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Motivated by a neuroscience question about synchrony detection in spike
train analysis, we deal with the independence testing problem for point pro-
cesses. We introduce nonparametric test statistics, which are rescaled general
U -statistics, whose corresponding critical values are constructed from boot-
strap and randomization/permutation approaches, making as few assumptions
as possible on the underlying distribution of the point processes. We derive
general consistency results for the bootstrap and for the permutation w.r.t.
Wasserstein’s metric, which induces weak convergence as well as conver-
gence of second-order moments. The obtained bootstrap or permutation in-
dependence tests are thus proved to be asymptotically of the prescribed size,
and to be consistent against any reasonable alternative. A simulation study
is performed to illustrate the derived theoretical results, and to compare the
performance of our new tests with existing ones in the neuroscientific litera-
ture.

1. Introduction. Inspired by neuroscience problems, the present work is de-
voted to independence tests for point processes. The question of testing whether
two random variables are independent is of course largely encountered in the sta-
tistical literature, as it is one of the central goals of data analysis. From the histor-
ical Pearson’s chi-square test of independence (see [49, 50]) to the modern test of
[27] using kernel methods in the spirit of statistical learning, many nonparamet-
ric independence tests have been developed for real valued random variables or
even random vectors. Among them, of particular interest are the tests based on the
randomization/permutation principle introduced by Fisher [23], and covered there-
after in the series of papers by Pitman [55, 56], Scheffe [66], Hoeffding [37], for
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instance, or bootstrap approaches derived from Efron’s [21] “naive” one. Note that
permutation and bootstrap-based tests have a long history of applications, of which
independence tests are just a very small part (see, e.g., [22, 52, 61, 62] for some
reviews, or [3, 24, 41, 43, 44] for more recent works). Focusing on independence
tests, two families of permutation or bootstrap-based tests may be distinguished
at least: the whole family of rank tests including the tests of Hotelling and Pabst
[39], Kendall [42], Wolfowitz [72] or Hoeffding [35] on the one hand, the fam-
ily of Kolmogorov—Smirnov type tests, like Blum, Kiefer and Rosenblatt’s [11],
Romano’s [62] or van der Vaart and Wellner’s [70] ones on the other hand.

To describe the properties of these tests, let us recall and fix a few definitions,
which are furthermore used throughout this article. Tests are said to be nonpara-
metric if they are free from the underlying distribution of the observed variables.
For any prescribed o in (0, 1), tests are said to be exactly of level « if their first
kind error rate is less than or equal to o whatever the number of observations.
This is a nonasymptotic property. Tests are also said to be asymptotically of size
« if their first kind error rate tends to @ when the number of observations tends to
infinity. They are said to be consistent against some alternative if, under this alter-
native, their second kind error rate tends to O or equivalently their power tends to 1,
when the number of observations tends to infinity. Finally, bootstrap refers here to
bootstrap with replacement. It is thus different from permutation, which appears
sometimes in the literature as bootstrap without replacement. In this respect, the
above mentioned tests of independence are all nonparametric and asymptotically
of the prescribed size. Moreover, the tests based on permutation are exactly of the
desired level. Some of these tests are proved to be consistent against many alterna-
tives, such as Hoeffding’s [35] one and the family of Kolmogorov—Smirnov type
tests.

