
ECE 101 - Fall 2019
Linear Systems Fundamentals

Final Exam Review Topics

1 Signals - Chapter 1

Complex numbers and trigonometry

• Complex arithmetic, magnitude, phase, triangle inequality

• Euler’s formula: ejθ = cos θ + j sin θ

• Evaluation of complex exponential ejθ at standard angles (e.g., π, π
2
, π

3
, π

4
, π

6
)

• Basic trigonometric identities:

cos θ =
1

2

(
ejθ + e−jθ

)
sin θ =

1

2j

(
ejθ − e−jθ

)
sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

• Infinite geometric series:
∞∑
n=0

zn =
1

1− z
, for |z| < 1.

∞∑
n=0

nzn =
z

(1− z)2
, for |z| < 1.

• Finite geometric series:

N−1∑
n=0

zn =

{
N z = 1
1−zN
1−z for any complex z 6= 1.

CT and DT Signals

• Signal energy and power

• Transformations of independent variable

– Time shifting, time reversal, time scaling

– Interpretations of x(at− b)
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Book Recommendation: Signals & Systems by Oppenheim and Wilsky (Prentice Hall)



• Periodic signals

– Periodicity conditions

– Fundamental period and frequency

– Finding fund. period/frequency of the sum of periodic signals

– Periodicity and scaling

• Even and Odd signals

– Definitions of even and odd signals,

– Even-odd decomposition theorem: x(t) = Ev{x(t)}+Od{x(t)}
where Ev{x(t)} = x(t)+x(−t)

2
and Od{x(t)} = x(t)−x(−t)
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• CT and DT mpulse and unit step signals

– Relationships∑∞
n=−∞ δ[n] = 1

δ[n] = u[n]− u[n− 1]

δ[n] = u[n]− u[n− 1]

u[n] =
∑∞

k=0 δ[n− k] =
∑n

k=−∞ δ[k]∫∞
−∞ δ(t)dt = 1

δ(t) = d
dt
u(t)

u(t) =
∫∞
∞ δ(t− τ)dτ =

∫ t
−∞ δ(τ)dτ

– Sampling and sifting properties

x(t)δ(t− t0) = x(t0)δ(t− t0)∫∞
∞ x(t)δ(t− t0)dt = x(t0)

– Representation property

x[n] =
∑∞

k=−∞ x[k]δ[n− k]

x(t) =
∫∞
−∞ x(τ)δ(t− τ)dτ

• Complex exponential signals

CT: x(t) = ceat, c, a ∈ C
DT: x[n] = cαn, c, α ∈ C
x(t) = ejω0t periodic, fund. frequency ω0, fund. period T = 2π/ω0

x[n] = ejΩ0n periodic in n if and only if Ω0 = 2π/N , for m,N ∈ Z, N > 0

If gcd(m,N) = 1, fund. period N , fund. frequency 2π/N

x[n] = ejΩn periodic in Ω, period 2π.
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2 Systems - Chapters 1 and 2

• Basic system properties

Memoryless: output at time n does not depend on inputs before or after time n

Invertible: distinct input signals produce distinct output signals

Causal: output at time n does not depend on inputs after time n

Stable: bounded input signals produces bounded output signals

Time-invariant: x(t) produces y(t) ⇒ x(t− t0) produces y(t− t0)

Linear: additive and scalable

• System impulse response and step response

Input δ(t) produces impulse response h(t)

Input u(t) produces step response s(t)

• LTI systems

• Relationship between impulse response and step response

s(t) =
∫ t
−∞ h(τ)dτ h(t) = ds(t)

dt

s[n] =
∑n

k=−∞ h[k] h[n] = s[n]− s[n− 1]

• Convolution formulas

Convolution sum formula: y[n] =
∑∞

k=−∞ x[k]h[n− k] = x[n] ∗ h[n]

Convolution integral formula y(t) =
∫∞
−∞ x(τ)h(t− τ)dτ = x(t) ∗ h(t)

• Properties of convolution

Commutativity, associativity, distributivity over addition

Convolution with shifted impulse: x(t) ∗ δ(t− t0) = x(t− t0)

Integration: x(t) ∗ u(t) =
∫ t
−∞ x(τ)dτ

• Impulse response of serial and parallel concatenations of LTI systems.

