ECE 101 - Fall 2019
 Linear Systems Fundamentals

 Final Exam Review Topics

 Final Exam Review Topics}

Book Recommendation: Signals \& Systems by Oppenheim and Wilsky (Prentice Hall)

1 Signals - Chapter 1

Complex numbers and trigonometry

- Complex arithmetic, magnitude, phase, triangle inequality
- Euler's formula: $e^{j \theta}=\cos \theta+j \sin \theta$
- Evaluation of complex exponential $e^{j \theta}$ at standard angles (e.g., $\pi, \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{6}$)
- Basic trigonometric identities:

$$
\begin{aligned}
\cos \theta & =\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
\sin \theta & =\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right) \\
\sin (A+B) & =\sin (A) \cos (B)+\cos (A) \sin (B) \\
\cos (A+B) & =\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

- Infinite geometric series:

$$
\begin{gathered}
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}, \text { for }|z|<1 \\
\sum_{n=0}^{\infty} n z^{n}=\frac{z}{(1-z)^{2}}, \text { for }|z|<1
\end{gathered}
$$

- Finite geometric series:

$$
\sum_{n=0}^{N-1} z^{n}= \begin{cases}N & z=1 \\ \frac{1-z^{N}}{1-z} & \text { for any complex } z \neq 1\end{cases}
$$

CT and DT Signals

- Signal energy and power
- Transformations of independent variable
- Time shifting, time reversal, time scaling
- Interpretations of $x(a t-b)$
- Periodic signals
- Periodicity conditions
- Fundamental period and frequency
- Finding fund. period/frequency of the sum of periodic signals
- Periodicity and scaling
- Even and Odd signals
- Definitions of even and odd signals,
- Even-odd decomposition theorem: $x(t)=\mathcal{E} v\{x(t)\}+\mathcal{O} d\{x(t)\}$ where $\mathcal{E} v\{x(t)\}=\frac{x(t)+x(-t)}{2}$ and $\mathcal{O} d\{x(t)\}=\frac{x(t)-x(-t)}{2}$
- CT and DT mpulse and unit step signals
- Relationships

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \delta[n]=1 \\
& \delta[n]=u[n]-u[n-1] \\
& \delta[n]=u[n]-u[n-1] \\
& u[n]=\sum_{k=0}^{\infty} \delta[n-k]=\sum_{k=-\infty}^{n} \delta[k] \\
& \int_{-\infty}^{\infty} \delta(t) d t=1 \\
& \delta(t)=\frac{d}{d t} u(t) \\
& u(t)=\int_{\infty}^{\infty} \delta(t-\tau) d \tau=\int_{-\infty}^{t} \delta(\tau) d \tau
\end{aligned}
$$

- Sampling and sifting properties

$$
\begin{aligned}
& x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right) \\
& \int_{\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
\end{aligned}
$$

- Representation property

$$
\begin{aligned}
& x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \\
& x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau
\end{aligned}
$$

- Complex exponential signals
$\mathrm{CT}: x(t)=c e^{a t}, c, a \in \mathbb{C}$
DT: $x[n]=c \alpha^{n}, c, \alpha \in \mathbb{C}$
$x(t)=e^{j \omega_{0} t}$ periodic, fund. frequency ω_{0}, fund. period $T=2 \pi / \omega_{0}$
$x[n]=e^{j \Omega_{0} n}$ periodic in n if and only if $\Omega_{0}=2 \pi / N$, for $m, N \in \mathbb{Z}, N>0$
If $\operatorname{gcd}(m, N)=1$, fund. period N, fund. frequency $2 \pi / N$
$x[n]=e^{j \Omega n}$ periodic in Ω, period 2π.