Detecting dependence is also a fundamental old point in the neuroscientific lit-
erature (see, e.g., [26]). The neuroscience problem we were initially interested in
consists in detecting interactions between occurrences of action potentials on two
different neurons simultaneously recorded on n independent trials, as described
in [29]. Each recorded set of time occurrences of action potentials for each neu-
ron is usually referred to as a spike train, the spikes being the time occurrences
themselves. It is commonly accepted that these spikes are one of the main com-
ponents of the brain activity (see [68]). So, when observing two spike trains com-
ing from two different neurons, one of the main elementary problem is to assess
whether these two spike trains are independent or not. Unfortunately, even if the
real recordings of spike trains are discretized in time, and thus belong to finite
dimensional spaces, due to the record resolution, the dimension of these spaces
is so huge (from ten thousand up to one million) that it is neither realistic nor
reasonable to model them by finite dimensional variables, and to apply usual inde-
pendence tests. Several methods, such as the classical Unitary Events method (see
[29] and the references therein), consist in binning the spike trains at first in order
to deal with vectorial data with reduced dimension. However, it has been shown
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that these dimension reduction methods involve an information loss of more than
60% in some cases, making this kind of preprocessing quite proscribed despite its
simplicity of use. It is therefore more realistic and reasonable to model recordings
of spike trains by finite point processes, and to use independence tests specifically
dedicated to such point processes. Asymptotic tests of independence between point
processes have already been introduced in [69], but in the particular case of homo-
geneous Poisson processes. Such a parametric framework is necessarily restrictive
and even possibly inappropriate here, as the very existence of any precise under-
lying distribution for the point processes modelling spike train data is subject to
broad debate (see [57, 58]). We thus focus on nonparametric tests of independence
for point processes. In this spirit, particular bootstrap methods under the name of
trial-shuffling have been proposed in [53, 54] for binned data with relatively small
dimension, without proper mathematical justification. Besides the loss of informa-
tion that the binning data pre-processing involves, it appears that the test statistics
chosen in these papers do not lead to tests of asymptotic prescribed size as shown
by our simulation study.

We here propose to construct new nonparametric tests of independence between
two point processes, from the observation of n independent copies of these point
processes, with as few assumptions as possible on their underlying distributions.
Our test statistics are based on U-statistics (see [67], Chapter 5, for a key refer-
ence on U-statistics). The corresponding critical values are obtained from boot-
strap or permutation approaches. It has been acknowledged that when both boot-
strap and permutation approaches are available, permutation should be preferred,
since the corresponding tests are exactly of the desired level ([22], page 218).
Nevertheless, we keep investigating them together, as bootstrap methods—through
trial-shuffling—are the usual references in neuroscience. Moreover, for specific U -
statistics, the corresponding tests share the same properties: both are proved to be
asymptotically of the prescribed size and consistent against any reasonable alter-
native, despite the fact that different tools are used to obtain these results. Indeed,
the distance between the bootstrapped distribution and the initial distribution under
independence is here directly studied for the bootstrap approach, unlike the permu-
tation approach. Finally, both procedures have good performance in practice when
the sample size is moderate to small, as is often the case in neuroscience due to
biological or economical reasons.

As U-statistics are usual tools for nonparametric statistical inference, many
works deal with the application of bootstrap or permutation to U -statistics. From
the original work of Arvesen [8] about the jackknife of U -statistics, to the recent
one of Leucht and Neumann [45], several papers [4, 9, 15, 18] have been devoted
to the general problem of bootstrapping a U -statistic. The use of bootstrap or per-
mutation of U-statistics is specially considered in testing problems [16, 38], in
particular in dependence detection problems with the Kolmogorov—Smirnov type
tests cited above [62, 70].
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But all those works exclusively focus on U -statistics of i.i.d. real valued ran-
dom variables or vectors. To our knowledge, there is no previous work on the
bootstrap or permutation of general U -statistics for i.i.d. pairs of point processes,
as considered in the present paper. The main difficulty thus lies in the nature of the
mathematical objects we handle here, that is, point processes and their associated
point measures which are random measures. The proofs of our results, although
inspired by Romano’s [60, 62] work and Hoeffding’s [37] precursor results on the
permutation, are therefore more technical and complex on many aspects detailed in
the sequel. In addition, we aim at obtaining the asymptotic distribution of the boot-
strapped or permuted test statistics under independence, but also under dependence
(see Theorems 3.1 and 4.1). Concerning the permutation approach, such a result
is, as far as we know, new even for more classical settings than point processes. It
thus partially solves a problem stated as an open question in [70].

This paper is organized as follows.

We first present in Section 2 the testing problem, and introduce the main nota-
tion. Starting from existing works in neuroscience, we introduce our test statistics
based on general kernel-based U -statistics.

