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Chapter 4 - Fractions



SECTION 1

Introduction

Fractions are one of the hardest topics to teach (and learn!) in 
elementary school. What is the reason for this? We will try to 
provide some insight in this module (as well as some better 
ways for understanding, teaching, and learning about frac-
tions). But for now, think with a partner about what makes 
this topic so hard.

 Remember that teachers should have lots of mental mod-
els — lots of ways to explain the same concept. In this chapter, 
we will look at some different ways to understand the idea of 
fractions as well as basic operations on them.
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Think/Pair/Share. You may have struggled learning about 
fractions in elementary school. Maybe you still find them con-
fusing. Even if you were one of the lucky ones who did not 
struggle when learning about fractions, you probably had 
friends who did struggle.

 With a partner, talk about why this is. What is so difficult 
about understanding fractions? Why is the topic harder than 
other ones we tackle in elementary schools?

 

3
5



SECTION 2

What is a Fraction?

One of the things that makes fractions such a difficult concept 
to teach and to learn is that you have to think about them in a 
lot of different ways, depending on the problem at hand. For 
now, we are going to think of a fraction as the answer to a divi-
sion problem.

Example 1.1 (Pies per child). Suppose 6 pies are to be shared 
equally among 3 children. This yields 2 pies per kid. We write:

6
3

= 2.

   

 The fraction 
6
3

 is equivalent to the division problem 

6 ÷ 3 = 2. It represents the number of pies one whole child re-
ceives.

In the same way ...

• sharing 10 pies among 2 kids yields 
10
2

= 5 pies per kid,

• sharing 8 pies among 2 children yields 
8
2

= 4 pies per child,

• sharing 5 pies among 5 kids yields 
5
5

= 1 pie per kid, and

• the answer to sharing 1 pie among 2 children is 
1
2

 , which we 

call “one-half.”

This final example is actually saying something! It also repre-
sents how fractions are usually taught to students:

If one pie is shared (equally) between two kids, then each 
child receives a portion of a pie which we choose to call “half.”

3

six pies

three kids

1

=
one pie

two kids

half a pie for an 
individual child

=

two pies for each 
individual child



 Thus students are taught to associate the number “ 
1
2

” to 

the picture 

1

.

 In the same way, the picture 

1

 is said to represent “one 

third,” that is, 
1
3

. (And this is indeed the amount of pie an indi-

vidual child would receive if one pie is shared among three.)

 The picture 

1

 is called “one fifth” and is indeed 
1
5

, the 

amount of pie an individual receives if three pies are shared 
among five children.

 And the picture 

1

 is called “three fifths” to represent 
3
5

, 

the amount of pie an individual receives if three pies are 
shared among five children.

On Your Own. Work on the following exercises on your own 
or with a partner.

(1)Draw a picture associated with the fraction 
1
6

.

(2)Draw a picture associated with the fraction 
3
7

. Is your pic-

ture really the amount of pie an individual would receive if 
three pies are shared among seven kids? Be very clear on 
this! 

(3)Let’s work backwards! Here is the answer to a division 
problem: 

This represents the amount of pie an individual kid receives if 
some number of pies is shared among some number of chil-
dren. How many pies? How many children? How can you jus-
tify your answers?

(4)  Here is another answer to a division problem:  
   
   
   
   
   
   
How many pies? How many children? How can you justify 
your answers? 
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Think/Pair/Share. Carefully explain why this is true: If five 
kids share three pies equally, each child receives an amount 

that looks like this: 

1

. Your explanation will probably re-
quire both words and pictures.

1

1



(5) Here is another answer to a division problem:  
   
   
   
   
   
How many pies? How many children? How can you justify 
your answers? 

(6) Leigh says that “ 
3
5

 is three times as big as 
1
5

 .” Is this 

right? Is three pies shared among five kids three times as 
much as one pie shared among five kids? Explain your an-
swer. 

(7) Draw a picture for the answer to the division problem 
4
8

. 

Describe what you notice about the answer. 

(8) Draw a picture for the answer to the division problem 
2
10

. 

Describe what you notice about the answer.

(9) What does the division problem 
1
1

 represent? How much 

pie does an individual child receive? 

(10) What does the division problem 
5
1

 represent? How much 

pie does an  individual child receive? 

(11)  What does the division problem 
5
5

 represent? How much 

pie does an individual child receive? 

(12) Here is the answer to another division problem. This is 
the amount of pie an individual child receives: 
 
   
   
   
   
   
 
How many pies were in the division problem? How many 
kids were in the division problem? Justify your answers.

(13) Here is the answer to another division problem. This is 
the amount of pie an individual child receives: 
     
   
   
   
   
   
How many pies were in the division problem? How many 
kids were in the division problem? Justify your answers.

5

1

1

1



(14) Many teachers have young students divide differently 
shaped pies into fractions. For example, a hexagonal pie 
is good for illustrating the fractions

1
6

,
2
6

,
3
6

,
4
6

,
5
6

,  and 
6
6

.

(a) Why is this shape used? What does 
1
6

 of a pie    

look like?

(b) What does 
6
6

 of a pie look like?

(c) What shape pie would be good for illustrating    

the fractions 
1
8

 up to 
8
8

?

Pies Per Child Model. In our model, a fraction 
a
b

 repre-

sents the amount of pie an individual child receives when a 
pies are shared equally by b kids.

6

1

Problem 1. Some rectangular pies are distributed to some 
number of kids. This picture represents the amount of pie 
an individual child receives. 

How many pies? How many kids? Carefully justify your an-
swers!

a
b

 =  amount per individual child
#pies

#kids



Definition 4.1. For a fraction 
a
b

, the top number a (which, 

for us, is the number of pies) is called the numerator of the 
fraction, and the bottom number b (the number of kids), is 
called the denominator of the fraction.

 Most people insist that the numerator and denominator 
each be whole numbers, but they do not have to be.

So, what would

1

( 1
2 )

represent?  This means assigning one pie to each “group” of 
half a child.  So how much would a whole child receive? Well, 
we would have a picture like this:

The whole child gets two pies, so we have: 
1

( 1
2 )

= 2.
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Think/Pair/Share.

(1) What is 
2
2

? What is 
7
7

? What is 
100
100

? How can you use the 

“Pies Per Child Model” to make sense of 
a
a

 for any positive 

whole number a?

(2)What is 
2
1

? What is 
7
1

? What is 
1876

1
? How can you use the 

“Pies Per Child Model” to make sense of 
b
1

 for any positive 

whole number b?

(3)Write the answer to this division problem: “I have no pies 
to share among thirteen kids.” How can you generalize 
this division problem to make a general statement about 
fractions?

Think/Pair/Share. To understand why the numerator 
and denominator need not be whole numbers, we must 
first be a little gruesome. Instead of dividing pies, let’s di-
vide kids! Here is one child:

• What would half a kid look like?
• What would one-third of a kid look like?
• What would three-fifths of a child look like?

one 

one 



 
1

( 1
2 )

= 2.

Jargon.  

 A fraction with a numerator smaller than its denomina-
tor is called (in school math jargon) a proper fraction. For ex-

ample, 
45
58

 is “ proper.”

 A fraction with numerator larger than its denominator is 
called (in school math jargon) an improper fraction. For ex-

ample 
7
3

 is “improper.” (In the 1800s, these fractions were 

called vulgar fractions. Despite nineteenth-century views 
they are useful nonetheless!)

 For some reason, improper fractions are considered, 
well, improper by some teachers. So students are often asked 
to write improper fractions as a combination of a whole num-
ber and a proper fraction.
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Think/Pair/Share. Draw pictures for these problems if it 
helps!

(1) What does

 
1

( 1
3 )

represent? Justify your answer using the “Pies Per Child 
Model.”

(2) What is
1

( 1
6 )

?

Justify your answer. 

(3) Explain why the fraction
5

( 1
2 )

represents the number 10. (How much pie is given to half a 
kid? To a whole kid?)

(4) What is
4

( 1
3 )

?

Justify your answer.

(5) Challenge: Two-and-a-half pies are to be shared equally 
among four-and-a-half children. How much pie does an indi-
vidual (whole) child receive? Justify your answer.

11 1

1



 Consider, for example, 
7
3

.  If seven pies are shared 

among three kids, then each kid will certainly receive two 
whole pies, leaving one pie to share among the three children. 

Thus, 
7
3

 equals 2 plus 
1
3

. People write:

7
3

= 2
1
3

and call the result 2
1
3

 a mixed number.  One can also write:

2 +
1
3

,

which is what 2
1
3

 really means. But most people choose to sup-

press the plus sign.

 As another example, consider 
23
4

.  If 4 children share 23 

pies, we can give them each 5 whole pies.  That uses 20 pies, 
and there are 3 pies left over. Those three pies are still to be 
shared  equally by the 4 kids. We have:

23
4

= 5
3
4

.

 Mathematically, there is nothing wrong with an im-
proper fraction. (In fact, many mathematicians prefer im-
proper fractions over mixed numbers. They are often easier to 

use in computations.) Consider, for instance, the mixed num-

ber 2
1
5

.  This is really 2 +
1
5

.

For fun, let us write the number 2 as a fraction with denomina-
tor 5:

2 =
10
5

.

So:

2
1
5

= 2 +
1
5

=
10
5

+
1
5

=
11
5

.

We have written the mixed number 2 
1
5

 as the improper frac-

tion 
11
5

.
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Think/Pair/Share.

•  Write each of the following as a mixed number. Explain 
how you got your answer.

17
3

,
8
5

,
100
3

,
200
199

.

•  Convert each of these mixed numbers into “improper” frac-
tions. Explain how you got your answer.

3
1
4

, 5
1
6

, 1
3
11

, 200
1

200
.



 Students are often asked to memorize the names “proper 
fractions,” “improper fractions,” and “mixed number” so that 
they can follow directions on tests and problem sets.

 But, to a mathematician, these names are not at all im-
portant! There is no “correct” way to express an answer (as-
suming, that the answer is mathematically the right number). 
We often wish to express our answer in a simpler form, but 
sometimes the context will tell you what form is “simple” and 
what form is more complicated.

 As you work on problems in this chapter, decide for your-
self which type of fraction would be best to work with as you 
do your task.

