
Bonds to Bands 

 
An introduction to basic concepts in solid state and surface 

bonding and electronic structure. 
 

• Basic classes of bonding 
• Basic concepts in quantum chemistry – LCAO and molecular orbital 

theory (Huckel) 
• The tight binding model of solids – bands in 1, 2, and 3 dimensions 
• Surfaces – molecular adsorption 

 
Suggested Readings: 

 
• R. Hoffmann, “Solids and Surfaces: A chemists view of bonding in 

extended structures"  VCH, 1988,  pp 1-55, 65-78. 
• P.A. Cox, “The Electronic Structure and Chemistry of Solids”, 

Oxford, 1987,  Chpts. 1, 2(skim), 3 (esp. 45-62), and 4 (esp. 79-88). 
• Kittel, “Introduction to Solid State Physics” (or Ashcroft and 

Merman), useful background reading. 



Bonds to Bands - big picture 

2H → H2 

 

4H → linear H4 (not stable) 
 

 

 k = π/2 

N H → linear Hn (not stable) 
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Bonds to Bands 
• Forces between atoms (chemistry) 

– Covalent 
– Polar covalent 
– Ionic 
– Weak (London/dispersion, dipole…) 

• Forces in solids 
– Covalent – Si, C … 
– Ionic – NaCl, MgO … 
– Metallic – Cu, Na, Al … 
– Molecular (weak) – N2, benzene 

 
• Edisp ~ -3/16 π E0(hw0) α2/R6 

 

  avg. excitation term polarization term 



Bonds to Bands 
• Two main approaches to surface problems in 

electronic structure calculations: 
– Build up from atom – atomic orbitals + … 
– Infinite solid down – plane waves + … 

• Interested in energies + positions of electrons 
– Eclass = H(r, p) = T + V (KE + PE) 
– Q.M. teaches us:   
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Bonds to Bands 

• 3 postulates in Q. M. (of many) 
              many Q. Chem. problems use  
              t-independent Schrod. eqn.) 
 ψ2 = prob. density of system 
– αψi = aiψi only observable values of system are 

eigenvalues (ai) of corresponding operator (α) 
        (and, if ψ is eigenfnc. of α operator) 
      =     (average, exp. value) 
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Bonds to Bands 

• Skip over: particle in a box, harmonic oscillator, 
rigid rotor, Heisenberg, angular momentum… 

• H atom – can do exactly! 
 

    (n = 1,2,3…)  = 
 
 

• Also get ψ’s e.g.  ψ(1S) =   
     ψ(2S) = … 
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Bonds to Bands 

• But for most problems we use some 
approximate methods: 
– Two common methods used in Quant. Chem. are 

variational and perturbation theory methods. 
 

– Pert. Theory: 
      
       (often known) 
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Bonds to Bands 

• Variational method 
– Use matrix notation  
     (time indep. Sch. Eqn.) 
– For stationary states, if ψ is normalized, well-

behaved function, it can be shown that 
 
 

 
=> 
– Minimize variational integral to get ground st ψ’s. 
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<- variational integral 



Bonds to Bands 

• Best to start to solve Sch. Eqn. by choosing 
good ψ’s! 

    (also basic QM postulate) 
 

• Any ψ can be expanded from set of 
orthonormal functions ϕn (satisfying 
appropriate boundary conditions) 
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Bonds to Bands 

• In Quantum Chemistry, often use hydrogen-like 
“atomic orbitals” ϕn (s, p, d…) to study 
molecules (molec. ψ’s). 

• This approach is called LCAO – linear 
combination of atomic orbitals 

• General problem is to minimize variational 
integral by finding coefficients cn that make 
variational integral stationary: 
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Bonds to Bands 
 
 
 
 
 
 
 
     if   orthonormal, if not: 
 
 
(Consult QM book for derivations!) 