Section 3 is devoted to our bootstrap approach and new general results about
the consistency of the bootstrap for the considered U -statistics, expressed in terms
of Wasserstein’s metric as in [9]. The convergence is studied under independence
as well as under dependence. The corresponding bootstrap independence tests are
therefore shown to be asymptotically of the desired size, and consistent against any
reasonable alternative. The impact of using Monte Carlo methods to approximate
the bootstrap quantiles is also investigated in this section.

Section 4 is devoted to the permutation approach which leads, by nature, to
nonparametric independence tests exactly of the desired level, and this, even when
a Monte Carlo method is used to approximate the permutation quantiles. We then
give new general results about the consistency of the permutation approach when
the kernel of the U -statistic has a specific form. These results are still expressed in
terms of Wasserstein’s metric. As a consequence, the corresponding permutation
independence tests are proved to satisfy the same asymptotic properties as the
bootstrap ones under the null hypothesis as well as under the same alternatives.

As a comparison of the performance of our tests with existing ones in neuro-
science, especially when the sample sizes are moderate or even small, a simulation
study is presented in Section 5.

A conclusion is given in the last section.

Finally, all proofs and some additional technical results can be found in the
supplementary material [2].

2. From neuroscience interpretations to general test statistics.

2.1. The testing problem. Throughout this article, we consider finite point pro-
cesses defined on a probability space (€2, A, IP) and observed on [0, 1], that is, ran-
dom point processes on [0, 1] whose total number of points is almost surely finite
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(see [17], e.g.). Typically, in a neuroscience framework, such finite point processes
may represent spike trains recorded on a given finite interval of time, and rescaled
so that their values may be assumed to belong to [0, 1]. The set X of all their pos-
sible values consists of the countable subsets of [0, 1]. It is equipped with a metric
dy that we introduce in (3.3). This metric, issued from the Skorohod topology,
makes X separable and allows us to define accordingly Borelian sets on X and by
extension on X2 through the product metric.

The point measure d N, associated with an element x of X is defined for all
measurable real-valued function f by f[o,l] fWw)dNy(u) =, f(u). In par-
ticular, the total number of points of x, denoted by #x, is equal to f[o,l] dNy(u).
Moreover, for a finite point process X defined on (2, A, P) and observed on [0, 1],
[ f(u)dNx(u) becomes a real random variable, defined on the same probability
space (2, A, P).

A pair X = (X 1 X2) of finite point processes defined on (2, .4, P) and ob-
served on [0, 1], has joint distribution P, with marginals P! and P?if P(B) =
P(X € B), P'(B") =P(X' € B"), and P2(B?) = P(X? € B?), for every Borelian
set B of X2, and all Borelian sets B!, B2 of X.

Given the observation of an i.i.d. sample X, = (X1, ..., X,) from the same
distribution P as X, with X; = (Xil, Xl.z) foreveryi =1,...,n, we aim at testing
(Hp) X' and X? are independent against (H;) X I and X? are not independent,
which can also be written as

(Hy) P=P' ® P*> against (H)) P+ P'® P

2.2. Independence test based on coincidences in neuroscience. In the neu-
roscience issue which initially motivated this work, the ii.d. sample X, =
(X1, ..., Xn) models pairs of rescaled spike trains issued from two distinct and
simultaneously recorded neurons during » trials. Those data are usually recorded
on living animals that are repeatedly subject to the same stimulus or that are re-
peatedly executing the same task. Because there are periods of rest between the
records, it is commonly admitted that the n trials are i.i.d. and that the consid-
ered i.i.d. sample model is actually realistic. Then the main dependence feature
that needs to be detected between both neurons corresponds to synchronization in
time, referred to as coincidences [29]. More precisely, neuroscientists expect to
detect if such coincidences occur significantly, that is more than what may be due
to chance. They speak in this case of a detected synchrony.

In [69], the notion of coincidence count between two point processes X' and
X? with delay 8 (8 > 0) is defined by

(2.1) <p§°i“°(X1,X2)=/ L= ANy AN (@) = Y Lju—yjzs.
0.1] ueX! vex?