10



SECTION 3

The Key Fraction Rule

We know that 
a
b

 is the answer to a division problem:

a
b

 represents the amount of pie an individual child receives 
when a pies are shared equally by b children.

What happens if we double the number of pie and double the 
number of kids? Nothing! The amount of pie per child is still 
the same:

2a
2b

=
a
b

.

For example, as the picture shows, 
6
3

 and 
12
6

 both give two 

pies for each child. 

 And tripling the number of pies and the number of chil-
dren also does not change the final amount of pies per child, 
nor does quadrupling each number, or one trillion-billion-
tupling the numbers!

6
3

=
12
6

=
18
9

= … =  two pies per child.

11

1 11

=

=

1 111 11

=



This leads us to want to believe:

Example 2.1  (fractions equivalent to 
3
5

). For example, 
3
5

 

(sharing three pies among five kids) yields the same result as

3 ⋅ 2
5 ⋅ 2

=
6
10

 (sharing six pies among ten kids),

and as

3 ⋅ 100
5 ⋅ 100

=
300
500

 (sharing 300 pies among 500 children).

Example 2.2 (Going backwards).

20
32

  (sharing 20 pies among 32 kids)

is the same problem as:

5 ⋅ 4
8 ⋅ 4

=
5
8

  (sharing five pies among eight kids).

 Most people say we have cancelled or taken a common 
factor 4 from the numerator and denominator. Mathemati-
cians call this process reducing the fraction to lowest terms. 
(We have made the numerator and denominator smaller, in 
fact as small as we can make them!) Teachers tend to say that 

we are simplifying the fraction. (You have to admit that 
5
8

 

does look simpler than 
20
32

.)

Example 2.3 (How low can you go?).  As another example, 
280
350

 can certainly be simplified by noticing that there is a com-

mon factor of 10 in both the numerator and the denominator:

280
350

=
28 ⋅ 10
35 ⋅ 10

=
28
35

.

We can go further as 28 and 35 are both multiples of 7:

28
35

=
4 ⋅ 7
5 ⋅ 7

=
4
5

.

Thus, sharing 280 pies among 350 children gives the same re-
sult as sharing 4 pies among 5 children!

280
350

=
4
5

.

Since 4 and 5 share no common factors, this is as far as we can 
go with this example (while staying with whole numbers!).

12

Key Fraction Rule: 
xa
xb

=
a
b

 (at least for positive 

whole numbers x).

Think/Pair/Share.  Write down a lot of equivalent fractions 

for 
1
2

, for 
10
3

, and for 1.



On Your Own.  Mix and Match: On the top are some frac-
tions that have not been simplified. On the bottom are the sim-
plified answers, but in random order. Which simplified an-
swer goes with which fraction? (Notice that there are fewer an-
swers than questions!)

1.
10
20

2.
50
75

3.
24000
36000

4.
24
14

5.
18
32

6.
1

40

a .
2
3

b .
9
16

c .
12
7

d .
1
40

e .
1
2

13

Think/Pair/Share.  Jenny says that 
4
5

 does “reduce” further 

if you are willing to move away from whole numbers. She 
writes:

4
5

=
2 ⋅ 2

(2 1
2 ) ⋅ 2

=
2

(2 1
2 )

.

Is she right? Does sharing 4 pies among 5 kids yield the same 

result as sharing 2 pies among 2
1
2

 kids? What do you think?

Think/Pair/Share.  Use the “Pies Per Child Model” to ex-
plain why the key fraction rule holds. That is, explain why 
each individual child gets the same amount of pie in these two 
situations:
•  if you have a pies and b kids, or
•  if you have xa pies and xb kids.



SECTION 4

Adding and Subtracting 
Fractions

Fractions with the Same Denominator.  Here are two 

very similar fractions: 
2
7

 and 
3
7

. What might it mean to add 

them? It might be tempting to say:

2
7

 represents 2 pies being shared among 7 kids;

3
7

 represents 3 pies being shared among 7 kids.

So maybe 
2
7

+
3
7

 represents 5 pies among 14 kids, giving the 

answer 
5
14

.  It is very tempting to say that “adding fractions” 

means “adding pies and adding kids.”

 The trouble is that a fraction is not a pie, and a fraction is 
not a child. So adding pies and adding children is not actually 
adding fractions. A fraction is something different. It is re-

lated to pies and kids, but something more subtle. A fraction 
is an amount of pie per child.

 One cannot add pies, one cannot add children. One must 
add instead the amounts individual kids receive.

Example 3.1 ( 2
7

+
3
7 ).  Let us take it slowly. Consider the 

fraction 
2
7

. Here is a picture of the amount an individual child 

receives when two pies are given to seven kids:

Consider the fraction 
3
7

. Here is the picture of the amount an 

individual child receives when three pies are given to seven 
children:

The sum 
2
7

+
3
7

 corresponds to the sum:

14

1

1



The answer, from the picture, is 
5
7

.

 Most people read this as “two sevenths plus three sev-
enths gives five sevenths” and think that the problem is just as 
easy as saying “two apples plus three apples gives five apples.” 
And, in the end, they are right!

2
7

+
3
7

=
5
7

.

 This is how the addition of fractions is first taught to stu-
dents: Adding fractions with the same denominator seems 
just as easy as adding apples:

4 tenths + 3 tenths + 8 tenths = 15 tenths

4
10

+
3
10

+
8
10

=
15
10

.

(And, if you like, 
15
10

=
5 ⋅ 3
5 ⋅ 2

=
3
2

.)

82 sixty-fifths + 91 sixty-fifths  = 173 sixty-fifths

82
65

+
91
65

=
173
65

.

 We are really adding amounts per child not amounts, 
but the answers match the same way.

 We can use the “Pies Per Child Model” to explain why 
adding fractions with like denominators works in this way.

15

1 1

+ =

1

Think/Pair/Share.  Remember that 
5
7

 means “the amount 

of pie that one child gets when five pies are shared by seven 
children.” Carefully explain why that is the same as the pic-
ture given by the sum above:

Your explanation should use both words and pictures!

1

1 1

+ =

1



 Think about the addition problem 
2
7

+
3
7

:

amount of pie each kid gets when 7 kids share 2 pies
amount of pie each kid gets when 7 kids share 3 pies

???

Since in both cases we have 7 kids sharing the pies, we can 
imagine that it is the same 7 kids in both cases.  First, they 
share 2 pies. Then they share 3 more pies. The total each child 
gets by the time all the pie-sharing is done is the same as if the 
7 kids had just shared 5 pies to begin with. That is:

amount of pie each kid gets when 7 kids share 2 pies
amount of pie each kid gets when 7 kids share 3 pies
amount of pie each kid gets when 7 kids share 5 pies

2
7

+
3
7

=
5
7

.

 Now let us think about the general case. Our claim is that

a
d

+
b
d

=
a + b

d
.

Translating into our model, we have d kids. First, they share a 
pies between them, and 

a
d

 represents the amount each child 

gets. Then they share b more pies, so the additional amount of 

pie each child gets is 
b
d

. The total each kid gets is 
a
d

+
b
d

.

 But it does not really matter that the kids first share a 
pies and then share b pies. The amount each child gets is the 
same as if they had started with all of the pies — all a + b of 
them — and shared them equally. That amount of pie is repre-

sented by 
a + b

d
.

Fractions with Different Denominators.  This approach 
to adding fractions suddenly becomes tricky if the denomina-
tors involved are not the same common value. For example, 

what is 
2
5

+
1
3

?

16

+

+

Think/Pair/Share.

(1) How can you subtract fractions with the same denomina-
tor? For example, what is

400
903

−
170
903

?

(2) Use the “Pies Per Child” model to carefully explain why

a
d

−
b
d

=
a − b

d

(3) Explain  why the fact that the denominators are the same 
is essential to this addition and subtraction method.  
Where is that fact used in the explanations?



Let us phrase this question in terms of pies and kids:

Suppose Poindexter is part of a team of  five kids that 
receives two pies. Then later he is part of a team of three 
kids that receives one pie. How much pie does 
Poindexter receive in total?

 One way to think about answering this addition question 

is to write 
2
5

 in a series of alternative forms using our key frac-

tion rule (that is, multiply the numerator and denominator 
each by 2, and then each by 3, and then each by 4, and so on) 

and to do the same for 
1
3

:

2
5

+
1
3

4
10

2
6

6
15

 
3
9

8
20

4
12

10
25

 
5
15

⋮ ⋮

We see that the problem 
2
5

+
1
3

 is actually the same as 

6
15

+
5
15

. So we can find the answer using the same-

denominator method:

2
5

+
1
3

=
6
15

+
5
15

=
11
15

.

17

1
1

+ =   ??

Think/Pair/Share.  Talk about these questions with a part-
ner before reading on. It is actually a very difficult problem! 
What might a student say, if they do not already know about 
adding fractions? Write down any of your thoughts.

(1) Do you see that this is the same problem as computing 
2
5

+
1
3

?

(2) What might be the best approach to answering the prob-
lem?



Example 3.2  ( 3
8

+
3
10 ).  Here is another example of adding 

fractions with unlike denominators: 
3
8

+
3
10

. In this case, Vale-

rie is part of a group of 8 kids who share 3 pies. Later she is 
part of a group of 10 kids who share 3 different pies. How 
much total pie did Valerie get?

3
8

+
3
10

6
16

6
20

9
24

9
30

12
32

 
12
40

15
40

 
15
50

⋮ ⋮

3
8

+
3
10

=
15
40

+
12
40

=
17
40

.

 Of course, you do not need to list all of the equivalent 
forms of each fraction in order to find a common denomina-
tor. If you can see a denominator right away (or think of a 
faster method that always works), go for it!

On Your Own. Try these exercises on your own. For each ad-
dition exercise, also write down a “Pies Per Child” interpreta-
tion of the problem. You might also want to draw a picture.

(1) What is 
1
2

+
1
3

?

(2) What is 
2
5

+
37
10

?

(3) What is 
1
2

+
3
10

?

(4) What is 
2
3

+
5
7

?

(5) What is 
1
2

+
1
4

+
1
8

?

