) on the other molecule Lone pair on hydrogen CE $=0$ $\mathrm{OHO} \mathrm{CE}=0$ If only one molecule of water shown $C E=0$
3	(c)		Hydrogen bonds/IMF (in water) stronger OR IMF / VDW / dipole-dipole forces (in $\mathrm{H}_{2} \mathrm{~S}$) are weaker OR H bonding is the strongest IMF	1	Ignore energy references Comparison must be stated or implied
3	(d)		Atoms/molecules get larger/more shells/more electrons/ more surface area therefore increased Van der Waals/IMF forces	1 1	Not heavier/greater Mr Ignore references to dipole-dipole forces

3 (e) Dative (covalent)/ coordinate 1 If not dative/coordinate CE $=0 / 2$ If covalent or blank read on (Lone) pair/both electrons/two electrons on $\mathrm{O}\left(\mathrm{H}_{2}\right)$ donated (to $\left.\mathrm{H}^{+}\right)$ OR pair/both electrons come from $\mathrm{O}\left(\mathrm{H}_{2}\right)$
3

Question	Part	Sub Part	Marking Guidance	Mark	Comments
6			 trigonal / triangular bipyramid(al) Bent / V shape / non-linear / triangular / angular $104^{\circ}-106^{\circ}$ (For candidates who thought this was $\mathrm{ClF}_{2}{ }^{+}$which contained iodine allow Trigonal / triangular planar 120°	11	Mark M1 - M5 independently M1 for 5 bond pairs around As Do not penalise A for As or FI for F
					Allow trigonal dipyramid
				1	M3 for 2 bond pairs to F and 2 lone pairs Lone pairs can be shown as lobes with or without electrons or as $x x$ or \qquad X X
				1 1	Bent-linear = contradiction Do not allow trigonal
					Not just triangular

Question	Marking Guidance	Mark	Comments
3(a)	Iodine has more electrons / iodine is bigger (atom or molecule) / iodine has bigger $M_{r} /$ bigger surface area Stronger / more van der Waals forces / vdw / London / temporarily induced dipole / dispersion forces between molecules		Stronger VdW intermolecular forces $=\mathrm{M} 2$ If stated VdW between atoms lose M2
3(b)(i)	 NHF_{2} shape - pyramidal / trigonal pyramid BF_{3} shape - trigonal planar	1 1 1	Mark is for 3 bp and 1 lp attached to N (irrespective of shape) Mark is for 3 bp and 0 lp attached to B (irrespective of shape) Accept tetrahedral / triangular pyramid Not triangular or triangular planar
3(b)(ii)	$10{ }^{\circ}$	1	Allow 106-108 ${ }^{\circ}$
3(c)	Hydrogen bonds	1	Allow H-Bonds Not just Hydrogen Apply list principle eg Hydrogen bonding and dipole-dipole $=0$

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - June 2011

3(d)	Coordinate / dative covalent / dative	1	If covalent mark on If ionic / metallic $\mathrm{CE}=0$
	Lone pair / both electrons/ 2 electrons $\mathrm{on} \mathrm{N}\left(\mathrm{HF}_{2}\right)$ donated (to $\left.\mathrm{BF}_{3}\right)$	1	Direction of donation needed here

Question	Marking Guidance	Mark	Comments
4(a)(i)	Metallic	1	Allow body centred cubic
4(a)(ii)	OR $\begin{aligned} & \mathrm{Na}^{+} \mathrm{Na}^{+} \mathrm{Na}^{+} \\ & \mathrm{Na}^{+} \mathrm{Na}^{+} \mathrm{Na}^{+} \end{aligned}$		One mark for regular arrangement of particles. Can have a space between them Do not allow hexagonal arrangement One mark for + in each Ignore electrons If it looks like ionic bonding then $C E=0 / 2$
4(b)(i)	Ionic	1	$\mathrm{CE}=0$ for 4(b)(i) and 4(b)(ii) if not ionic
4(b)(ii)	Strong (electrostatic) attraction Between oppositely charged ions / particles	1	Any mention of IMF or molecules / metallic / covalent in 4(b)(ii) then CE 0/2 Or + and - ions
4(c)	lodide / I- bigger (ion) (so less attraction to the $\mathrm{Na}+$ ion)	1	Need comparison Do not allow iodine is a bigger atom Ignore l' has one more e- shell CE = 0 if IMF / covalent / metallic mentioned