Notice that other coincidence count functions have been used in the neuro-
science literature such as the binned coincidence count function (i.e., based on
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binned data) introduced in [28] or its shifted version [30] (see also [69] for explicit
formulae). A further example of possible function used to detect dependence in
neuroscience (see [65]) is of the form

(2.2) eV (X!, X?) = /[0 " w(u, v) dNy1 () dNx2 (v).

Under the assumption that both X' and X2 are homogeneous Poisson pro-
cesses, the independence test of [69] rejects (Hp) when a test statistic based on

" gseine(x!, X?2) is larger than a given critical value. This critical value is de-
duced from the asymptotic Gaussian distribution of the test statistic under (Hp).
The test is proved to be asymptotically of the desired size, but only under the ho-
mogeneous Poisson processes assumption. However, it is now well known that
this assumption, as well as many other model assumptions, fails to be satisfied in

practice for spike trains (see [57, 58]).

2.3. General U-statistics as independence test statistics. In the parametric ho-
mogeneous Poisson framework of [69], the expectation of ¢§*"°(X 1_1’ X iz) has a
simple expression as a function of § and the intensities A; and A» of X! and X2.
Since A1 and A, can be easily estimated, an estimator of this expectation can thus
be obtained using the plug-in principle, and subtracted from (pg"inc (X 11’ X 1.2) to lead
to a test statistic with a centered asymptotic distribution under (Hp).

In the present nonparametric framework where we want to make as few assump-
tions as possible on the point processes X' and X2, such a centering plug-in tool
is not available. We propose using instead a self-centering trick, which amounts,
combined with a rescaling step, to the statistic

1 . .
e o T XD - X))
ii'e{l,....n}

It is clear that the function gogomc used in [69] suits the dependence feature the neu-

roscientists expect to detect in a spike train analysis. However, it is not necessarily
the best choice for other kinds of dependence features to be detected in a general
point processes analysis. Note furthermore that the statistic (2.3) can be written as
a U-statistic of the i.i.d. sample X, = (X1, ..., X;) with a symmetric kernel, as
defined by Hoeffding [34].

Let us therefore consider the general independence test statistics which are U -
statistics of the form

(2.4) Unn () = —— Yo h(Xi X,

where 4 : (X?)? — R is a symmetric kernel such that

For all n > 2, Uy j(X,) is zero mean under (Hp),
(Acent) that is, for X; and X», i.i.d. with distribution P! ® P% on X2,
E[h(X1, X2)]=0.
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In the sequel, we call Coincidence case the case where h = h gEome s with

h comc(x y) ( COIHC( 1’x2)+¢§OiHC(y1’ yz)

(2.5) |
_ (pSCOIHC(x , y ) g00011’1C(y x ))
so that Uy, p, pine (X},) is equal to the statistic (2.3).

A more general choice, which of course includes the above Coincidence case,
is obtained by replacing ¢5°""° by any generic integrable function ¢. This is the
Linear case. For any integrable function ¢, the kernel 4 is then taken equal to A,
with

26)  he(r, ) =3(p(x", ¥ + oy, y?) =o', y) — o', x?).

This example is of utmost importance in the present work since it provides a first
proved case of consistency for the permutation approach under the null hypothesis
as well as under the alternative (see Theorem 4.1). In this case, note that (Acent)
is straightforwardly satisfied, that is, Uy, j p (X,,) is zero mean under (Hp). Note
furthermore that U, P (X,,) is an unbiased estimator of

f o(x!, x2)(dP(x", x?) — dP' (x") dP2(x?)),

without any assumption on the underlying point processes. This is therefore a
reasonable independence test statistic. If X! and X? were finite dimensional
variables with continuous distributions w.r.t. the Lebesgue measure, this test
statistic would be closely related to generalized Kolmogorov—Smirnov tests
of independence. For instance, the test statistics of Blum, Kiefer and Rosen-
blatt [11], Romano [62], van der Vaart and Wellner in [70] are equivalent to
Vsup,icyt 22 Uy, hogt 2, (X,,)|, where, respectively:

o VI=V2=Rand ¢, 2!, x%) =1;_o yiy(xH 1o 2 (x?),

e V! and V? are countable V.-C. classes of subsets of R¢, and (p(vu’vz)(xl,xz) =
1,0 (xH1,2(x?),

e V' and V? are well-chosen classes of real-valued functions, and
(p(vl’vz)(xl,xz) =vl (xHv?(x?).