2 Systems - Chapters 1 and 2

- Basic system properties

Memoryless: output at time n does not depend on inputs before or after time n
Invertible: distinct input signals produce distinct output signals
Causal: output at time n does not depend on inputs after time n
Stable: bounded input signals produces bounded output signals
Time-invariant: $x(t)$ produces $y(t) \Rightarrow x\left(t-t_{0}\right)$ produces $y\left(t-t_{0}\right)$
Linear: additive and scalable

- System impulse response and step response

Input $\delta(t)$ produces impulse response $h(t)$
Input $u(t)$ produces step response $s(t)$

- LTI systems

- Relationship between impulse response and step response
$s(t)=\int_{-\infty}^{t} h(\tau) d \tau \quad h(t)=\frac{d s(t)}{d t}$
$s[n]=\sum_{k=-\infty}^{n} h[k] \quad h[n]=s[n]-s[n-1]$

- Convolution formulas

Convolution sum formula: $y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=x[n] * h[n]$
Convolution integral formula $y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)$

- Properties of convolution

Commutativity, associativity, distributivity over addition
Convolution with shifted impulse: $x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
Integration: $x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau$

- Impulse response of serial and parallel concatenations of LTI systems.
(shown here for CT systems)
Serial: $h(t)=h_{1}(t) * h_{2}(t)$
Parallel: $h(t)=h_{1}(t)+h_{2}(t)$
- Impulse response and properties of LTI systems (shown here for CT systems)
Memoryless: $h(t)=a \delta(t)$
Invertible: There exists $g(t)$ such that $h(t) * g(t)=\delta(t)$
(necessary condition, also sufficient for inputs $x(t)$ with $x(t) * h(t)$ and $x(t) * g(t)$ both well defined and finite)

Causal: $h(t)=0$ for $t<0$
Stable: $h(t)$ is absolutely integrable

- Differentiation property of CT LTI systems

$x(t) \rightarrow y(t) \Rightarrow \frac{d x(t)}{d t} \rightarrow \frac{d y(t)}{d t}$

- LTI systems defined by differential/difference equations
$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}} \quad \sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$

- Recursive and non-recursive filters

Non-recursive filters: no feedback of the output
DT blur filters with rectangular impulse response
$h[n]=\frac{1}{N} \sum_{k=0}^{N-1} \delta[n-k]=\frac{1}{N}(u[n]-u[n-N])$
Recursive filters: feedback of output
DT first order filters: $y[n]-a y[n-1]=x[n]$, a real, $|a|<1$
a positive: low-pass filter; $h[n]=a^{n} u[n]$ decaying exponential
a negative: high-pass filter; $\quad h[n]=a^{n} u[n]$ alternating-polarity decaying exponential

3 CT and DT Fourier Series - Chapter 3

- Key equations

CTFS equations for periodic signal, fund. period T, fund. frequency $\omega_{0}=2 \pi / T$
Synthesis: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$
Analysis: $a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t$
DTFS equations for periodic signal, fund. period N, fund. frequency $\omega_{0}=2 \pi / N$
Synthesis: $x[n]=\sum_{k=<N>} a_{k} e^{j k \omega_{0} n}$
Analysis: $a_{k}=\frac{1}{N} \sum_{n=<N} x[n] e^{-j k \omega_{0} n}$

- Response of LTI system to complex exponential

System Functions $H(s)$ and $H(z)$
$e^{\text {st }}\left(\right.$ resp. $\left.z^{n}\right)$ is an eigenfunction
$H(s)$ (resp. $H(z)$) is the corresponding eigenvalue. It is called the system function
$H(j \omega)$ (resp. $H\left(e^{j \omega}\right)$) is called the system frequency response
$\begin{array}{ll}e^{s t} \rightarrow H(s) e^{s t} & H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t \\ z^{n} \rightarrow H(z) z^{n} & H(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k}\end{array}$

- How to determine if system may be LTI by action on complex exponential signals
Check if eigenfunction property is satisfied. If violated, system is not LTI.
- Filtering of periodic signal through an LTI system

Assume frequency response $H(j \omega)$ (resp. $H\left(e^{j \omega}\right)$)
$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \rightarrow y(t)=\sum_{k=-\infty}^{\infty} a_{k} H\left(j k \omega_{0}\right) e^{j k \omega_{0} t}$
$x[n]=\sum_{k=<N>} a_{k} e^{j k \omega_{0} n} \rightarrow y[n]=\sum_{k=-\infty}^{\infty} a_{k} H\left(e^{j k \omega_{0}}\right) e^{j k \omega_{0} n}$

- Key examples

Periodic complex exponentials, sinusoidal signals, rectangular waves, impulse train