18

Think/Pair/Share. Cassie suggests the following method 
for the example above:

When the denominators are the same, we just add the 
numerators. So when the numerators are the same, 
shouldn’t we just add the denominators? Like this: 
3
8

+
3
10

=
3
18

.

What do you think of Cassie’s suggestion? Does it make sense? 
What would you say if you were Cassie’s teacher?



(6) What is 
3
10

+
4
25

+
7
20

+
3
5

+
49
50

?

Now try these subtraction exercises.

(7) What is 
7
10

−
3
10

?

(8) What is 
7
10

−
3
20

?

(9) What is 
1
3

−
1
5

?

(10) What is 
2
35

−
2
7

+
2
5

?

(11) What is 
1
2

−
1
4

−
1
8

−
1
16

?

Think/Pair/Share. Which fraction is larger, 
5
9

 or 
6
11

?  Jus-

tify your answer. (Oh, and what does this question have to do 
with the subject of this section: adding and subtracting frac-
tions?)

19



SECTION 5

What is a Fraction? Revis-
ited

So far, we have been thinking about a fraction as the answer 

to a division problem.  For example, 
2
3

 is the result of sharing 

two pies among three children.

 Of course, pies do not have to be round. We can have 
square pies, or triangular pies or squiggly pies or any shape 
you please.

 This “Pies Per Child Model” has served us perfectly well 
in thinking about the meaning of fractions, equivalent frac-
tions, and even adding and subtracting fractions.

 However, there is not any way to use this model to make 
sense of multiplying fractions! What would this mean?

 So what are fractions, if we are asked to multiply them? 
We are forced to switch models and think about fractions in a 
new way.

 This switch is fundamentally perturbing: Does a fraction 
have anything to do with pie or pies per child or not? If the an-
swer is that a fraction is more of an abstract concept that ap-

20

1

1

1

11

1

=

two pies

2
3

 of a pie per 

individual kid

three kids

1

11

=

two pies

three kids

2
3

 of a pie per 

individual kid

1

11

11

× = ??



plies simultaneously to pies and children and to something 
else that we can multiply, then what is that concept exactly?

 Think about our poor young students. We keep switching 
concepts and models, and speak of fractions in each case as 
though all is naturally linked and obvious. All is not obvious 
and all is absolutely confusing. This is just one of the reasons 
that fractions can be such a difficult concept to teach and to 
learn in elementary school!

Units and Unitizing. In thinking about fractions, it is impor-
tant to remember that there are always units attached to a frac-

tion, even if the units are hidden. If you see the number 
1
2

 in a 

problem, you should ask yourself “half of what?” The answer 
to that question is your unit, the amount that equals 1 .

 
 So far, our units have been consistent: the “whole” (or 
unit) was a whole pie, and fractions were represented by pies 
cut into equal-sized pieces. But this is just a model, and we 
can take anything, cut it into equal-sized pieces, and talk 
about fractions of that whole.

 
 One thing that can make fraction problems so difficult is 
that the fractions in the problem may be given in different 
units (they may be “parts” of different “wholes”).

Example 4.1 (Everyone is right!). Mr. Li shows this picture 
to his class and asks what number is shown by the shaded re-
gion.
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Think/Pair/Share. (What’s wrong here?). For each of the 
following visual representations of fractions, there is a corre-
sponding incorrect symbolic expression. Discuss with your 
partner:  Why is the symbolic representation incorrect? What 
might elementary students find confusing in these visual rep-
resentations?

1

1 1

1

1

2
3

>
3
4

1
3

1
3

≠
1
3



• Kendra says the shaded region represents the number 5.

• Dylan says it represents 2
1
2

.

• Kiana says it represents 
5
8

.

• Nate says it is 1
1
4

.

Mr. Li exclaims, “Everyone is right!”

 When we think about multiplying fractions, we will (at 
least at first) choose to think of them as “portions of line seg-
ments,” since that fits nicely with our measurement model for 
numbers. Then we can once again use an area model to make 
sense of multiplication. (We will do exactly this in the next sec-
tion!)

Example 4.2 (Segments). This picture  repre-

sents 
2
3

. The whole segment (the unit) is split into three equal 

pieces by the tick marks, and two of those three equal pieces 
are shaded.
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Think/Pair/Share. 

(1) How can it be that everyone is right? Justify each answer 
by explaining what each student thought was the unit in 
Mr. Li’s picture.

(2)Now look at this picture:

• If the shaded region represents 3
2
3

, what is the unit?

• Find three other numbers that could be represented by 
the shaded region, and explain what the unit is for each 
answer.

Think/Pair/Share. For each picture below, say what frac-
tion it represents and how you know you are right.



Ordering Fractions. If we think about fractions as “por-
tions of a segment,” then we can talk about their locations on 
a number line. We can start to treat fractions like numbers. In 
the back of our minds, we should remember that fractions are 
always relative to some unit. But on a number line, the unit is 
clear: it is the distance between 0 and 1 .

 This measurement model makes it much easier to tackle 
questions about the relative size of fractions based on where 
they appear on the number line. We can mark off different 
fractions as parts of the unit segment. Just as with whole num-
bers, fractions that appear farther to the right are larger.

 

You probably came up with benchmarks and intuitive meth-
ods to think about the relative sizes of fractions. Here are 
some of these methods. (Did you come up with others?)
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-1 0 1

1

0 13
5

5
8

1

Think/Pair/Share. (Ordering Fractions).

(1) What quick method can you use to determine if a fraction 
is greater than 1 ?

(2) What quick method can you use to determine if a fraction 

is greater than 
1
2

?

(3) Organize these fractions from smallest to largest using 

benchmarks:   0 to 
1
2

,    
1
2

 to 1,   and greater than 1, and 

justify your choices.

25
23

,
4
7

,
17
35

,
2
9

,
14
15

.

(4) Arrange each group of fractions in ascending order. Keep 
track of your thinking and your methods.

• 7
17

,
4
17

,
12
17

.

• 3
7

,
3
4

,
3
8

.

• 5
6

,
7
8

,
3
4

.

• 8
13

,
12
17

,
1
6

.

• 5
6

,
10
11

,
2
3

.
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Fraction	 Intuition

Greater than 1: A fraction is greater than 1 if its numerator 
is greater than the denominator. How can we see this? Well, 
the denominator represents how many pieces in one whole 
(one unit). The numerator represents how many pieces in 
your portion. So if the numerator is bigger, that means you 
have more than the number of pieces needed to make one 
whole.

Greater than 
1
2

: A fraction is greater than 
1
2

 if the numera-

tor is more than half the denominator. Another way to check 
(which might be an easier calculation): a fraction is greater 

than 
1
2

 if twice the numerator is bigger than the denominator.

Why? Well, if we double the fraction and get something big-

ger than 1 , then the original fraction must be bigger than 
1
2

 .

-1 0 1 = n
n . . . n+k

n . . .

1

Same denominators: If two fractions have the same de-
nominator, just compare the numerators. The fractions will 
be in the same order as the numerators. For example, 
5
7

<
6
7

. Why? Well, the pieces are the same size since the de-

nominators are the same. If you have more pieces of the same 
size, you have a bigger number.

Same numerators: If the numerators of two fractions are 
the same, just compare the denominators. The fractions 
should be in the reverse order of the denominators. For ex-

ample, 
3
4

>
3
5

. The justification for this one is a little trickier: 

The denominator tells you how many pieces make up one 
whole. If there are more pieces in a whole (if the denominator 
is bigger), then the pieces must be smaller. And if you take 
the same number of pieces (same numerator), then the big-
ger piece wins.

0 11
7

2
7

3
7

4
7

5
7

6
7

1

0 11
4

2
4

3
4

1

0 11
5

2
5

3
5

4
5

1



Arithmetic Sequences.  Consider the patterns below

Pattern 1:  5, 8, 11, 14, 17, 20, 23, 26,…

Pattern 2: 2, 9, 16, 23, 30, 37, 44, 51,…

Pattern 3: 
1
5

,
3
5

, 1,
7
5

,
9
5

,
11
5

,
13
5

, 3,…

 The patterns above are called arithmetic sequences: a 
sequence of numbers where the difference between consecu-
tive terms is a constant. Here are some other examples:

Pattern A: 1,
⏟

+1

2,
⏟

+1

3,
⏟

+1

4,
⏟

+1

5,…

Pattern B: 2,
⏟

+2

4,
⏟

+2

6,
⏟

+2

8,
⏟

+2

20,…

Numerator = denominator −1: You can easily compare 
two fractions whose numerators are both one less than their 
denominators. The fractions will be in the same order as the 
denominators. Think of each fraction as a pie with one piece
missing. The greater the denominator, the smaller the miss-
ing piece, so the greater the amount remaining. For example, 
6
7

<
10
11

, since 
6
7

= 1 −
1
7

 and 
10
11

= 1 −
1
11

.

Numerator = denominator − constant: You can extend 
the test above to fractions whose numerators are both the 
same amount less than their denominators. The fractions will 
again be in the same order as the denominators, for exactly 

the same reason. For example, 
3
7

<
7
11

, because both are four 

“pieces” less than one whole, and the 
1
11

 pieces are smaller 

than the 
1
7

 pieces.

Equivalent fractions: Find an equivalent fraction that lets 
you compare numerators or denominators, and then use one 
of the above rules.
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0 11
7

2
7

3
7

4
7

5
7

6

7
= 1� 1

7| {z }

1

0 11
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
11

10

11
= 1� 1

11| {z }

1

Think/Pair/Share. Answer these questions about each of 
the patterns.

(1) Can you predict the next five numbers?

(2) Can you predict the 100th number?

(3) What do these sequences have in common? Describe the 
pattern in words.



Pattern C: 
1
3

,
⏟

+ 2
3

1,
⏟

+ 2
3

5
3

,
⏟

+ 2
3

7
3

,
⏟

+ 2
3

3,…

Here are several more number patterns:

Pattern 4: 1, 2, 4, 8, 16, 32, 64, 128,…

Pattern 5: 1, 3, 6, 10, 15, 21, 28, 36,…

Pattern 6: 
2
5

,
7
10

, 1,
13
10

,
8
5

,
19
10

,
11
5

,
5
2

, …

Pattern 7: 
3
5

,
6
5

,
12
5

,
24
5

,
48
5

,
96
5

, …

Problem 2 (Fractions in-between).