Note also the work of [46] based on integrals instead of the supremum of similar

1,1

ivx H)X

quantities with ¢,1 ,2) L x?)=e e . Thus, to our knowledge, the existing
test statistics are based on functions ¢ of product type. However, as seen in Sec-
tion 2.2, when dealing with point processes, natural functions ¢, as for instance

coinc

@5, are not of this type.
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2.4. Nondegeneracy of the U -statistics under (Hy). Following the works of
Romano [62] or van der Vaart and Wellner [70], the tests we propose here are based
on bootstrap and permutation approaches for the above general U -statistics. Most
of the assumptions on / depend on the chosen method (permutation or bootstrap)
and are postponed to the corresponding section. However, another assumption is
common, besides (Acent):

For all n > 2, U, (X,) is nondegenerate under (Hp),
(Anondeg) that is, for all X; and X», i.i.d. with distribution P! ® P? on A2,
Var(E[A(X1, X2)|X1]) #O0.

This assumption is needed in all results with weak convergence to a Gaussian
limit, as its variance has to be strictly positive (see, e.g., Proposition 3.5 or Theo-
rem 4.1). Since under (Hp), Uy 1 (X,) is assumed to have zero mean, it is degen-
erate under (Hp) if and only if for X with distribution P! ® P2 and for P! ® P2-
almost every x in X2 E[h(x, X)]=0.

In the Linear case, this condition implies a very particular link between ¢ and
the distribution of the bivariate point process X, which is unknown. The following
result gives some basic condition to fulfill (Apondeg) When ¢ is the coincidence
count function.

PROPOSITION 2.1.  If the empty set is charged by the marginals, that is, if
P'{@}) > 0 and P2({@)}) > 0 and if 52" (X1, X2) [see (2.1)] is not almost
surely null under (Hy), then when h is given by (2.5), (Anondeg) is satisfied.

The proof can be found in the supplementary material [2] together with a more
informal discussion on the Linear case with ¢ = ¢" as given by (2.2).

With respect to neuronal data, assuming that the processes may be empty is
an obvious assumption as there often exist trials (usually short) where, just by
chance, no spikes have been detected. Moreover, practitioners usually choose
8 large enough such that coincidences are observed in practice and, therefore,
(pg"inc (X1, X») is not almost surely null. Hence, in practice, the nondegeneracy
assumption is always satisfied in the Coincidence case.

Throughout this article, (X;); denotes a sequence of i.i.d. pairs of point pro-
cesses, with X; = (X l.l, Xl.z) of distribution P on X2, whose marginals are P! and
P?on X.Forn>2,letX, = (X1,..., X,) and U, 5 (X,) as in (2.4), with a fixed
measurable symmetric kernel & satisfying (Acent). To shorten mathematical ex-
pression, U, (X,,) refers from now on to U, ,(X,).

3. Bootstrap tests of independence. Since the distribution of the test statistic
U,(X,) is not free from the unknown underlying marginal distributions P! and P2
under the null hypothesis (Hp), we turn to a classical bootstrap approach, which
aims at mimicking it, for large, but also moderate or small sample sizes.

To describe this bootstrap approach, and to properly state our results, we give
below additional notation and discuss the main assumptions.
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3.1. Additional notation: Bootstrap and convergence formalism. For j in
{1,2}, let P be the empirical marginal distribution defined by

1
3.1) P"J:Z.ZSX;’"
i=1
A bootstrap sample from X,, is denoted by X} = (X, |,..., X; ,), with X7, =

(X;k}i, X:?i), and is defined as an n i.i.d. sample from the distribution P! ® P2
Then, the bootstrap distribution of interest is the conditional distribution of
VnU,(X*) given X, to be compared with the initial distribution of /nU, (X,)
under (Hp). To state our convergence results as concisely as possible, we use the

following classical formalism:

e For any functional Z : (X?)* — R, £(Z, Q) denotes the distribution of Z(Y,,),
where Y, is an i.i.d. sample from the distribution Q on X2. In particular, the
distribution of /nU, (X,,) under (Hp) is denoted by £L(/nU,, P' ® P?).

e If the distribution Q = Q(W) depends on a random variable W, L(Z, Q|W) is
the conditional distribution of Z(Y}), Y,, being an i.i.d. sample from the distri-
bution Q = Q(W), given W.