Question	Marking Guidance	Mark	Comments
1(a)	Water or $\mathrm{H}_{2} \mathrm{O}$ or molecules (in ice) are held further apart (than in liquid water)/(more) space/gaps/holes in structure/ Water or $\underline{H}_{2} \underline{O}$ or molecules (in ice) are more spread out	1	Allow water (liquid) is more compact / less space/gaps/holes CE if holes filled with air, O_{2} etc CE if macromolecule CE if atoms further apart (since ambiguous) Ignore spaces filled with $\mathrm{H}_{2} \mathrm{O}$ Ignore reference to H bonds Allow better tessellation in liquid water
1 (b)(i)	Hydrogen bonding	1	Allow H bonds Do not allow 'hydrogen' only but mark on
1(b)(ii)	Van der Waals' / VdW	1	Allow London forces, dispersion forces, temporary induced dipole forces
1(b)(iii)	Hydrogen bonding is stronger (than van der Waals forces) / IMF in ice stronger (than IMF in methane)/ H bonds take more energy to break	1	Not H Bonds are strong (needs comparison) If (b)(i) OR (ii) is incorrect, cannot award (b)(iii) If (b)(i) and /or (ii) is blank, can score (b)(iii)

1(c)(i)	Structure showing 3 bonds to H and 1 lone pair (trigonal) pyramid(al) /(distorted) tetrahedral	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	do not insist on the + sign Allow triangular pyramid Not square pyramid Ignore bond angles in structure M2 independent of M1
1(c)(ii)	107°	1	Allow range106-108 Ignore ${ }^{\circ}(\mathrm{C})$
1(c)(iii)	$\mathrm{NH}_{3} /$ ammonia	1	Contradictions (eg NH ${ }_{4}$ ammonia) $\mathrm{CE}=0$
1(d)	3	1	Allow three/ III/ 3 lone pairs/ 3lp/ 3 lone pairs of electrons

Question	Marking Guidance	Mark	Comments
3(a)		1	Need to see 3 P-H bonds and one lone pair (ignore shape).
3(b)	Coordinate / dative Pair of electrons on $\mathrm{P}\left(\mathrm{H}_{3}\right)$ donated (to $\mathrm{H}+$)	1 1	If not coordinate / dative then chemical error $\mathrm{CE}=0$ unless blank or covalent then M1 = 0 and mark on. Do not allow a generic description of a coordinate bond.
3(c)	$109.5^{\circ} / 1091 / 2 / 109^{\circ} 28^{\prime}$	1	Allow answers in range between 109° to 109.5°
3(d)	Difference in electronegativity between P and H is too small	1	Allow P not very electronegative / P not as electronegative as N , O and F / P not electronegative enough / P not one of the 3 most electronegative elements. Do not allow phosphine is not very electronegative.

Question	Marking Guidance	Mark	Comments
4(a)(i)	Macromolecular / giant covalent / giant molecular / giant atomic	1	If covalent, molecular, giant, lattice, hexagonal or blank mark on. If metallic, ionic or IMF chemical error $\mathrm{CE}=0$ for 4(a)(i), 4(a)(ii) and 4(a)(iii).
4(a)(ii)	Delocalised electrons / free electrons Able to move / flow (through the crystal)	1 1	Allow M2 for electrons can move / flow. Ignore electrons can carry a current / charge.
4(a)(iii)	Covalent bonds Many /strong / hard to break / need a lot of energy to break	1 1	M2 dependent on M1. Ignore van der Waals' forces.
4(b)(i)	(Giant) metallic / metal (lattice)	1	If FCC or BCC or HCP or giant or lattice, mark on. If incorrect 4(b)(i), chemical error CE for 4(b)(ii) and 4(c)(ii).
4(b)(ii)	Nucleus / protons / positive ions and delocalised electrons (are attracted) Strong attraction	1 1	QWC Must be delocalised electrons - not just electrons. Chemical error = $0 / 2$ for 4(b)(ii) if other types of bonding or IMF mentioned. Allow strong metallic bonding for one mark if M1 and M2 are not awarded.
4(c)(i)	Layers of atoms/ions slide (over one another)	1	Do not allow just layers.