1
4

, , ,
1
3

(1) Find two fractions between 
1
4

 and 
1
3

.

(2) Are the resulting four fractions in an arithmetic se-
quence? Justify your answer.
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Think/Pair/Share. If you have not done so already, find 
the common difference between terms for Patterns 1, 2, and 
3. Are they really arithmetic sequences? 

Then make up your own arithmetic sequence using whole 
numbers. Exchange sequences with a partner, and check if 
your partner’s sequence is really an arithmetic sequence.

Think/Pair/Share. For each of the sequences above, de-
cide if it is an arithmetic sequence or not. Justify your an-
swers.

Problem 3 (Fractions in-between). Find two fractions be-

tween 
1
6

 and 
1
5

 so the resulting four numbers are in an arith-

metic sequence.

1
6

, , ,
1
5

Problem 4 (Fractions in-between). Find two fractions be-

tween 
2
5

 and 
5
7

 so the resulting five numbers are in an arith-

metic sequence.

2
5

, , , ,
5
7
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Think/Pair/Share (Make your own).  Make up two fraction 
sequences of your own, one that is an arithmetic sequence 
and one that is not an arithmetic sequence. 

Exchange your sequences with a partner, but do not tell your 
partner which is which. 

When you get your partner’s sequences: decide which is an 
arithmetic sequence and which is not. Check if you and your 
partner agree.



SECTION 6

Multiplying Fractions

One of our models for multiplying whole numbers was an area 
model. For example, the product 23 × 37 is the area (number 
of 1 × 1 squares) of a 23-by-37 rectangle:

So the product of two fractions, say, 
4
7

×
2
3

 should also corre-

spond to an area problem.

Example 5.1 ( 4
7

×
2
3 ). Let us start with a segment of some 

length that we call 1 unit:

Now, build a square that has one unit on each side:

The area of the square, of course, is 1 × 1 = 1 square unit. 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37

23 area = 23 ⇥ 37 = 851

1



Now, let us divide the segment on top into three equal-sized 

pieces. (So each piece is 
1
3

.)  And we will divide the segment 

on the side into seven equal-sized pieces. (So each piece is 
1
7

 .)

We can use those marks to divide the whole square into small, 
equal-sized rectangles. (Each rectangle has one side that meas-

ures 
1
3

 and another side that measures 
1
7

.)

We can now 
mark off four 
sevenths on 
one side and 
two thirds on 
the other side.

29



The result of the multiplication 
4
7

×
2
3

 should be the area of 

the rectangle with 
4
7

 on one side and 
2
3

 on the other. What is 

that area?

Remember, the whole square was one-unit. That one-unit 
square is divided into 21 equal-sized pieces, and our rectangle 

(the one with sides 
4
7

 and 
2
3

) contains eight of those rectan-

gles. Since the shaded area is the answer to our multiplication 
problem we conclude that

4
7

×
2
3

=
8
21

.
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Think/Pair/Share.

(1) Use this “unit square method” to compute each of the fol-
lowing products. Draw the picture to see the answer 
clearly.  

3
4

×
5
6

,
3
8

×
5
10

,
5
8

×
3
7

.

(2) The area problem 
4
7

×
2
3

 yielded a diagram with a total of 

21 small rectangles. Explain why 21 appears as the total 
number of equal-sized rectangles. 

(3) The area problem 
4
7

×
2
3

 yielded a diagram with 8 small 

shaded rectangles. Explain why 8 appears as the number 
of shaded rectangles.

Problem 5 (Extend the Model). How can you extend the 
area model for fractions greater than 1? Try to draw a picture 
for each of these:

3
4

⋅
3
2

,
2
5

⋅
4
3

,
3
10

⋅
5
4

,
5
2

⋅
7
4

.



On Your Own.  Work on the following exercises on your 
own or with a partner.

(1) Compute the following products, simplifying each of the 
answers as much as possible. You do not need to draw pic-
tures, but you may certainly choose to do so if it helps!

5
11

×
7
12

,
4
7

×
4
8

,
1
2

×
1
3

,
2
1

×
3
1

,
1
5

×
5
1

.

(2) Compute the following products. (Do n0t work too hard!)

3
4

×
1
3

×
2
5

,
5
5

×
7
8

,
88
88

×
541
788

,
77876
311

×
311

77876
.

(3) Try this one. Can you make use of the fraction rule 
xa
xb

=
a
b

 to help you calculate? How?

1
2

×
2
3

×
3
4

×
4
5

×
5
6

×
6
7

×
7
8

×
8
9

×
9
10

.

You probably simplified your work in the exercises above by 
using a multiplication rule like the following.

 Of course, you may then choose to simplify the final an-
swer, but the answer is always equivalent to this one. Why? 
The area model can help us explain what is going on.

 First, let us clearly write out how the area model says to 
multiply 

a
b

⋅
c
d

. We want to build a rectangle where one side 

has length 
a
b

 and the other side has length 
c
d

. We start with a 

square, one unit on each side.

• Divide the top segment into b equal-sized pieces. 
Shade a of those pieces. (This will be the side of the rec-
tangle with length 

a
b

.) 

• Divide the left segment into d equal-sized pieces. Shade 
c of those pieces. (This will be the side of the rectangle 
with length 

c
d

.) 

• Divide the whole rectangle according to the tick marks 
on the sides, making equal-sized rectangles. 

• Shade the rectangle bounded by the shaded segments. 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Multiplying Fractions:

a
b

⋅
c
d

=
a ⋅ c
b ⋅ d

.



 If the answer is 
a ⋅ c
b ⋅ d

, that means there are b ⋅ d total 

equal-sized pieces in the square, and a ⋅ c of them are shaded. 
We can see from the model why this is the case: 

• The top segment was divided into b equal-sized pieces. 
So there are b columns in the rectangle. 

• The side segment was divided into d equal-sized pieces. 
So there are d rows in the rectangle. 

• A rectangle with b columns and d rows has b ⋅ d pieces. 
(The area model for whole-number multiplication!) 

MOVIE 1: Area Model
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Think/Pair/Share.  Stick with the general multiplication 
rule

a
b

⋅
c
d

=
a ⋅ c
b ⋅ d

With a partner, write a clear explanation for why a ⋅ c of the 
small rectangles will be shaded.



Multiplying Fractions by Whole Numbers.  Often, ele-
mentary students are taught to multiply fractions by whole 
numbers using the fraction rule. 

Example 5.2 ( 2 ⋅
3
7

, Multiply Fractions). For example, to 

multiply 2 ⋅
3
7

, we think of “2” as 
2
1

, and compute this way

2 ⋅
3
7

=
2
1

⋅
3
7

=
2 ⋅ 3
1 ⋅ 7

=
6
7

.

We can also think in terms of our original “Pies Per Child” 
model to answer questions like this.

Example 5.3 ( 2 ⋅
3
7

, Pies Per Child). We know that 
3
7

 means 

the amount of pie each child gets when 7 children evenly 
share 3 pies.

 If we compute 2 ⋅
3
7

, that means we double the amount of 

pie each kid gets. We can do this by doubling the number of 

pies. So the answer is the same as 
6
7

: the amount of pie each 

child gets when 7 children evenly share 6 pies. 

 Finally, we can think in terms of units and unitizing.

Example 5.4 (2 ⋅
3
7

, Units).  The fraction 
3
7

 means that I have 

7 equal pieces (of something), and I take 3 of them.

 So 2 ⋅
3
7

 means do that twice. If I take 3 pieces and then 3 

pieces again, I get a total of 6 pieces. There are still 7 equal 

pieces in the whole, so the answer is 
6
7

.

Let us think some more about the expression

4 ⋅
3
8

.

Using the first method (multiplying fractions), we compute:

4 ⋅
3
8

=
4
1

⋅
3
8

=
12
8

.
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Think/Pair/Share. 

(1) Use all three methods to explain how to find each prod-
uct: 

3 ⋅
2
5

, 4 ⋅
3
8

, 6 ⋅
1
5

.

(2) Compare these different ways of thinking about fraction 
multiplication. Are any of them more natural to you? 
Does one make more sense than the others? Do the par-
ticular numbers in the problem affect your answer? Does 
your partner agree? 



 Here is another example:

10 ⋅
2
15

=
10
1

⋅
2
15

=
10 ⋅ 2

15
.

Rather than multiply out the numerator, let us break every-
thing down as far as we can into factors:

10 ⋅ 2
15

=
2 ⋅ 5 ⋅ 2

3 ⋅ 5
=

2 ⋅ 2
3

=
4
3

.

 Here is one more example:

8 ⋅
212
16

=
8 ⋅ 212

16
.

We can avoid some work (mathematicians love to avoid work 
and make things easier on themselves!) if we notice that 
16 = 8 ⋅ 2:

8 ⋅
212
16

=
8 ⋅ 212
8 ⋅ 2

=
212
2

= 106.

On Your Own. Try these exercises on your own or with a 
partner.

(1) Compute each of the following and write your answer in 
simplified form. Avoid doing extra work if you can!

17 ⋅
2
3

, 10 ⋅
1
5

,
3
4

⋅ 4, 11 ⋅
36
33

,
13
12

⋅ 24.

(2) Compute each of the following and write your answer in 
simplified form. Look for shortcuts!

3
7

⋅
7
5

,
133
112

⋅ 224,
39
35

⋅
14
13

,
5
13

⋅
4
7

⋅
13
2

⋅
7
10

.
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Think/Pair/Share.

(1) Compute the following:

6 ⋅
5
6

,
7
18

⋅ 18.

(2) What can you say about these products? Carefully justify 
your answer using at least one of the models for multipli-
cation above.

b ⋅
a
b

,
c
d

⋅ d.

(3) Keo was asked to compute

18
7

⋅
70
36

.

Within three seconds, he shouted “The answer is 5!” Is he 
right? How was he able to compute it so quickly? 