(shown here for CT systems)

Serial: h(t) = h1(t) ∗ h2(t)

Parallel: h(t) = h1(t) + h2(t)

• Impulse response and properties of LTI systems (shown here for CT sys-
tems)

Memoryless: h(t) = aδ(t)

Invertible: There exists g(t) such that h(t) ∗ g(t) = δ(t)

(necessary condition, also sufficient for inputs x(t) with x(t) ∗ h(t) and x(t) ∗ g(t) both
well defined and finite)
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Causal: h(t) = 0 for t < 0

Stable: h(t) is absolutely integrable

• Differentiation property of CT LTI systems

x(t)→ y(t)⇒ dx(t)
dt
→ dy(t)

dt

• LTI systems defined by differential/difference equations∑N
k=0 ak

dky(t)
dtk

=
∑M

k=0 bk
dkx(t)
dtk

∑N
k=0 aky[n− k] =

∑M
k=0 bkx[n− k]

• Recursive and non-recursive filters

Non-recursive filters: no feedback of the output

DT blur filters with rectangular impulse response

h[n] = 1
N

∑N−1
k=0 δ[n− k] = 1

N
(u[n]− u[n−N ])

Recursive filters: feedback of output

DT first order filters: y[n]− ay[n− 1] = x[n] , a real, |a| < 1

a positive: low-pass filter; h[n] = anu[n] decaying exponential

a negative: high-pass filter; h[n] = anu[n] alternating-polarity decaying exponential

3 CT and DT Fourier Series - Chapter 3

• Key equations

CTFS equations for periodic signal, fund. period T , fund. frequency ω0 = 2π/T

Synthesis: x(t) =
∑∞

k=−∞ ake
jkω0t

Analysis: ak = 1
T

∫
T
x(t)e−jkω0tdt

DTFS equations for periodic signal, fund. period N , fund. frequency ω0 = 2π/N

Synthesis: x[n] =
∑

k=<N> ake
jkω0n

Analysis: ak = 1
N

∑
n=<N x[n]e−jkω0n

• Response of LTI system to complex exponential

System Functions H(s) and H(z)

est (resp. zn) is an eigenfunction

H(s) (resp. H(z)) is the corresponding eigenvalue. It is called the system function

H(jω) (resp. H(ejω)) is called the system frequency response

est → H(s)est H(s) =
∫∞
−∞ h(t)e−stdt

zn → H(z)zn H(z) =
∑∞

k=−∞ h[k]z−k
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• How to determine if system may be LTI by action on complex exponential
signals

Check if eigenfunction property is satisfied. If violated, system is not LTI.

• Filtering of periodic signal through an LTI system

Assume frequency response H(jω) (resp. H(ejω))

x(t) =
∑∞

k=−∞ ake
jkω0t → y(t) =

∑∞
k=−∞ akH(jkω0)ejkω0t

x[n] =
∑

k=<N> ake
jkω0n → y[n] =

∑∞
k=−∞ akH(ejkω0)ejkω0n

• Key examples

Periodic complex exponentials, sinusoidal signals, rectangular waves, impulse train

• Properties of CTFS/DTFS (Tables 3.1 and 3.2)

Periodicity of DTFS ak: x[n] fund. period N ⇒ ak period N

Linearity Time shifting, frequency shifting

Time reversal, time scaling

Periodic convolution, multiplication

Differentiation, integration (CT) / First difference, running sum (DT)

Parseval’s relation

FS and signal properties: real (conjugate symmetry), real & even, imaginary & odd

• Finding system function and frequency response of causal LTI system from
differential/difference equations∑N

k=0 ak
dky(t)
dtk

=
∑M

k=0 bk
dkx(t)
dtk

H(s) =
∑M

k=0 bks
k∑N

k=0 aks
k

H(jω) - plug in s = jω∑N
k=0 aky[n− k] =

∑M
k=0 bkx[n− k] H(z) =

∑M
k=0 bkz

−k∑N
k=0 akz

−k
H(ejω) - plug in z = ejω

• Effect of LTI system with real impulse response on sinusoids

cos(ω0t)→ |H(jω0)| · cos(ω0t+ ∠H(jω0))

cos(ω0n)→ |H(ejω0)| · cos(ω0n+ ∠H(ejω0))

4 CT Fourier Transform - Chapter 4

• Key equations

Synthesis: x(t) = 1
2π

∫∞
−∞X(jω)ejkωtdω

Using synthesis equation to evaluate x(t) at specific values of t, such as t = 0:

x(0) = 1
2π

∫∞
−∞X(jω)dω

Analysis: X(jω) =
∫∞
−∞ x(t)e−jωtdt
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Using analysis equation to evaluate X(jω) at specific values of ω, such as ω = 0:

X(j0) =
∫∞
−∞ x(t)dt

• Properties of CTFT (Table 4.1)