0)(

0)(

0)(

0)(

0)(

****



























mnmn
n

n

mnmn
n

n

nmnm
n

n

nn
n

n

n
nn

n
nn

n
nn

ESHc

EHc

dvEdvHc

EHc

cEH

cEcH
EH













nm



Var. Method 

• The nontrivial solution for complex systems is 
     can be a big determinant 
• Solutions yield Ei’s, which then yield ci’s 

(normalize with     )  
• Computationally hard part is determination of 

Hmn and diagonalization of matrix. 
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Bonds to Bands 
• Most simple molecular system H2

+ 

   (molecule ion with one electron) 
 
 
 

• For trial functions choose 2 simple 1s atomic 
orbitals. 

   let 
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Bonds to Bands 
• For a simple diatomic, the determinant becomes: 
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Can draw correlation 
energy diagram: 

solve quadratic and get 2 solutions: 
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Bonds to Bands 
• Ψ1 is called bonding orbital 
• Ψ2 is called anti-bonding orbital 

 
 

     
 
      (phase ≠ spin) 
• Remember: each orbital can have 2 electrons. (Pauli) 
• For (2+) electron systems must add elec: - elec. repulsion + 

screening of core Zeff. concepts (and more) 
 

• Potential energy diagrams: 
 

    

2σ (2σu or σ *) 

1σ (or 1σ g) 

Emin 

γH-H internucl. dist 



Hydrogen 



Nitrogen 



Can use photoemission to determine energy levels.  
Above is the He 1 ultraviolet photoelectron spectrum 
of CO. Note the vibrational fine structure of the ionic 
states. From Turner et. al. 



Qualitative electronic structure and energy minimization of 
cyclobutadiene; symmetry breaking 



Energy levels and symmetry of multi-atom ring systems 



Extended Hückel Theory - EHT 
• Quantum chemical approximation technique. 
• Semi-empirical. 
• Study only valence (i.e. bonding) orbitals. 
• Solve the problem H4=E4 with LCAO variational method, but using 

ideas from perturbation theory. 
              E2 

      
      Hjj 
         Hii 
              E1 
 
• The initial state orbitals are atomic slater type orbitals – STOs 
   Χi = A rn-1 e-5r/no Υlm (θ,φ) 
• The initial state energies, Hii are taken as –I.P. from experiment or 

some other calculation. 



Extended Hückel Theory - EHT 
• Intuitive idea is that the strength of a bond, as represented by the 

off-diagonal matrix elements Hij, should be proportional to the extent 
of overlap (Sij) and the mean energy of the interacting orbitals 
(Hii+Hjj)/2. 
 

        
 
• K is an empirical parameter between 1 and 2. 
• Problems: 

– Hij is not exact 
– No charge self consistency 
– Hij increases with overlap causing system to show minimum energy 

when atoms collapse. 
– No core-core repulsion 
– Etc. 

• But… EHT does usually show qualitatively correct trends in an 
easily interpretable manner. 
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“bonding” 

neighboring orbitals in lattice 
“in-phase” 

 
“anti-bonding” 

neighboring orbitals in lattice 
“out-of-phase” 

phase factor 

0       k –>      π/a 

K= π/2a 



The band structure of a chain of hydrogen aroms spaced 3, 2, 
and 1 Å apart. The energy of an isolated H atom is -13.6 eV. 



Density of States (DOS) Concept  



(a) E(k) curve showing the allowed k values for 
a chain with N=8 atoms. (b) Orbital energies for 
eight-atom chain, showing clustering at the top 
and bottom of the band. (c) Density of states 
foe a chain with very large N. 

X-ray photoelectron spectrum of the long-chain 
alkane C36H74, showing the density of states in the 
2s band. (From J.J. Pireau et. Al., Phys. Rev. A, 14 
(1976), 2133.) 



Energy as a function of k for 
bands of s and ρσ orbitals in a 
linear chain. 

Overlap of ρσ orbitals for k = 0 
and k = ±π/a. 



The orbitals of N2 (left) and a “solid state way” to plot 
the DOS and COOP curves for this molecule. The 1σg 
and 1σu orbitals are out of the range of this figure. 