In particular, the conditional distribution of /nU, (X}) given X, is denoted
by L(v/nUy,, P} ® P?X,).

e “Q-a.s.in (X;);” at the end of a statement means that the statement only depends
on the sequence (X;);, where the X;’s are i.i.d. with distribution Q, and that
there exists an event C only depending on (X;); such that P(C) = 1, on which
the statement is true. Here, Q is usually equal to P.

e “0, =+> Q” means that the sequence of distributions (Q,), converges to-
n— 00

wards Q in the weak sense, that is for any real valued, continuous and bounded

function g, [ g(z2)d Q, (Z)n_)—+>oo / 2(2)d0(2).
e As usual, E*[-] stands for the conditional expectation given X,,.

One of the aims of this work is to prove that the conditional distribution
L(/nU,, P} ® P?|X,) is asymptotically close to L(/nU,, P! ® P?). Follow-
ing the historical paper by Bickel and Freedman [9], the closeness between these
two distributions, which are both distributions on R, is here measured via the I.2-
Wasserstein’s metric (also called Mallows’ metric):

(3.2) d3(Q. Q) =inf(E[(Z — Z')*]. (Z. Z') with marginals Q and Q'},

for all the distributions Q, Q' with finite second-order moments. Recall that con-
vergence w.r.t. dy is equivalent to both weak convergence and convergence of
second-order moments.
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3.2. Main assumptions. The random variables we deal with are not real-
valued variables but point processes, so the assumptions needed in our results may
be difficult to interpret in this setting. We therefore devote this whole section to
their description and discussion.

In addition to Assumption (Acent), we need its following empirical version:

(A* ) Forxl=(x11,x]2),...,xn=(x,£,x,%) in X2,
Cent n 1 2 1 2\ —
i1ig.il i} =1 h((x;,, x7)), (xi; g xié)) =0.

Notice that this assumption, as well as (Acent), is fulfilled in the Linear case where
h is of the form h,, given by (2.6), but (A¢,,,,) does not imply that / is of the form
hy, (see the supplementary material [2] for a counterexample).

Moment assumptions. Due to the L2-Wasserstein’s metric used here to study
the consistency of the bootstrap approach, moment assumptions are required. In
particular, the variance of U, (X,,) should exist, that is,

For X; and X», i.i.d. with distribution P on X2,

(Avmd) g2 x, X)) < +oo,

and more generally we need

For X1, X2, X3, X4 i.i.d. with distribution P on X2,
(Ak i) and for iy, ip, i],i5in {1,2, 3,4},
EIR* (X}, X7, (Xj. X)) < oo,

Notice that when (Agy,,,) is satisfied, this implies that:

o (Amm) is satisfied (taking i1 = i2, i} =i}, and i| # i1),

e for X ~ P, E[h*(X, X)] < 400 (taking i} = i» = i| = i}),

e for X, X, i.id. with distribution P! ® P2, E[h%(X;, X2)] < +00 (taking
i1,12, 1}, 15 all different).

A sufficient condition for (Afy,,) and (Amm¢) to be satisfied is that there exist
positive constants &g, az, C such that for every x = (x!, x?), y = (!, y?) in X2,
|h(x, y)| < C((#xH + #yhHo) ((Hx?)%2 + (#y?)*2), with E[(#X)*1] < 400
and E[(#X?)*2] < 4o0.