Roy says that the fraction rule

xa
xb

=
a
b

is “obvious” if you think in terms of multiplying fractions. He 
reasons as follows:

We know multiplying anything by 1 does not change a num-
ber:

1 ⋅ 4 = 4

1 ⋅ 2014 = 2014

1 ⋅
5
7

=
5
7

So, in general,

1 ⋅
a
b

=
a
b

Now, 
2
2

= 1, so that means that

2
2

⋅
a
b

=
a
b

 

which means

2a
2b

=
a
b

By the same reasoning, 
3
3

= 1, so that means that

3
3

⋅
a
b

=
a
b

which means

3a
3b

=
a
b

.
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Think/Pair/Share. What do you think about Roy’s reason-
ing? Does it make sense? How would Roy explain the general 
rule for positive whole numbers x:

xa
xb

=
a
b

?



Fractions of fractions of fractions of fractions of...

 

 When a problem includes a phrase like “
2
3

 of ...,” stu-

dents are taught to treat “of” as multiplication, and to use that 
to solve the problem. As the above problems show, in some 
cases this makes sense, and in some cases it does not. It is im-
portant to read carefully and understand what a problem is 
asking, not memorize rules about “translating” word prob-
lems.

        

 If I have 12 circles and I want “
2
3

 of the circles,” I can 

take two out of every three circles.

I can also take 
2
3

 from each individual circle.

 In both cases, I can compute the answer as 
2
3

× 12 cir-

cles, but the reasoning in each case is a little different. 

 In the first case, we are really thinking of “
2
3
 of 12” as a 

sequence of operations:

• Divide my 12 circles groups of three circles each. 

• Shade 2 circles in every group.

So I have computed this way:

(12 ÷ 3) ⋅ 2 =
12
3

⋅ 2 =
12 ⋅ 2

3
= 12 ⋅

2
3

.
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Think/Pair/Share. How are these two problems different? 
Draw a picture of each.

(1) Pam had 
2
3

 of a cake in her refrigerator, and she ate half 

of it. How much total cake did she eat? 

(2) On Monday, Pam ate 
2
3

 of a cake. On Tuesday, Pam ate 
1
2

 

of a cake. How much total cake did she eat? 

11111

11

1

11

1

11

1

11



 In the second case, we are really think of 
2
3

 of a circle, re-

peated 12 times, which is also

2
3

⋅ 12.

 If we change the numbers, sometimes one of the interpre-
tations is more natural than the other. For example, how can 

we understand “
3
5

 of 12 circles”? We can interpret this as “take 

3 of every 5 circles,” but this does not make sense because we 
cannot divide 12 circles into groups of 5 circles each. It is eas-

ier to take 
3
5

 of each circle.
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1

1

1 1

1

1

1

1 1

1
1

1

??

??

Think/Pair/Share.

(1) Draw 
3
4

 of 4 circles in two different ways. What is 
3
4

 of 4?

(2) Draw 
5
8

 of 16 candy bars in two different ways. What is 
5
8

 

of 16?

(3) Draw a rectangle and shade 
2
3

 of 
3
4

 of the rectangle. What 

is 
2
3

⋅
3
4

?



SECTION 7

Dividing Fractions: Mean-
ing

We had several ways to think about division of whole num-
bers:

• Quotatitive model: Make groups of a given size. For 
example, for 18 ÷ 3, we start with 18 dots (or candy 
bars or molecules), and we make groups of 3 dots (or 
3 whatevers). We ask: how many groups can we 
make? 

• Partitive model: Make a given number of groups. 
For 18 ÷ 3, we say start with 18 dots (or people or pen-
cils), and we make 3 equal-sized groups. We ask: how 
many objects are in each group? 

• Missing factor model: Solve a multiplication prob-
lem instead. For 18 ÷ 3, we rewrite the problem as 
3 ⋅ = 18.

We can still think about all of these models when we divide 
fractions, but doing the calculation can be tricky!
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Think/Pair/Share.  For each problem below, draw a picture 
of the situation, and label the problem as partitive or quota-
tive. Explain your thinking. Then try to solve each of the prob-
lems. Find as many different ways as you can to justify your 
solutions.

(1) It took Mary four bucketfuls of water to fill up her three 
gallon fish tank. How much water does her bucket hold? 

(2) You have 
2
3

 of a gallon of water in a bucket, and the 

bucket is 
7
8

 full. How many gallons would it take to fill up 

the whole bucket? 

(3) 10
1
2

 gallons of water fills up 2
1
3

 buckets. How many gal-

lons are in one bucket?
 

(4) Mr. Brown has a length of rope that measures 10
1
2

 yards 

long. Each boy in his scout troop needs a piece 2
1
3

 yards 

long. How many pieces of the required length can he cut? 



 Most people find problem (2) above quite challenging, 
and have a hard time both drawing a picture and being certain 
they have the right answer. (Even if you did not find it so diffi-
cult, certainly you can imagine that some of your future stu-
dents would be stumped by such a problem!)

 If a problem is giving us trouble, what are some things 
we can do? Solve a simpler problem! Let us change problem 
(2) in several ways:

(2a) You have 
2
3

 of a gallon of water in a bucket, which fills up 

1
2

 of your bucket. How many gallons total would it take 

to fill up the whole bucket?

(2b) You have 
2
3

 of a gallon of water in a bucket, which fills 

up 
1
3

 of your bucket. How many gallons total would it 

take to fill up the whole bucket?

(2c) You have 
2
3

 of a gallon of water in a bucket, which fills up 

1
4

 of your bucket. How many gallons total would it take 

to fill up the whole bucket?

(2d) You have 
2
3

 of a gallon of water in a bucket, which fills 

up 
1
5

 of your bucket. How many gallons total would it 

take to fill up the whole bucket?

(2e) You have 
2
3

 of a gallon of water in a bucket, which fills up 

1
8

 of your bucket. How many gallons total would it take 

to fill up the whole bucket? 

 So, back to original problem — what is complicated in 

that case?  The water does not fill your bucket to the 
1
8

 mark.  

It fills your bucket to the 
7
8

 mark.

39

Think/Pair/Share.  Each of the problems above is signifi-
cantly easier than the original problem (2). Discuss with a 
partner why these questions are easier. For each one, draw a 
picture and find the solution. Most importantly, find a general 
method to answer this question:

If 
2
3

 of a gallon of water fills my bucket to the 
1
n

 mark, 

how much water does my bucket hold?



Here are some helpful questions to think about the next step 
of the problem:

(2a’) You have 
2
3

 of a gallon of water in a bucket, which fills 

up 
3
4

 of your bucket. How many gallons would it take to 

fill up 
1
4

 of the bucket? How many total to fill up the 

whole bucket? 

(2b’) You have 
2
3

 of a gallon of water in a bucket, which fills 

up 
3
5

 of your bucket. How many gallons would it take to 

fill up 
1
5

 of the bucket? How many total to fill up the 

whole bucket? 

(2c’) You have 
2
3

 of a gallon of water in a bucket, which fills 

up 
5
8

 of your bucket. How many gallons would it take to 

fill up 
1
8

 of the bucket? How many total to fill up the 

whole bucket? 
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Think/Pair/Share.  Work on the questions above with a 
partner. Your goal is to be able to answer this question:

If 
2
3

 gallons of water fills my bucket to the 
a
b

 mark, how 

can I find the total number of gallons that fills my 

bucket to the 
1
b

 mark?

If you can answer that, you should be able to apply it to an-
swer the original version of problem (2) above.



SECTION 8

Dividing Fractions: Compu-
tations

All of the following questions have the same answer! (Why?)

• How many groups of 3 are there in 6?

• How many groups of 3 tens are there in 6 tens?

• How many groups of 3 fives are there in 6 fives?

• How many groups of 3 tenths are there in 6 tenths?

• How many groups of 3 fourths are there in 6 fourths?

• How many groups of 3 @s are there in 6 @s?

• How many groups of 3 anythings are there in 6 any-
things (as long as both “anythings” refer to the same 
unit)?

Common denominator method.  This line of reasoning 
leads to our first fraction division method. If two fractions 
have the same denominator, then when you divide them, you 
can just divide the numerators. In symbols,

a
d

÷
b
d

=
a
b

.
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Think/Pair/Share.  With a partner, draw some pictures to 
illustrate each of the questions above. Do you believe that they 
all have the same answer? Use a picture or reasoning to solve 
each of the following fraction division problems:

6
4

÷
3
4

,
6
10

÷
3

10
,

8
9

÷
4
9

,
15
33

÷
1

33
,

10
9

÷
5
9

.

Think/Pair/Share.  What if the fractions do not have a com-
mon denominator? Is the method useless, or can you find a 
way to make it work? Can you solve these problems?

3
5

÷
3
4

,
3
4

÷
8
7

,
2
3

÷
1
2

,
5
8

÷
1
4

.



Missing factor approach.  We know that we can always 
turn a division problem into a “missing factor” multiplication 
problem. Can that help us compute fraction division? Some-
times!

A nasty problem:

7
2
3

 pies are shared equally by 5
3
4

 children. How much 

pie does each child get?

Technically, we could just write down the answer as

7 2
3

5 3
4

and be done! (The answer to this problem is, of course, equiva-
lent to this fraction, so why not?)

 Is there a way to make this look friendlier? Recall the key 
fraction rule:

xa
xb

=
a
b

.

 What might happen if we multiply the numerator and de-
nominator of our answer each by a convenient choice of num-
ber? Right now we have the expression:

7 2
3

5 3
4

=
(7 + 2

3 )
(5 + 3

4 )
.

Let us multiply by 3. (Why three?)

(7 + 2
3 ) ⋅ 3

(5 + 3
4 ) ⋅ 3

=
(21 + 2)

(15 + 9
4 )

.

Important Note: We are using some key facts about arith-
metic here! First, we used the distributive law for multiplica-
tion over addition:

(a + b) ⋅ c = a ⋅ c + b ⋅ c.  (Where have we used this fact?)

Second, we used what we know about multiplying fractions by 
whole numbers. In particular, we used the fact that

a
b

⋅ b = a.   (Where did we use that fact?)
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Think/Pair/Share.  For each division problem, rewrite it as 
a missing factor multiplication question. Then answer that 
question using what you know about multiplying fractions.

9
10

÷
3
5

,
7
8

÷
1
4

,
6
7

÷
3
7

,
10
9

÷
2
3

,
25
12

÷
5
6

.



Now multiply numerator and denominator each by 4 . (Why 
four?)