Linearity, Time shifting, frequency shifting

Conjugation, Time reversal, time scaling

Convolution, multiplication

Differentiation (in time/frequency), integration

Parseval’s relation
∫∞
−∞ |x(t)|2dt = 1

2π

∫∞
−∞ |X(jω)|2dω

• FT and signal properties:

x(t) real ⇒ X(jω conjugate symmetric

x(t) real and even ⇒ X(jω) real and even

x(t) real and odd ⇒ X(jω) purely imaginary and odd

Even-odd decomposition for real signals:

Ev{x(t)} ←→ Re{X(jω)}
Od{x(t)} ←→ jIm{X(jω)}

• Basic CT Fourier Transform Pairs (Table 4.2)

Periodic signals: x(t) =
∑∞

k=−∞ ake
jkω0t ↔ X(jω) = 2π

∑∞
k=−∞ akδ(ω − kω0)

x(t) = 1↔ 2πδ(ω)

Periodic square wave

Periodic impulse train ↔ periodic impulse train (picket fence ↔ picket fence)

Rectangular pulse ↔ sinc function

Sinc function ↔ rectangular pulse

Transforms of unit impulse, shifted impulse, and unit step

x(t) = e−atu(t), Re{a} > 0↔ X(jω) = 1
a+jω

• Systems characterized by linear constant-coefficient differential equations∑N
k=0 ak

dky(t)
dtk

=
∑M

k=0 bk
dkx(t)
dtk

H(jω) = Y (jω)
X(jω)

=
∑M

k=0 bk(jω)k∑N
k=0 ak(jω)k

Partial Fraction Expansion and tables to find impulse response, calculate inputs/outputs

• Filtering through LTI systems

y(t) = x(t) ∗ h(t)↔ Y (jω) = X(jω)H(jω)

• Inverse LTI systems

h(t) ∗ g(t) = δ(t)↔ H(jω)G(jω) = 1
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5 DT Fourier Transform - Chapter 5

• Key equations

Synthesis: x[n] = 1
2π

∫
2π
X(ejω)ejωndω

Analysis: X(ejω) =
∑∞

n=−∞ x[n]e−jωn

• Periodicity of X(ejω) in frequency, period 2π

• Properties of DTFT (Table 5.1)

Similar to CTFT

• Basic DT Fourier Transform Pairs (Table 5.2)

Periodic signals: fund. period N , fund. frequency ω0 = 2π/N

x[n] =
∑

k=<N> ake
jkω0n ↔ X(ejω) = 2π

∑∞
k=−∞ akδ(ω − kω0)

Similar to CTFT

• Systems characterized by linear constant-coefficient difference equations∑N
k=0 aky[n− k] =

∑M
k=0 bkx[n− k]

H(ejω) = Y (ejω)

X(ejω)
=

∑M
k=0 bk(e−jω)k∑N
k=0 ak(e−jω)k

Partial Fraction Expansion and tables to find impulse response, calculate inputs/outputs

• Filtering through LTI systems

y(t) = x(t) ∗ h(t)↔ Y (ejω) = X(ejω)H(ejω)

• First-order recursive filters (lowpass, highpass), non-recursive filters (blur)

Derivation of frequency response of length-N blur filter:

H(ejω) =
1

N
e−jω(N−1)/2 sin(ωN/2)

sin(ω/2)

Derivation of frequency response of recursive filter: y[n]− ay[n− 1] = x[n], |a| < 1.

H(ejω) =
1

1− ae−jω

6 Amplitude Modulation - Chapter 8

• Amplitude modulation

Signal x(t), bandlimited to [−W,W ], carrier c(t) = cos(ωct) (ωc > W ).

Modulation:

y(t) = x(t)c(t)↔ Y (jω) = 1
2π
X(jω) ∗ C(jω) = 1

2

(
X(j(ω − ωc)) +X(j(ω + ωc))

)
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Demodulation:

z(t) = y(t)c(t)↔
Z(jω) = 1

2π
Y (jω) ∗ C(jω) = 1

4
X(j(ω − 2ωc)) + 1

2
X(jω) + 1

4
X(j(ω + 2ωc))

Signal recovery (if ωc > W ):

Pass z(t) through low-pass filter with cutoff frequency ωc, gain 2

• Effect of demodulating with different sinusoid: sin(ωct), cos(ω1t) where ω1 6= ωc.