- Properties of CTFS/DTFS (Tables 3.1 and 3.2)

Periodicity of DTFS $\mathbf{a}_{\mathbf{k}}: \quad x[n]$ fund. period $N \Rightarrow a_{k}$ period N
Linearity Time shifting, frequency shifting
Time reversal, time scaling
Periodic convolution, multiplication
Differentiation, integration (CT) / First difference, running sum (DT)
Parseval's relation
FS and signal properties: real (conjugate symmetry), real \& even, imaginary \& odd

- Finding system function and frequency response of causal LTI system from differential/difference equations

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}} \quad H(s)=\frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}} \quad H(j \omega)-\text { plug in } s=j \omega \\
& \sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \quad H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \quad H\left(e^{j \omega}\right)-\text { plug in } z=e^{j \omega}
\end{aligned}
$$

- Effect of LTI system with real impulse response on sinusoids
$\cos \left(\omega_{0} t\right) \rightarrow\left|H\left(j \omega_{0}\right)\right| \cdot \cos \left(\omega_{0} t+\angle H\left(j \omega_{0}\right)\right)$
$\cos \left(\omega_{0} n\right) \rightarrow\left|H\left(e^{j \omega_{0}}\right)\right| \cdot \cos \left(\omega_{0} n+\angle H\left(e^{j \omega_{0}}\right)\right)$

4 CT Fourier Transform - Chapter 4

- Key equations

Synthesis: $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j k \omega t} d \omega$
Using synthesis equation to evaluate $x(t)$ at specific values of t, such as $t=0$:
$x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) d \omega$
Analysis: $X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

Using analysis equation to evaluate $X(j \omega)$ at specific values of ω, such as $\omega=0$:
$X(j 0)=\int_{-\infty}^{\infty} x(t) d t$

- Properties of CTFT (Table 4.1)

Linearity, Time shifting, frequency shifting
Conjugation, Time reversal, time scaling
Convolution, multiplication
Differentiation (in time/frequency), integration
Parseval's relation $\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega$

- FT and signal properties:
$x(t)$ real $\Rightarrow X(j \omega$ conjugate symmetric
$x(t)$ real and even $\Rightarrow X(j \omega)$ real and even
$x(t)$ real and odd $\Rightarrow X(j \omega)$ purely imaginary and odd
Even-odd decomposition for real signals:
$\mathcal{E} v\{x(t)\} \longleftrightarrow \mathcal{R} e\{X(j \omega)\}$
$\mathcal{O} d\{x(t)\} \longleftrightarrow j \operatorname{Im}\{X(j \omega)\}$

- Basic CT Fourier Transform Pairs (Table 4.2)

Periodic signals: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \leftrightarrow X(j \omega)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$
$x(t)=1 \leftrightarrow 2 \pi \delta(\omega)$
Periodic square wave
Periodic impulse train \leftrightarrow periodic impulse train (picket fence \leftrightarrow picket fence)
Rectangular pulse \leftrightarrow sinc function
Sinc function \leftrightarrow rectangular pulse
Transforms of unit impulse, shifted impulse, and unit step
$x(t)=e^{-a t} u(t), \operatorname{Re}\{a\}>0 \leftrightarrow X(j \omega)=\frac{1}{a+j \omega}$

- Systems characterized by linear constant-coefficient differential equations
$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}$
$H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}$
Partial Fraction Expansion and tables to find impulse response, calculate inputs/outputs

- Filtering through LTI systems

$y(t)=x(t) * h(t) \leftrightarrow Y(j \omega)=X(j \omega) H(j \omega)$

- Inverse LTI systems

$h(t) * g(t)=\delta(t) \leftrightarrow H(j \omega) G(j \omega)=1$

5 DT Fourier Transform - Chapter 5

- Key equations

Synthesis: $x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$
Analysis: $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$

- Periodicity of $X\left(e^{j \omega}\right)$ in frequency, period 2π

- Properties of DTFT (Table 5.1)

Similar to CTFT

- Basic DT Fourier Transform Pairs (Table 5.2)

Periodic signals: fund. period N, fund. frequency $\omega_{0}=2 \pi / N$
$x[n]=\sum_{k=<N>} a_{k} e^{j k \omega_{0} n} \leftrightarrow X\left(e^{j \omega}\right)=2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$
Similar to CTFT