(21 + 2) ⋅ 4

(15 + 9
4 ) ⋅ 4

=
84 + 8
60 + 9

=
92
69

.

We now see that the answer is 
92
69

. That means that sharing 

7
2
3

 pies among 5
3
4

 children is the same as sharing 92 pies 

among 69 children. (That is, in both situations, the individual 
child get exactly the same amount of pie.)

Example 7.1.  Let’s forget the context now and just focus on 
the calculations so that we can see what is going on more 
clearly. Try this one:

3 1
2

1 1
2

.

Multiplying the numerator and denominator each by 2 should 
be enough to simplify the expression. (Why?) Let us try it:

3 1
2

1 1
2

=
3 + 1

2

1 + 1
2

=
(3 + 1

2 ) ⋅ 2

(1 + 1
2 ) ⋅ 2

=
6 + 1
2 + 1

=
7
3

.

On Your Own. Each of the following is a perfectly nice frac-
tion, but it could be written in a simpler form. So do that! 
Write each of them in a simpler form following the examples 
above.

4 2
3

5 1
3

,
2 1

5

2 1
4

,
1 4

7

2 3
10

,
3
7
4
5

.
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Think/Pair/Share.  

(1) Jessica calculated the second exercise above this way:

2 1
5

2 1
4

=
2 1

5

2 1
4

=
1
5
1
4

=
1
5

⋅ 4
1
4 ⋅ 4

=
4
5

1
=

4
5

.

Is her solution correct, or is she misunderstanding some-
thing? Carefully explain what is going on with her solu-
tion, and what you would do as Jessica’s teacher.

(2) Isaac calculated the last exercise above this way:

3
7
4
5

=
3
7 ⋅ 7
4
5

⋅ 5
=

3
4

.

Is his solution correct, or is he misunderstanding something? 
Carefully explain what is going on with his solution, and what 
you would do as Isaac’s teacher.



Simplify an ugly fraction!  Perhaps without realizing it, 
you have just found another method to divide fractions.

Example 7.2 ( 3
5

÷
4
7 ).  Suppose we are asked about sharing 

3
5

 of a pie among 
4
7

 of a child (whatever that would mean!). 

That is, we are asked to compute:

3
5
4
7

.

Let us multiply numerator and denominator each by 5:

( 3
5 ) ⋅ 5

( 4
7 ) ⋅ 5

=
3
20
7

.

Let us now multiply top and bottom each by 7:

(3) ⋅ 7

( 20
7 ) ⋅ 7

=
21
20

.

Done! So 
3
5

÷
4
7

=
21
20

.

Example 7.3 ( 5
9

÷
8
11 ).  Let us do another. Consider 

5
9

÷
8
11

:

5
9
8
11

.

Let us multiply numerator and denominator each by 9 and by 
11 at the same time. (Why not?)

5
9
8

11

=
( 5

9 ) ⋅ 9 ⋅ 11

( 8
11 ) ⋅ 9 ⋅ 11

=
5 ⋅ 11
8 ⋅ 9

.

(Do you see what happened here?)

So we have

5
9
8

11

=
5 ⋅ 11
8 ⋅ 9

=
55
72

.

On Your Own. Compute each of the following, using the sim-
plification technique.

1
2

÷
1
3

,
4
5

÷
3
7

,
2
3

÷
1
5

,
45
59

÷
902
902

,
10
13

÷
2
13

.
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Invert and multiply.  Consider the problem 
5
12

÷
7
11

.  

Janine wrote:

5
12
7
11

=
5
12 ⋅ 12 ⋅ 11
7
11 ⋅ 12 ⋅ 11

=
5 ⋅ 11
7 ⋅ 12

=
5
12

⋅
11
7

.

She stopped before completing her final step and exclaimed: 
“Dividing one fraction by another is the same as multiplying 
the first fraction with the second fraction upside down!”

On Your Own. First check each step of Janine’s work here 
and make sure that she is correct in what she did up to this 
point. Then answer these questions:

• Do you understand what Janine is saying? Explain it 
very clearly. 

• Work out 
3
7
4
13

 using the simplification method. Is the 

answer the same as 
3
7

⋅
13
4

?

• Work out 
2
5
3
10

 using the simplification method. Is the 

answer the same as 
2
5

⋅
10
3

?

• Work out 
a
b
c
d

 using the simplification method. Is the 

answer the same as 
a
b

⋅
d
c

?

• Is Janine right? Is dividing two fractions always the 
same as multiplying the two fractions with the second 
one turned upside down? What do you think? (Do not 
just think about examples. This is a question if some-
thing is always true.)
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Summary: We now have several methods for solving prob-
lems that require dividing fractions:
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Dividing fractions:
★ Find a common denominator and divide the 

numerators. 

★ Rewrite the division as a missing factor multi-
plication problem, and solve that problem. 

★ Simplify an ugly fraction. 

★ Invert the second fraction (the dividend) and 
then multiply. 

Think/Pair/Share.  Discuss your opinions about our four 
methods for solving fraction division problems with a partner:

• Which method for division of fractions is the easiest to 
understand why it works ? 

• Which method for division of fractions is the easiest to 
use in computations? 

• What are the benefits and drawbacks of each method? 
(Think both as a future teacher and as someone solving 
math problems here.) 



SECTION 9

Fraction Sense
Multiplying and Dividing.  Elementary school students 
are often taught mental shortcuts like “multiplication makes 
things bigger.” But is that necessarily true? You have to be 
careful as a teacher to make ideas simple for students to under-
stand, but not so simple that you say things that are wrong!

Let us try some examples.

Example 8.1 (Multiplying by 
5
4 ).  Let us try it with 100:

5
4

⋅ 100 =
500
4

= 125.

Yep, that is bigger than 100.

 But of course this is only one example. How can we be 

sure that multiplying any (positive) number by 
5
4

 gives a re-

sult that is bigger than that number? That is, how can we be 
sure that

5
4

⋅ x > x    for every (positive) choice of x?

This is a universal statement, so one example is not enough to 
be sure it is true. We need an explanation! And here it is.

 

47

Think/Pair/Share.  For each of the following problems, sup-
pose a and b are both fractions that are between 0 and 1, and 
suppose a is bigger than b. Decide which symbol should go in 
the □ for each equation: >, <, or =. Justify your answer, and 
keep in mind that more than one symbol may be possible! 

• Addition:
a + b □ a, a + b □ b, a + b □ 0, a + b □ 1.

• Subtraction:
a − b □ a, a − b □ b, a − b □ 0, a − b □ 1.

• Multiplication:
a ⋅ b □ a, a ⋅ b □ b, a ⋅ b □ 0, a ⋅ b □ 1.

• Division:
a ÷ b □ a, a ÷ b □ b, a ÷ b □ 0, a ÷ b □ 1.



We can rewrite 
5
4

 as 1 +
1
4

. So then

5
4

⋅ x = (1 +
1
4 ) ⋅ x = x +

1
4

⋅ x = x +  more.

So the answer is bigger than x.

Does this rule hold for other fractions as well? Does multiplica-
tion always result in a larger number than the one being multi-
plied? Let’s try another example.

Example 8.2 (Multiplying by 
4
5 ).  Again, we’ll use 100 as 

our first test case:

4
5

⋅ 100 =
400
5

= 80.

So in this case, the result is smaller than 100!

 This counterexample shows that the following universal 
statement is definitely false: Multiplying a positive number x 

by 
4
5

 gives a result that is bigger than x.

We might ask the following:

Is it always true that 
4
5

⋅ x < x for a positive number x?

 Notice, this is not the same question! We know that the 
answer is not always bigger than x. But we do not know if it is 
always smaller. It could be sometimes bigger and sometimes 
smaller. How can we be sure?

 You might have already guessed what to do. We thought 

about 
5
4

 as “one plus a little bit.” In a very similar way, we can 

think about 
4
5

 as “a little bit less than one,” and use that to ex-
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Think/Pair/Share.  Go through each step in the series of cal-
culations above, and explain what is going on. Where is the dis-
tributive law used? Where do we need the fact that x is a posi-
tive number? Then:

• Write a careful argument that multiplying a (positive) num-

ber by 
8
5

 gives a result that is larger than the original num-

ber.

• Write a careful argument that multiplying a (positive) num-

ber by 
20
9

 gives a result that is larger than the original num-

ber.



plain why, indeed, the result must always be smaller. Here we 
go:

 Notice that 
4
5

= 1 −
1
5

.  So we can write

4
5

⋅ x = (1 −
1
5 ) ⋅ x = x −

1
5

⋅ x = x −  a bit,

and the result will be smaller than x.

 

 It may seem silly to write such careful arguments for 
things you already know to be true. Of course multiplying by a 
number less than one makes your answer smaller!

Well, let us make two comments:

• The fact that this is obvious to you (if it is!) comes from 
your years of experience with numbers. When students 
first learn about fractions, it is “obvious” to them that 
multiplying makes things bigger. In their experience, it 
has always done so! Our intuition is based on our expe-
riences, and cannot always be trusted. That is why ex-
planation and justification play such a crucial role in 
mathematics.

• Though many people think the results are obvious 
when dealing with multiplication, they can get com-
pletely turned upside down (so to speak) in dealing 
with division. And it always helps to work through the 
relatively simple case first, before tackling the more dif-
ficult one.

Claim:  If we divide a positive number by some fraction less 
than one, the result is bigger than the original number.

 Before trying to justify a claim, we should always check a 
few examples to see if we even believe that it is true. Testing 
these ideas out on the number 100 has worked well so far. Let 

us see what happens when we compute 100 ÷
4
5

.

100
4
5

=
100 ⋅ 5

4
5

⋅ 5
=

500
4

= 125.
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Think/Pair/Share.  Go through each step in the series of 
calculations above, and explain what is going on. Where is the 
distributive law used? Where do we need the fact that x is a 
positive number? Then:

• Write a careful argument that multiplying a (positive) num-

ber by 
7
8

 gives a result that is smaller than the original num-

ber. 

• Write a careful argument that multiplying a (positive) num-

ber by 
5
9

 gives a result that is smaller than the original num-

ber. 