7 Sampling Theory - Chapter 7

• Impulse train sampling

CT signal, band-limited to [−W,W ]:

x(t)↔ X(jω), X(jω) = 0, for |ω| > W

Impulse train, sampling period T , sampling frequency ωs = 2π/T :

p(t) =
∑∞

n=−∞ δ(t− nT )↔ P (jω) = 2π
T

∑∞
k=−∞ δ(ω − kωs)

Sampled signal:

xp(t) = x(t)p(t) =
∑∞

n=−∞ x(nT )δ(t− nT )↔ Xp(jω) = 1
T

∑∞
k=−∞X(j(ω − kωs))

• Sampling Theorem:

Let x(t) be band-limited to [−W,W ]. Then x(t) is uniquely determined by its samples
x(nT ), n ∈ Z if ωs = 2π/T > 2W .

The signal x(t) can be reconstructed from the signal xp(t) using a low-pass filter with
cutoff frequency ω0 = ωs/2 = π/T and gain T .

If ωs < 2W , then aliasing occurs, and x(t) cannot be reconstructed from xp(t).

• Using CTFT properties and transform pairs to determine the maximum fre-
quency of a signal y(t) obtained from x(t) by various operations, e.g., conjugation,
time-shifting, combining with another signal by linear operation, conjugation, multi-
plication, etc.

• DT processing of CT signals

Define x(t), p(t), xp(t) as above.

Define xd[n] = x(nT ), n ∈ Z
Using formula for xp(t), rewrite Xp(jω) =

∑∞
n=−∞ x(nT )e−jωnT

Using DTFT, Xd(e
jΩ) =

∑∞
n=−∞ xd[n]e−jΩn =

∑∞
n=−∞ x(nT )e−jΩn

Thus, Xd(e
jΩ) = Xp(jΩ/T ) or Xd(e

jωT ) = Xp(jω)

The plots of Xd(e
jΩ) is obtained from the plot of Xp(jω) by multiplying the ω-axis

labels of Xp(jω)by T . So, ωs = 2π/T becomes Ω = 2π.
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• Example of aliasing when undersampling a sinusoidal signal

Change of frequency and possible phase shift (reversal)

• Bandpass sampling techniques for bandpass signals.

8 Laplace Transform - Chapter 9

• Laplace Transform: X(s) =
∫∞
−∞ x(t)e−stdt

Region of Convergence: ROC = {s ∈ C| X(s) exists}

• Relation to Fourier Transform

X(s) exists at s = σ + jω ⇔ CTFT of x(t)e−σt exists.

• Basic LT examples

Right-sided exponential, ROC right half-plane

x(t) = e−atu(t), a ∈ C↔ X(s) = 1
s+a

,ROC = {s|Re{s} > −Re{a}}
Left-sided exponential, ROC left half-plane

x(t) = −e−atu(−t), a ∈ C↔ X(s) = 1
s+a

,ROC = {s|Re{s} < −Re{a}}

• Rational X(s), poles, zeros, and pole-zero plots

• The 8-fold way of the ROC

Right-sided signal: ROC contains a right half-plane

Left-sided signal: ROC contains a left half-plane

Two-sided signal: ROC is a finite vertical strip

Absolutely integrable and finite duration signal: ROC is entire s-plane

Rational X(s): ROC contains no poles; ROC is bounded by poles or extends to infinity

• ROC and LTI system properties

S causal ⇒ ROC contains a right half-plane.

Assume S rational: S causal⇔ ROC equals right half-plane to right of rightmost pole.

S stable ⇔ ROC contains the jω-axis.

Assume S rational and causal: S stable ⇔ all poles have negative real part.

• Inverse LT

Via integration along line in ROC.

Via partial fraction expansion and tables of LT transform pairs.
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• Geometric evaluation of Fourier Transform using pole-zero plot.

Magnitude |H(jω)| using lengths of vectors from poles and zeros to jω, i.e., (jω − ρ)
and (jω − ζ).

Phase ∠H(jω) using angles of vectors from poles and zeros to jω, i.e., (jω − ρ) and
(jω − ζ).

• Properties of LT (Table 9.1)

Linearity, time-shifting, convolution, differentiation/integration in time domain, and
effect on ROC.

• Laplace Transforms of elementary functions (Table 9.2)

• Analysis of LTI systems defined by differential equations

System function:

H(s) =
Y (s)

X(s)
=

∑M
k=0 b

ksk∑N
k=0 a

ksk

Convert to rational H(s), use PFE, invert using table of transforms

ROC determined by properties of system (e.g., causal, stable, etc.)

• System function algebra

Serial and parallel concatentation, simple feedback systems.

Serial: H(s) = H1(s)H2(s)

Parallel: H(s) = H1(s) +H2(s)

Simple feedback (with positive feedback):

H(s) =
Hff (s)

1−Hff (s)Hfb(s)

where Hff (s) is system function of feed-forward filter and Hfb(s) is system function of
feedback filter.
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