4(c)(ii)	(Strong) (metallic) bonding re-formed / same (metallic) bonding / retains same (crystal) structure / same bond strength / same attraction between protons and delocalised electrons as before being hammered or words to that effect	1	If IMF, molecules, chemical error CE $=0 / 1$ for 4(c)(ii). If metallic not mentioned in 4(b)(i) or 4(b)(ii) it must be mentioned here in 4(c)(ii) to gain this mark. Do not allow metallic bonds broken alone. Ignore same shape or same strength.
$4(\mathrm{~d})$	(giant) lonic Between + and - ions / oppositely charged ions or Mg^{2+} and O^{2-} Strong attraction	1	If not ionic, chemical error CE $=0 / 3$ If molecules mentioned in explanation lose M2 and M3 Allow one mark for a strong attraction between incorrect charges on the ions.

Question	Marking Guidance	Mark	Comments
1(a)	Covalent Shared pair(s) of electrons / one electron from Br and one electron from F	1 1	If not covalent $C E=0 / 2$ If dative covalent $C E=0 / 2$ If blank mark on Ignore polar If number of pairs of electrons specified, must be 3 Not 2 electrons from 1 atom Not shared pair between ions/molecules
1(b)(i)		1 1	BrF_{3} should have 3 bp and 2 lp and correct atoms for the mark Penalise FI Allow $84-90^{\circ}$ or 120° and ignore 180° Irrespective of shape drawn

\begin{tabular}{|c|c|c|c|}
\hline 1(b)(ii) \& \& 1

1 \& | BrF_{4} should have 4 bp and 2 lp and all atoms for the mark (ignore sign) |
| :--- |
| Allow FI |
| Only |
| Ignore 180° |

\hline 1(c) \& | Ionic or (forces of) attraction between ions / bonds between ions |
| :--- |
| Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds |
| Between K^{+}and $\mathrm{BrF}_{4}{ }^{-}$ions/oppositely charged ions / + and - ions | \& 1

1 \& | If molecules, IMF, metallic, $\mathrm{CE}=0$ |
| :--- |
| If covalent bonds mentioned, $0 / 3$, unless specified within the BrF_{4} ion and not broken Ignore atoms |
| If ions mentioned they must be correct |
| Strong bonds between + and - ions $=3 / 3$ |

\hline 1(d)(i) \& Hydrogen bonds/hydrogen bonding/H bonds/H bonding \& 1 \& Not just hydrogen

\hline 1(d)(ii) \& \& 3 \& | One mark for 4 partial charges |
| :--- |
| One mark for 6 lone pairs |
| One mark for H bond from the lone pair to the $\mathrm{H} \delta+$ |
| Allow FI |
| If more than 2 molecules are shown they must all be correct. Treat any errors as contradictions within each marking point. |
| $C E=0 / 3$ if incorrect molecules shown. |

\hline
\end{tabular}

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - January 2012

$1(e)$	vdw / van der Waals forces between molecules	1	QoL Not vdw between HF molecules, CE $=0 / 2$ vdw between atoms, CE $=0 / 2$
If covalent, ionic, metallic, CE $=0 / 2$			
IMF are weak / need little energy to break IMF / easy to overcome IMF	1		

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - June 2013

Question	Marking Guidance	Mark	Comments
3(a)	Giant covalent / giant molecular / macromolecular	1	Not giant alone. Not covalent alone.
3(b)	Shared pair of electrons / one electron from each C atom	1	
3(c)	No delocalised / free / mobile electrons	1	Allow all (outer) electrons involved in (covalent) bonds. Ignore ions.
3(d)	CH	1	Allow HC C and H must be capital letters.

Question	Marking Guidance	Mark	Comments
4(a)	Hydrogen bonding / hydrogen bonds / H-bonding / H-Bonds	1	Not just hydrogen.
4(b)	 OR	3	One mark for minimum of 4 correct partial charges shown on the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ One mark for the 3 lone pairs. One mark for H bond from the lone pair on O or N to the $\mathrm{H}^{\delta+}$ The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded f^{+}the H If wrong molecules or wrong formula, $C E=0 / 3$

\square

Question	Marking Guidance	Mark	Comments
5(a)	$\mathrm{Al}+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{3}$	1	Accept multiples. Also $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}$ Ignore state symbols.
5(b)	Coordinate / dative (covalent) Electron pair on Cl^{-}donated to $\mathrm{Al}\left(\mathrm{Cl}_{3}\right)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If wrong $C E=0 / 2$ if covalent mark on. QoL Lone pair from Cl^{-}not just Cl Penalise wrong species.
5(c)	$\mathrm{Al}_{2} \mathrm{Cl}_{6}$ or AlBr_{3}	1	Allow $\mathrm{Br}_{3} \mathrm{Al}$ or $\mathrm{Cl}_{6} \mathrm{Al}_{2}$ Upper and lower case letters must be as shown. Not $2 \mathrm{AlCl}_{3}$
5(d)	SiCl_{4} / silicon tetrachloride	1	Accept silicon(4) chloride or silicon(IV) chloride. Upper and lower case letters must be as shown. Not silicon chloride.
5(e)		1	Accept shape containing 5 bonds and no lone pairs from Tl to each of 5 Br atoms. Ignore charge.