Indeed, the answer is larger, just as claimed above. 
 So how can we write a general argument? Well, just re-
place the 100 by x:

x
4
5

=
x ⋅ 5
4
5

⋅ 5
=

5 ⋅ x
4

=
5
4

⋅ x.

And we know from our earlier work that 
5
4

⋅ x is bigger than x 

whenever x is a positive number.

Fractions involving zero.
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Think/Pair/Share.  Go through each step in the series of 
calculations above, and explain what is going on. Then:

• Write a careful argument that dividing a (positive) number 

by 
7
9

 gives a result that is larger than the original number. 

• Write a careful argument that dividing a (positive) number 

by 
8
5

 gives a result that is smaller than the original number. 

Think/Pair/Share.  Mr. Halpin is reviewing equivalent frac-
tions with his class. He asks students for examples of fractions 

that are equivalent to 1. One student suggests 
0
0

. What is most 

important for him to consider in deciding how to respond? 
(Choose one answer, and be prepared to explain why your 
choice is the best one.)

a. Any number divided by itself equals 1. Even though you 
normally cannot divide by 0, you can divide 0 by 0.  So 
0
0

= 1.

b.
0
0

= 0

c.
0
0

 is undefined because there is no single number that when 

multiplied by 0 is 0.

d. If you multiply the numerator and denominator by the 

same number, 
0
0

 remains the same.



Sharing zero pies among eleven kids gives zero pies per child:

0
11

= 0.

The same reasoning would lead us to say:

0
b

= 0    for any positive number b.

The “Pies Per Child Model” offers one explanation: If there are 
no pies for us to share, no one gets any pie. It does not matter 
how many children there are. No pie is no pie is no pie.

 

We can also justify this claim by thinking about a missing fac-
tor multiplication problem:

0
b
    is asking us to fill in the blank: ⋅ b = 0.

The only way to fill that in and make a true statement is with 

0,  so  
0
b

= 0.

What happens if things are flipped the other way round? Does 
a
0

 make sense?

Think/Pair/Share.  Some students are talking about the 

fraction 
0
11

.

a. Cyril says that 
0
11

= 2. Carefully explain why he is incor-

rect.

b. Ethel says that 
0
11

= 17. Carefully explain why she is incor-

rect.

c. Wonhi says that 
0
11

= 887231243. Carefully explain why he 

is incorrect.

d. Duane says that there is no answer to 
0
11

. Carefully explain 

why he is incorrect.

e. What is the correct value for 
0
11

?
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 Students often learn in school that “dividing by 0 is unde-
fined.” But they learn this as a rule, rather than thinking about 
why it makes sense or how it connects to other ideas in mathe-
matics. In this case, the most natural connection is to a multi-
plication fact:

any number  ⋅ 0 = 0.

That says we can never find solutions to problems like

⋅ 0 = 5, ⋅ 0 = 17, ⋅ 0 = 1.

Using the connection between fractions and division, and the 
connection between division and multiplication, that means 

there is no number  
5
0

. There is no number  
17
0

. And there is 

no number  
1
0

. They are all “undefined” because they are not 

equal to any number at all.

Can we give meaning to 
0
0

 at least? After all, a zero would ap-

pear on both sides of that equation!

• Cyril says that 
0
0

= 2 since 0 ⋅ 2 = 0.

• Ethel says that 
0
0

= 17 since 0 ⋅ 17 = 0.

• Wonhi says that 
0
0

= 887231243 since 

0 ⋅ 887231243 = 0.

Who is right in this case? Can they all be correct?

 Cyril says that 
0
0

= 2, and he believes he is correct be-

cause it passes the check: 2 ⋅ 0 = 0. 
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Think/Pair/Share.  The same students are talking about 

the fraction 
5
0

.

a. Cyril says that 
5
0

= 2. Use a missing factor multiplication 

problem to explain why he is incorrect.

b. Ethel says that 
5
0

= 17. Use a missing factor multiplication 

problem to explain why she is incorrect.

c. Wonhi says that 
5
0

= 887231243. Use a missing factor multi-

plication problem to explain why he is incorrect.

d. Duane says that there is no answer to 
5
0

.  Use a missing fac-

tor multiplication problem to explain why he is correct.



 But 
0
0

= 17 also passes the check, and so does 

0
0

= 887231243.  In fact, I can choose any number for x, and 

0
0

= x will pass the check!

 The trouble with the expression 
a
0

 (with a not zero) is 

that there is no meaningful value to assign to it. The trouble 

with 
0
0

 is different:  There are too many possible values to 

give it!

 Dividing by zero is simply too problematic to be done! It 
is best to avoid doing so and never will we allow zero as the de-
nominator of a fraction. (But all is fine with 0 as a numerator.)
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SECTION 10

Problem Bank

Problem 6 (Who gets more pie?) Harriet is with a group of 
five children who share four pies. Jeff is with a group of seven 
children who share four pies. Jean is in a group of seven chil-
dren who share six pies.

(a) Who gets more pie, Harriet or Jeff? Justify your answer! 

(b) Who gets more pie, Harriet or Jean? Justify your answer! 

(c) Who gets more pie, Jeff or Jean? Justify your answer!

Problem 7 (Leftover Cake). Yesterday was Zoe’s birthday, 

and she had a big rectangular cake. Today, 
2
5

 of the cake is 

left. The leftover cake is shown here. Draw a picture of the 
whole cake and explain your work.

Problem 8 (Ordering fractions). Use benchmarks and intui-
tive methods to arrange the fractions below in ascending or-
der. Explain how you decided. (The point of this problem is to 
think more and compute less!):

2
5

,
1
3

,
5
8

,
1
4

,
2
3

,
3
4

,
4
7

.

Problem 9. Which of these fractions has the larger value? 
Justify your choice. 

10001
10002

 or 
10000001
10000002

Problem 10 (Quick!). Solve each division problem. Look for 
a shortcut, and explain your work.

251 + 251 + 251 + 251
4

377 + 377 + 377 + 377 + 377
5

123123 + 123123 + 123123 + 123123 + 123123 + 123123
3

Problem 11 (Cancellation). Yoko says

16
64

=
1
4

    

because she cancels the sixes:

16
64

=
1
4

.
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But note:

16
64

=
1 ⋅ 16
4 ⋅ 16

=
1 ⋅ 16
4 ⋅ 16

=
1
4

.

So is Yoko right? Does her cancelation rule always work? If it 
does not always work, can you find any other example where 
it works? Can you find every example where it works?

Problem 12. Jimmy says that a fraction does not change in 
value if you add the same amount to the numerator and the de-
nominator. Is he right? If you were Jimmy’s teacher, how 
would you respond?

Problem 13. Shelly says that if ab < cd then 
a
b

<
c
d

. Is 

Shelly’s claim always true, sometimes true, or never true? If 
you were Shelly’s teacher, what would you say to her?

Problem 14. Jill, her brother, and another partner own a 

pizza restaurant. If Jill owns 
1
3

 of the restaurant and her 

brother owns 
1
4

 of the restaurant, what fraction

does the third partner own?

Problem 15. John spent a quarter of his life as a boy growing 
up, one-sixth of his life in college, and one-half of his life as a 
teacher. He spent his last six years in retirement. How old was 
he when he died?

Problem 16. Nana was planning to make a red, white, and 
blue quilt. One-third was to be red and two-fifths was to be 
white. If the area of the quilt was to be 30 square feet, how 
many square feet would be blue?

Problem 17. Rafael ate one-fourth of a pizza and Rocco ate 
one-third of it. What fraction of the pizza did they eat?

Problem 18 (Tangrams). Tangrams are a seven-piece puzzle, 
and the seven pieces can be assembled into a big square.

(a)  If the large square shown above is one whole, assign a frac-
tion value to each of the seven tangram pieces. Justify your 
answers. 
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(b)  The tangram puzzle contains a small square. If the small 
square (the single tangram piece) is one whole, assign a 
fraction value to each of the seven tangram pieces. Justify 
your answers. 

(c)  The tangram set contains two large triangles. If a large tri-
angle (the single tangram piece) is one whole, assign a frac-
tion value to each of the seven tangram pieces. Justify your 
answers. 

(d)  The tangram set contains one medium triangle. If the me-
dium triangle (the single tangram piece) is one whole, as-
sign a fraction value to each of the seven tangram pieces. 
Justify your answers. 

(e)  The tangram set contains two small triangles. If a small tri-
angle (the single tangram piece) is one whole, assign a frac-
tion value to each of the seven tangram pieces. Justify your 
answers. 

Problem 19. Mikiko said her family made two square pizzas 
at home. One of the pizzas was 8 inches on each side, and the 

other was 12 inches on each side. Mikiko ate 
1
4

 of the small 

pizza and 
1
12

 of the large pizza. So she said that she ate 

1
4

+
1
12

=
3
12

+
1
12

=
4
12

=
1
3

 

of the pizza. Do you agree with Mikiko’s calculation? Did she 

eat 
1
3

 of her family’s pizza? Carefully justify your answer.

Problem 20 (Harmonic triangle). Look at the triangle of 
numbers. There are lots of patterns here! Find as many as you 
can. In particular, try to answer these questions:

(a) What pattern describes the first number in each row?

(b) How is each fraction related to the two fractions below it?

(c) Can you write down the next two rows of the triangle? 

1
1

1
2

1
2

1
3

1
6

1
3

1
4

1
12

1
12

1
4

1
5

1
20

1
30

1
20

1
5
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Problem 21 (Let them eat cake!). Marie made a sheet cake at 
home, but she saved some to bring to work and share with her 
co-workers the next day. Answer these questions about 
Marie’s cake. (Draw a picture!)

(a) Suppose Marie saved 
1
2

 of the cake for her co-workers and 

the co-workers ate 
3
4

 of this. What fraction of the entire 

cake did they eat?

(b) What if Marie saved 
1
6

 instead, and they ate 
2
3

 of this?

(c) What if she saved 
5
7

 of the cake and they ate 
1
2

 of this?

Problem 22 (Door prize). An elementary school held a “Fam-
ily Math Night” event, and 405 students showed up. Two-
thirds of the students who showed up won a door prize. How 
many students won prizes?

Problem 23 (Working Backwards). For each picture shown: 

• What multiplication problem is represented?

• What is the product?