- Systems characterized by linear constant-coefficient difference equations
$\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$
$H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega)}\right.}{X\left(e^{j \omega}\right)}=\frac{\sum_{k=0}^{M} b_{k}\left(e^{-j \omega}\right)^{k}}{\sum_{k=0}^{N} a_{k}\left(e^{-j \omega}\right)^{k}}$
Partial Fraction Expansion and tables to find impulse response, calculate inputs/outputs
- Filtering through LTI systems
$y(t)=x(t) * h(t) \leftrightarrow Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
- First-order recursive filters (lowpass, highpass), non-recursive filters (blur)

Derivation of frequency response of length- N blur filter:

$$
H\left(e^{j \omega}\right)=\frac{1}{N} e^{-j \omega(N-1) / 2} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}
$$

Derivation of frequency response of recursive filter: $y[n]-a y[n-1]=x[n],|a|<1$.

$$
H\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}
$$

6 Amplitude Modulation - Chapter 8

- Amplitude modulation

Signal $x(t)$, bandlimited to $[-W, W]$, carrier $c(t)=\cos \left(\omega_{c} t\right)\left(\omega_{c}>W\right)$.
Modulation:
$y(t)=x(t) c(t) \leftrightarrow Y(j \omega)=\frac{1}{2 \pi} X(j \omega) * C(j \omega)=\frac{1}{2}\left(X\left(j\left(\omega-\omega_{c}\right)\right)+X\left(j\left(\omega+\omega_{c}\right)\right)\right)$

Demodulation:

$z(t)=y(t) c(t) \leftrightarrow$
$Z(j \omega)=\frac{1}{2 \pi} Y(j \omega) * C(j \omega)=\frac{1}{4} X\left(j\left(\omega-2 \omega_{c}\right)\right)+\frac{1}{2} X(j \omega)+\frac{1}{4} X\left(j\left(\omega+2 \omega_{c}\right)\right)$
Signal recovery (if $\omega_{c}>W$):
Pass $z(t)$ through low-pass filter with cutoff frequency ω_{c}, gain 2

- Effect of demodulating with different sinusoid: $\sin \left(\omega_{c} t\right), \cos \left(\omega_{1} t\right)$ where $\omega_{1} \neq \omega_{c}$.

7 Sampling Theory - Chapter 7

- Impulse train sampling

CT signal, band-limited to $[-W, W]$:
$x(t) \leftrightarrow X(j \omega), X(j \omega)=0$, for $|\omega|>W$
Impulse train, sampling period T, sampling frequency $\omega_{s}=2 \pi / T$:
$p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T) \leftrightarrow P(j \omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \omega_{s}\right)$
Sampled signal:

$$
x_{p}(t)=x(t) p(t)=\sum_{n=-\infty}^{\infty} x(n T) \delta(t-n T) \leftrightarrow X_{p}(j \omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\omega-k \omega_{s}\right)\right)
$$

- Sampling Theorem:

Let $x(t)$ be band-limited to [$-W, W]$. Then $x(t)$ is uniquely determined by its samples $x(n T), n \in \mathbb{Z}$ if $\omega_{s}=2 \pi / T>2 W$.
The signal $x(t)$ can be reconstructed from the signal $x_{p}(t)$ using a low-pass filter with cutoff frequency $\omega_{0}=\omega_{s} / 2=\pi / T$ and gain T.
If $\omega_{s}<2 W$, then aliasing occurs, and $x(t)$ cannot be reconstructed from $x_{p}(t)$.

- Using CTFT properties and transform pairs to determine the maximum frequency of a signal $y(t)$ obtained from $x(t)$ by various operations, e.g., conjugation, time-shifting, combining with another signal by linear operation, conjugation, multiplication, etc.