In the Linear case where h is of the form h, given by (2.6), a possible sufficient
condition is that there exist some positive constants oy, ap and C such that for
every x!, x% in X, |p(x!, x?)| < C#xH #x?)*2, with E[#X)*1] < 400 and
E[(#X?)*2] < 400. In particular, in the Coincidence case, the coincidence count
function (pgomc satisfies: for every x!, x2 in X, |<p§°i“°(xl,x2)| < (#x1)(#x?). So,
(Aymo) and (Amme) are satisfied as soon as E[#X1)*] < 400 and E[(#X?)*] <
+o00.
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Such moment bounds for the total number of points of the processes are in fact
satisfied by many kinds of point processes: discretized point processes at resolu-
tion 0 < r < 1 (see [69] for a definition), which have at most 1/ points, Poisson
processes, whose total number of points obeys a Poisson distribution having expo-
nential moments of any order and point processes with bounded conditional inten-
sities, which can be constructed by thinning homogeneous Poisson processes (see
[48]). Similar moment bounds can also be obtained (see [32]) for linear station-
ary Hawkes processes with positive interaction functions that are classical models
in spike train analysis (see, e.g., [51, 69]). This finally may be extended to point
processes whose conditional intensities are upper bounded by intensities of linear
stationary Hawkes processes with positive interaction functions, by thinning argu-
ments. This includes more general Hawkes processes (see [14]) and in particular
Hawkes processes used to model inhibition in spike train analysis (see [32, 58, 59,
69]).

Continuity of the kernel. The set X’ can be embedded in the space D of cadlag
functions on [0, 1] through the identification

1
N:xeXr— (Nx:t|—>/ ]lufthx(u))ED.
0

Notice that the quantity N is actually the counting process associated with x (see
[13], e.g.): at time ¢, N (¢) is the number of points of x less than . Now consider
the uniform Skorohod topology on D (see [10]), associated with the metric dp
defined by

sup |A(t) —t| <e,
t€l0,1]

sup [f(A(1) —g(D)| <e
t€l0,1]

dp(f,g)=inf{e>0;3IX € A,

where A is the set of strictly increasing, continuous mappings of [0, 1] onto itself.
Notice that here, A represents a uniformly small deformation of the time scale.
Thanks to the identification N above, X can then be endowed with the topology
induced by dy defined on X by

(3.3) dy(x,x")=dp(N(x), N(x")) for every x, x’"in X.

As an illustration, if x and x’ are in X, for ¢ in (0, 1), dx(x, x") < & implies that x
and x” have the same cardinality, and for k in {1, ..., #x}, the kth point of x is at
distance less than ¢ from the kth point of x’. Since (D, dp) is a separable metric
space, so are (X, dy), (X 2 d ¥2), where d 2 is the product metric defined from
dx (see [19], page 32), and (X 2 x X2,d), where d, the product metric defined
from d -, is given by

(G4 d((x,y), (', y)) = sup[ .su]pz{d;g(xj, x)}, .su]pz{d;g(yj, y’j)}],
j=1, j=1,
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for every x = (x!,x2), y = (b1, y?), ¥’ = 1, x?), ¥y = ('', y’?) in X2. The
kernel & chosen to define the U -statistic U, (X,,) in (2.4) should satisfy

There exists a subset C of X2 x X2, such that
(Acont) (i) h is continuous on C for the topology induced by d,
(i) (P! ® PH)®(C) = 1.

Here are some examples in the Linear case for which (Acon¢) holds.

PROPOSITION 3.1. Let w: [0, 1]> = R be a continuous integrable function.
Then the kernel hyw defined on X 2% X2 by (2.2) and (2.6) is continuous w.r.t. the
topology induced by d, defined by (3.4).

The above result does not apply to & ggoine but the following one holds.

PROPOSITION 3.2. The coincidence count kernel h pgoine defined on X* x X?
by (2.1) and (2.6) is continuous w.r.t. the topology mduced by d, on

C5={((x1,x ),(y .y ))eszXz;
((upy'hn(? £sju{y* £5)) = 2.