Problem 24 (Depreciation). A piece of office equipment was 
purchased for $60,000. Each year, it depreciates in value. At 

the end of each year, the equipment is worth 
9
10

 what it was 

worth at the start of the year. How much is the equipment 
worth after 1 year? After 2 years? After 5 years?

Problem 25 (How close can you get?). Using only the digits 
0, 1, 2,. . . , 9 at most once each in place of the variables, find 
the value closest to 1. For each problem, justify your solution. 
How do you know it is closest to 1?

 (a)  
a
b

 

 (b)  
a
b

⋅
c
d

 

 (c)  
a
b

⋅
c
d

⋅
e
f
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Problem 26 (Community garden). A town plans to build a 

community garden that will cover 
2
3

 of a square mile on an old 

farm. One side of the garden area will be along an existing 

fence that is 
3
4

 of a mile long. If the garden is a rectangle, how 

long is the other side?

Problem 27 (Planting wheat). Nate used 90
1
2

 pounds of seed 

to plant 1
1
4

 acres of wheat. How many pounds of seed did he 

use per acre?

 
Problem 28. The family-sized box of laundry detergent con-

tains 35 cups of detergent. Your family’s machine requires 1
1
4

 

cup per load. How many loads of laundry can your family do 
with one box of detergent?

 

Problem 29. At the start of each semester, 
5
6

 of all Math 111 

students work out at least three times each week. By the mid-

dle of the semester, 
4
5

 of those students are still working out 

regularly. By the time finals rolls around, 
9
10

 of those students 

still hit the gym three times each week. If 36 students are 
working out regularly during finals, how many were enrolled 
in Math 111 at the start of the semester?

Problem 30. Jessica bikes to campus every day. When she is 
one-third of the way between her home and where she parks 
her bike, she passes a grocery store. When she is halfway to 
school, she passes a Subway sandwich shop. This morning, 
Jessica passed the grocery store at 8:30am, and she passed 
Subway at 8:35am. What time did she get to campus?

Problem 31. If you place a full container of flour on a bal-

ance scale and place on the other side a 
1
3

 pound weight plus a 

container of flour (the same size) that is 
3
4

 full, then the scale 

balances. How much does the full container of flour weigh?
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Problem 32. Geoff spent 
1
4

 of his allowance on a movie. He 

spent 
11
18

 of what was left on snacks at school. He also spent 

$3 on a magazine, and that left him with 
1
24

 of his total allow-

ance, which he put into his savings account. How much 
money did Geoff save that week?

Problem 33. Lily was flying to San Francisco from Honolulu. 
Halfway there, she fell asleep. When she woke up, the distance 
remaining was half the distance traveled while she slept. For 
what fraction of the trip was Lily asleep?
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SECTION 11

Egyptian Fractions

Scholars of ancient Egypt (about 3000 B.C.) were very practi-
cal in their approaches to mathematics and always sought an-
swers to problems that would be of most convenience to the 
people involved. This led them to a curious approach to think-
ing about fractions.

Example 10.1 (Egyptian fractions for 7 ). Consider the prob-
lem: Share 7 pies among 12 kids. Of course, given our model 

for fractions, each child is to receive the quantity “
7
12

” But this 

answer has little intuitive feel.

 Suppose we took this task as a very practical problem. 
Here are the seven pies:

 Is it possible to give each of the kids a whole pie? No.

 How about the next best thing — can each child get half a 
pie? Yes! There are certainly 12 half pies to dole out. There is 
also one pie left over yet to be shared among the 12 kids. Di-
vide this into twelfths and hand each kid an extra piece.

So each child gets 
1
2

+
1
12

 of a pie, and it is indeed true that 

7
12

=
1
2

+
1
12

.

(Check that calculation. . . don’t just believe it!)
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 The Egyptians (probably) were not particularly con-
cerned with splitting up pies. But in fact, they did have a very 
strange (to us) way of expressing fractions. We know this by 
examining the Rhind Papyrus. This ancient document indi-
cates that fractions were in use as many as four thousand 
years ago in Egypt, but the Egyptians seem to have worked pri-
marily with unit fractions. They insisted on writing all of their 
fractions as sums of fractions with numerators equal to 1, and 
they insisted that the denominators of the fractions were all 
different.

Think/Pair/Share.

(1) How do you think the Egyptians might have shared five 
pies among six children?

(2) How would they have shared seven pies among 12 kids?
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Rhind Mathematical Papyrus.

"Accurate reckoning for inquiring into things, and 
the knowledge of all things, mysteries...all secrets.”

 The Rhind Papyrus is an ancient account of Egyptian 
mathematics named after Alexander Henry Rhind.  Rhind 
was a Scotsman who acquired the ancient papyrus in 1858 
in Luxor, Egypt.
 The papyrus dates back to around 1650 B.C.  It was 
copied by a scribe named Ahmes (portrayed in the picture 
to the right) from a lost text written during 
the reign of king Amenehat III.  The opening 
quote is taken from Ahmes introduction to 
the Rhind Papyrus.  The papyrus covers top-
ics relating to fractions, volume, area, pyra-
mids, and more.



Example 10.2 (Egyptian fractions). The Egyptians would not 

write 
3
10

, and they would not even write 
1
10

+
1
10

+
1
10

.  In-

stead, they wrote 

1
4

+
1
20

.

 The Egyptians would not write 
5
7

, and they would not 

even write 
1
7

+
1
7

+
1
7

+
1
7

+
1
7

. Instead, they wrote

1
2

+
1
5

+
1

70
.

(You should check that the sums above give the correct result-
ing fractions!)
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Problem 34 ( 2
n ). Write the following as a sum of two differ-

ent unit fractions. Be sure to check your answers.

2
3

,
2
9

,
2
15

,
2
25

.

Can you express this process as a general algorithm?

Problem 35 (Fractions bigger than 
1
2

). Write the following 

as a sum of distinct unit fractions. (“Distinct” means the frac-
tions must have different denominators.) Note that you may 
need to use more than two unit fractions in some of the sums. 
Be sure to check your answers.

3
4

,
5
6

,
3
5

,
5
9

.

Can you express this process as a general algorithm?

Problem 36 (Challenges). Write the following fractions as 
Egyptian fractions. 

17
20

,
3
7

.

Can you find a general algorithm that will turn any fraction at 
all into an Egyptian fraction?



SECTION 12

Algebra Connections

In an advanced algebra course students are often asked to 
work with complicated expressions like:

1
x + 1

3
x

We can make it look friendlier by following exactly the same 
technique of the previous section. In this example, let us multi-
ply the numerator and denominator each by x. (Do you see 
why this is a good choice?) We obtain:

( 1
x + 1) ⋅ x

( 1
x ) ⋅ x

=
1 + x

3
,  

and 
1 + x

3
 is much less scary.

Example 11.1. As another example, given: 

1
a − 1

b

ab
,

one might find it helpful to multiply the numerator and the de-
nominator each by a and then each by b:

( 1
a − 1

b ) ⋅ a ⋅ b

(ab) ⋅ a ⋅ b
=

b − a
a2b2

.

Example 11.2. For

1
(w + 1)2 − 2

1
(w + 1)2 + 5

,

it might be good to multiply top and bottom each by (w + 1)2. 
(Why?)

( 1
(w + 1)2 − 2) ⋅ (w + 1)2

( 1
(w + 1)2 + 5) ⋅ (w + 1)2

=
1 − 2(w + 1)2

1 + 5(w + 1)2
.
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On Your Own. Can you make each of these expressions look 
less scary?

2 − 1
x

1 + 1
x

,
1

x + h
+ 3

1
x + h

,
1

1
a + 1

b

,
1

x + a − 1
x

a
.
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SECTION 13

What is a Fraction? Part 3

So far, we have no single model that makes sense of fractions 
in all contexts. Sometimes a fraction is an action (“Cut this in 
half.”) Sometimes it is a quantity (“We each get 2/3 of a pie!”) 
And sometimes we want to treat fractions like numbers, like 
ticks on the number line in-between whole numbers.

 We could say that a fraction is just a pair of numbers a 
and b, where we require that b ≠ 0. We just happen to write 
the pair as 

a
b

.

 But again this is not quite right, since a whole infinite col-
lection of pairs of numbers represent the same fraction! For 
example:

2
3

=
4
6

=
6
9

=
8
12

= ….

So a single fraction is actually a whole infinite class of pairs of 
numbers that we consider “equivalent.”

 How do mathematicians think about fractions? Well, in 
exactly this way. They think of pairs of numbers written as 

a
b

, 

where we remember two important facts:

• b ≠ 0, and

•  
a
b

 is really shorthand for a whole infinite class of pairs that 

look like 
xa
xb

 for all x ≠ 0.

This is a hefty shift of thinking: The notion of a “number” has 
changed from being a specific combination of symbols to a 
whole class of combinations of symbols that are deemed 
equivalent.

 Mathematicians then define the addition of fractions to 
be given by the daunting rule:

a
b

+
c
d

=
ad + bc

bd
.

This is obviously motivated by something like the “Pies Per 
Child Model.” But if we just define things this way, we must 
worry about proving that choosing different representations 
for 

a
b

 and 
c
d

 lead to the same final answer. 

 For example, it is not immediately obvious that

2
3

+
4
5
 and 

4
6

+
40
50

give answers that are equivalent. (Check that they do!) 
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 They also define the product of fractions as:

a
b

⋅
c
d

=
ac
bd

.

Again, if we start from here, we have to prove that all is consis-
tent with different choices of representations.

 Then mathematicians establish that the axioms of an 
arithmetic system hold with these definitions and carry on 
from there! (That is, they check that addition and multiplica-
tion are both commutative and associative, that the distribu-
tive law holds, that all representations of 0 act like an additive 
identity, and so on. . . )

 This is abstract, dry and not at all the best first encounter 
to offer students on the topic of fractions. And, moreover, this 
approach completely avoids the question as to what a fraction 
really means in the “real world.” But it is the best one can do if 
one is to be completely honest.

 The definitions are certainly motivated by the type of 
work we did in this chapter, but in the end one cannot explain 
why these rules are the way they are.
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Think/Pair/Share.  So. . . what is a fraction, really? How do 
you think about them? And what is the best way to talk about 
them with elementary school students?