- DT processing of CT signals

Define $x(t), p(t), x_{p}(t)$ as above.
Define $x_{d}[n]=x(n T), n \in \mathbb{Z}$
Using formula for $x_{p}(t)$, rewrite $X_{p}(j \omega)=\sum_{n=-\infty}^{\infty} x(n T) e^{-j \omega n T}$
Using DTFT, $X_{d}\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} x_{d}[n] e^{-j \Omega n}=\sum_{n=-\infty}^{\infty} x(n T) e^{-j \Omega n}$
Thus, $X_{d}\left(e^{j \Omega}\right)=X_{p}(j \Omega / T)$ or $X_{d}\left(e^{j \omega T}\right)=X_{p}(j \omega)$
The plots of $X_{d}\left(e^{j \Omega}\right)$ is obtained from the plot of $X_{p}(j \omega)$ by multiplying the ω-axis labels of $X_{p}(j \omega)$ by T. So, $\omega_{s}=2 \pi / T$ becomes $\Omega=2 \pi$.

- Example of aliasing when undersampling a sinusoidal signal

Change of frequency and possible phase shift (reversal)

- Bandpass sampling techniques for bandpass signals.

8 Laplace Transform - Chapter 9

- Laplace Transform: $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$

Region of Convergence: $\mathrm{ROC}=\{s \in \mathbb{C} \mid X(s)$ exists $\}$

- Relation to Fourier Transform
$X(s)$ exists at $s=\sigma+j \omega \Leftrightarrow$ CTFT of $x(t) e^{-\sigma t}$ exists.
- Basic LT examples

Right-sided exponential, ROC right half-plane
$x(t)=e^{-a t} u(t), a \in \mathbb{C} \leftrightarrow X(s)=\frac{1}{s+a}, \operatorname{ROC}=\{s \mid \operatorname{Re}\{s\}>-\operatorname{Re}\{a\}\}$
Left-sided exponential, ROC left half-plane
$x(t)=-e^{-a t} u(-t), a \in \mathbb{C} \leftrightarrow X(s)=\frac{1}{s+a}, \operatorname{ROC}=\{s \mid \operatorname{Re}\{s\}<-\operatorname{Re}\{a\}\}$

- Rational X(s), poles, zeros, and pole-zero plots
- The 8 -fold way of the ROC

Right-sided signal: ROC contains a right half-plane
Left-sided signal: ROC contains a left half-plane
Two-sided signal: ROC is a finite vertical strip
Absolutely integrable and finite duration signal: ROC is entire s-plane
Rational $X(s)$: ROC contains no poles; ROC is bounded by poles or extends to infinity

- ROC and LTI system properties
S causal \Rightarrow ROC contains a right half-plane.
Assume S rational: S causal \Leftrightarrow ROC equals right half-plane to right of rightmost pole.
S stable \Leftrightarrow ROC contains the $j \omega$-axis.
Assume S rational and causal: S stable \Leftrightarrow all poles have negative real part.

- Inverse LT

Via integration along line in ROC.
Via partial fraction expansion and tables of LT transform pairs.

- Geometric evaluation of Fourier Transform using pole-zero plot.

Magnitude $|H(j \omega)|$ using lengths of vectors from poles and zeros to $j \omega$, i.e., $(j \omega-\rho)$ and $(j \omega-\zeta)$.
Phase $\angle H(j \omega)$ using angles of vectors from poles and zeros to $j \omega$, i.e., $(j \omega-\rho)$ and $(j \omega-\zeta)$.

- Properties of LT (Table 9.1)

Linearity, time-shifting, convolution, differentiation/integration in time domain, and effect on ROC.

- Laplace Transforms of elementary functions (Table 9.2)
- Analysis of LTI systems defined by differential equations

System function:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{k=0}^{M} b^{k} s^{k}}{\sum_{k=0}^{N} a^{k} s^{k}}
$$

Convert to rational $H(s)$, use PFE, invert using table of transforms
ROC determined by properties of system (e.g., causal, stable, etc.)

- System function algebra

Serial and parallel concatentation, simple feedback systems.
Serial: $H(s)=H_{1}(s) H_{2}(s)$
Parallel: $H(s)=H_{1}(s)+H_{2}(s)$
Simple feedback (with positive feedback):

$$
H(s)=\frac{H_{f f}(s)}{1-H_{f f}(s) H_{f b}(s)}
$$

where $H_{f f}(s)$ is system function of feed-forward filter and $H_{f b}(s)$ is system function of feedback filter.