Crystal Orbital Overlap Population – COOP 

Better than DOS for determining extent of bonding and 
antibonding interactions 



p and d orbitals (in addition to s) – for the linear chain 



A polymer - linear array of PtH4 molecules 



Band structure and density of states for an eclipsed PtH4
2- 

stack. The DOS curves are broadened so that the two-
peaked shape of the xy peak in the DOS is not resolved. 



2 D array of s orbitals 



2D array of p orbitals (px and py) 



Schematic band structure of a planar square lattice of atoms 
bearing ns and np orbitals. The s and p levels have a large 
enough separation that the s and p band do not overlap. 



Buckling of ID chain to minimize E (periodicity changes – doubles) 



Energy minimization for I-D chain – Peierls instability 



Contributions of Ti and O to the total DOS  of 
rutile, TiO2 are shown at top. At bottom, the t2g and 
eg Ti contributions are shown; their integration (on 
scale of 0-100%) is given by the dashed line. 



CO bonding to a transition metal 



pure MH5   pure CO 

(transition metal + 5xH) 

 

after 

interaction 



• Slab approach 
 

  side view     top view 
 

• Take an ordered overlayer, 1-N layers of a metal slab, 
and construct an infinite 2-D structure by using a lattice 
basis and Bloch sums. The Fermi level of a slab will 
differ somewhat from that of a bulk metal, so Ef should 
be imposed as the bulk value (calculated in a separate 
calculation). 

• Similar to before, we must sample in k-space, which is 
now two-dimensional. 

• Solution is achieved by solving the matrix and filling the 
orbitals up to Ef. 

I. Surface Problems 



The total density of states of a model c(2 x 2)CO-
Ni(100) system (center), compared to its isolated four-
layer Ni slab (left) and CO monolayer components. 



For the c(2 x 2)CO-Ni(100) model this shows the 5σ 
and 2π* contributions to the total DOS. Each 
contribution is magnified. The position of each level 
in isolated CO is marked by a line. The integration of 
the DOS contribution is given by the dotted line. 



Crystal orbital population or CO, on top, in a c(2 x 2)CO-Ni(100) 
model. Representative orbital combinations are drawn out. 



Molecule-surface orbital interaction diagram 

Interaction diagrams for 5σ and 2π* of c(2 x 2)C-Ni(100). The 
extreme left and right panels in each case show the contributions of 
the appropriate orbitals (z2 for 5σ, xz, yz for 2π*) of a surface metal 
atom (left) and of the corresponding isolated CO monolayer MO. The 
middle two panels then show the contributions of the same fragment 
MOs to the DOS of the composite chemisorption system. 



The density of states (right) corresponding to the 
band structure (left) of a square monolayer of 
CO’s 3.52 Á apart. 



Dispersion of energy bands for square monolayer of CO at two 
separations: (a) left, 3.52 Á, (b) right, 2.49 Á. These would correspond 

to ½ and full coverage of a Ni(100) surface. 



C2H4 bonded to a metal surface 

From left to right: contributions of π, πρ, πρ*, and π* to the DOS 
of C2H2 in a two-fold geometry on Pt(111). The lines mark the 
positions of these levels in a free bent acetylene. The integration 
of the DOS contributions are indicated by the dotted line. 



COOP curve for the α–carbon-Pt1 bond in the 1-fold (left) and 3-fold 
(right) geometry of ethylidyne, CCH3 on Pt(111). 



Different orbital interactions between 

surface and adsorbate atom or molecule 



Unoccupied orbitals often antibonding within a molecule A-B. 

Control dissociation of A-B by controlling surface’s ability to populate antibonding 
levels. 

substrate    adsorbate 

∆E 
∆E = E(LUMO) - Ef 

E 

* 
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A 

B 

A B 

Barrier to 
chemisorption. 



Spectroscopic techniques, some of which can be used to determine 
energy levels. (a) optical absorption in the visible/UV range; (b) 
photoelectron spectroscopy; (c) inverse photoelectron spectroscopy; (d) 
X-ray absorption; (e) X-ray emission. Electrons with energies above the 
vacuum level can enter or leave the solid; in techniques (b) and (c) the 
scale shows the kinetic energy measured in a vacuum outside the solid. 