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - June 2013

$5(f)(\mathrm{i})$	$\mathrm{Cl}-\mathrm{Tl}-\mathrm{Cl}$	1	Accept this linear structure only with no lone pair on Tl
$5(\mathrm{f})(\mathrm{ii})$	(Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible	1	Dependent on linear structure in 5(f)(i). Do not allow electrons /electron pairs repel alone.
$5(\mathrm{~g})$	Second	1	

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - January 2013

Question	Marking Guidance	Mark	Comments
3(a)(i)	The power of an atom or nucleus to withdraw or attract electrons $O R$ electron density $O R$ a pair of electrons (towards itself) In a covalent bond	1 1	Ignore retain
3(a)(ii)	More protons / bigger nuclear charge Same or similar shielding / electrons in the same shell or principal energy level / atoms get smaller	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Not same sub-shell Ignore more electrons
3(b)	Ionic Strong or many or lots of (electrostatic) attractions (between ions) Between + and - ions / between Li+ and F^{-}ions / oppositely charged ions	1 1	If not ionic then $C E=0 / 3$ If blank lose M1 and mark on If molecules / IMF / metallic / atoms lose M2 + M3, penalise incorrect ions by 1 mark Allow strong (ionic) bonds for max 1 out of M2 and M3
3(c)	Small electronegativity difference $/$ difference $=0.5$	1	Must be comparative Allow 2 non-metals
3(d)(i)	(simple) molecular	1	Ignore simple covalent
3(d)(ii)	$\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{HF}$	1	Ignore state symbols Allow multiples Allow OF_{2} written as $\mathrm{F}_{2} \mathrm{O}$

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 1: Foundation Chemistry - January 2013

3(d)(iii)	45.7\% O	1	
		1	If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2
	$\mathrm{EF}=\underline{\mathrm{OF} \text { or } \mathrm{FO}}$	1	Calculation of OF by other correct method $=3$ marks Penalise FI by 1 mark
	$\mathrm{MF}(=70.0 / 35)=\mathrm{O}_{2} \mathrm{~F}_{2}$ or $\mathrm{F}_{2} \mathrm{O}_{2}$	1	

| Question | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 6(a) | (Trigonal) pyramid(al) / tetrahedral | 1 | Mark is for $3 \mathrm{As}-\mathrm{Cl}$ bonds and 1 lone pair |

Question	Marking Guidance	Mark	Comments
3(a)(i)	d (block) OR D (block)	1	Ignore transition metals / series. Do not allow any numbers in the answer.
3(a)(ii)	Contains positive (metal) ions or protons or nuclei and delocalised / mobile / free / sea of electrons Strong attraction between them or strong metallic bonds	1 1	Ignore atoms. Allow 'needs a lot of energy to break / overcome' instead of 'strong'. If strong attraction between incorrect particles, then $C E=0 / 2$ If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then $\mathrm{CE}=0$
3(a)(iii)	OR	2	M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion. Allow 2+ sign.
3(a)(iv)	Layers / planes / sheets of atoms or ions can slide over one another	1	QoL
3(b)(i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8}\left(4 s^{0}\right)$	1	Only.

3(b)(ii)	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{SOCl}_{2} \longrightarrow \mathrm{NiCl}_{2}+6 \mathrm{SO}_{2}+12 \mathrm{HCl}$	1	Allow multiples.
	$\mathrm{NaOH} / \mathrm{NH}_{3} / \mathrm{CaCO}_{3} / \mathrm{CaO}$	1	Allow any name or formula of alkali or base. Allow water.

Question	Marking Guidance	Mark	Comments
4(a)(i)	Hydrogen bonds / H bonds	1	Not just hydrogen.
4(a)(ii)		3	M1 - lone pair on each N M2 - correct partial charges must be shown on the N and H of a bond in each molecule. M3 - for the H bond from lone pair on N to the $\mathrm{H} \delta+$ on the other NH_{3} molecule. If not ammonia molecules, $C E=0 / 3$
4(b)	Lone pair / both electrons / 2 electrons / electron pair on $\mathrm{N}\left(\mathrm{H}_{3}\right)$ is donated to $\mathrm{B}\left(\mathrm{Cl}_{3}\right)$	1	Allow both electrons in the bond come from $\mathrm{N}\left(\mathrm{H}_{3}\right)$

4(c)(i)	The power of an atom or nucleus to withdraw or attract electrons or electron density or a pair of electrons (towards itself) in a covalent bond	1	
4(c)(ii)	LiF OR Li Li O OR LiH	1	Allow $\mathrm{Li}_{2} \mathrm{O}_{2}$, allow correct lithium carbide formula.
4(c)(iii)	$\mathrm{BH}_{3} / \mathrm{H}_{3} \mathrm{~B}$	1	Allow $\mathrm{B}_{2} \mathrm{H}_{6} / \mathrm{H}_{6} \mathrm{~B}_{2}$ Do not allow lower case letters.

Question	Marking Guidance	Mark	Comments
7(a)	 Pyramidal/ trigonal pyramid 107^{0}	2 1 1	Mark is for correct number of bonds and lone pair in each case. Ignore charges if shown. Allow tetrahedral. Allow 107 to 107.5°
7(b)	M1 Ionic M2 Oppositely charged ions / Tl^{+}and Br^{-}ions M3 Strong attraction between ions	1 1 1	$C E=0 / 3$ if not ionic. If molecules / intermolecular forces / metallic bonding, $\mathrm{CE}=0$ M3 dependent on M2 Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
7(c)	$\mathrm{Tl}+\frac{1}{2} \mathrm{Br}_{2} \longrightarrow \mathrm{TlBr}$	1	Allow multiples. Ignore state symbols even if incorrect.

1 (d)(i)	Or any structure with 3 bonds and 2 lone pairs		
1(d)(ii)	Bent $/ \mathrm{V}$ shape	1	Ignore any angles shown
1(d)(iii)	$\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \longrightarrow \mathrm{ClF}_{3}$	1	Or a structure with 2 bonds and 1 lone pair

Question	Marking Guidance	Mark	Comments
$3(\mathrm{a})$	Macromolecular / giant covalent / giant molecule	1	Not giant atomic
$3(\mathrm{~b})$	No delocalised electrons / no free ions / no free charged particles	1	
$3(c)$	$\mathrm{SiO}_{2}+6 \mathrm{HF} \longrightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{H}_{2} \mathrm{O}$	1	Accept multiples

			M1: record an IR spectrum M2: peak between 3230 and $3550\left(\mathrm{~cm}^{-1}\right)$
Question	Marking Guidance	Mark	Comments
5(a)	94-105.5 ${ }^{\circ}$	1	
5(b)(i)	Hydrogen bond(ing) / H bonding/H bonds	1	Not just hydrogen

5(b)(ii)	 OR	3	1 mark for all lone pairs 1 mark for partial charges on the O and the H that are involved in H bonding 1 mark for the H -bond, from $\mathrm{H} \delta+$ on one molecule to lone pair on O of other molecule
5(c)	Electronegativity of S lower than O or electronegativity difference between H and S is lower No hydrogen bonding between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules Or only van der Waals / only dipole-dipole forces between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules		Mark independently If breaking covalent bonds $C E=0$

Question	Marking Guidance	Mark	Comments
	Electron movement in first molecule / temporary dipole	1	allow description
2(a)	Induces a dipole in another molecule (induced-temporary) attraction or ס+ attracts δ - in different/adjacent molecules	1	allow description

2(c)	(Methaneselenol is a) bigger molecule / larger Mr / larger no of electrons / Se bigger atom With stronger/more vdw forces between molecules	1 1	If breaking covalent bonds then $\mathrm{CE}=0$
2(d)(i)		1	diagram showing 6 bond pairs
	(bond angle) 90° for SF_{6}	1	ignore 180°
	Octahedral	1	
	 or	1	diagram showing 4 bond pairs and 1 lone pair
	(bond angles) for SF_{4} Any two from: - Allow $85-89^{\circ}$ - Allow 100-119 - Allow 170-179	2	If shape of SF_{4} is not based on 4 bond pairs and 1 lone pair cannot score M4 or M5 Do not allow 90° Do not allow 120° Do not allow 180°
2(d)(ii)	NaCl (as product in any equation) $3 \mathrm{SCl}_{2}+4 \mathrm{NaF} \rightarrow \mathrm{SF}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaCl}$	1 1	Allow multiples Ignore states