As suggested in [69], when dealing with discretized point processes at resolu-
tion r, the right choice for § is kr + r/2 for an integer k, so (P1 ® P2)®2(C(3) =1,
and h ggoine satisfies (Acont). Furthermore, when dealing with independent point

(3.5)

processes with conditional intensities, those processes may be constructed by thin-
ning two independent Poisson processes X and X’. Hence, in this case, the proba-
bility (P! ® P?)®2 of Cs in (3.5) is larger than P(X N (X’ £ 8) = @), whose value
is 1. So when dealing with point processes with conditional intensities, / ggoine also
satisfies (Acont)-

3.3. Consistency of the bootstrap approach. The validity of the bootstrap ap-
proach for our independence tests is due to the following consistency result.

THEOREM 3.1. Foreveryn > 2, let Pnj for j = 1,2 be the empirical marginal
distributions defined by (3.1). Then, under (Acent), (A¢end)> (Anme) and (Acont)s

d (L(v/nU,, P ® P2IX,), L(v/nU,, Pl & PZ))H—+>00 0,  P-as.in(X;);.

The proof follows similar arguments to the ones of [9] for the bootstrap of the
mean, or to [18] and [45] for the bootstrap of U -statistics. The main novel point
here consists in using the identification (3.4) and the properties of the separable
Skorohod metric space (D, dp), where weak convergence of sample probability
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distributions is available (see [71]). This theorem derives in fact from the follow-
ing two propositions which may be useful in various frameworks. The first one
states a nonasymptotic result, while the second one gives rather natural results of
convergence.

PROPOSITION 3.3.  Under (Acent), (A¢en))» (A¥me)> With the notation of The-
orem 3.1, there exists an absolute constant C > 0 such that for n > 2,

d3(L(VnUy,, P! @ P2X,), L(v/nU,, P' ® P?))
< Cint[E*[(h(Y} 0. Yi) = h(Ya, Yp))'], Yy~ PY ® P2, Yy~ P! ® P2,

and (Y, ;. Yp) is an independent copy of (Y, ,. Y. )}

COMMENT. In the above proposition, the infimum is taken over all the possi-
ble distributions of (¥, a Y,) having the correct marginals (Y, Yp) being just an
independent copy of (¥’ ,, Y,). In particular, Y,’ , is not necessarily independent
of Y,.

n,a’

PROPOSITION 3.4. IfE[|h(X1, X2)|] < 400, then

U"(X")n—>—+>ooE[h(X1’ X2)] =/h(x, x")dP(x)dP(x'),

(3.6)
P-a.s.in (X;);.

Under (A}y,)» one moreover obtains that P-a.s. in (X;);,

Z R (X}, X3), (X}, XP)) —+>OOE[h2((X1,Xz) (X3, X2))]-
l]kl 1

3.4. Convergence of cumulative distribution functions (c.d.f.) and quantiles.
As usual, N (m, v) stands for the Gaussian distribution with mean m and vari-
ance v, ®,, , for its c.d.f. and d>,;}v for its quantile function. From the results of
Rubin and Vitale [64], generalizing Hoeffding’s [34] decomposition of nondegen-
erate U -statistics to the case where the X;’s are not necessarily real valued random
vectors, a central limit theorem for U, (X,,) can be easily derived. It is expressed
here using the I.>-Wasserstein’s metric, and is thus slightly stronger than the one
stated in equation (1.1) of [40].

PROPOSITION 3.5. Assume that h satisfies (Anondeg)s (Acent) and (Amme).
Let af,l P2 be defined by

(3.7) O pigpr =4 Var(E[A(X1, X2)|X1]),
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when X1 and X, are P! ® P2-distributed. Then

dy(L(VnUp. P! ® P?), N (0,051 p2)) —> 0.

n—+00

COMMENTS. (i) Notice that (Anondeg) is equivalent to 01231 op? > 0. In the
case where (.Anondeg) does not hold, that is, if 012)1 QP2 = 0, the quantity \/nU, (X,,)
tends in probability towards 0. In this case, Theorem 3.1 implies that the two dis-
tributions £(/nU,, P! ® P2|X,) and L(/nU,, P! ® P?) are not only close, but
that they are actually both tending to the Dirac mass in 0. Indeed, degenerate U -
statistics of order 2 have a faster rate of convergence than /n (see [5], e.g., for
explicit limit theorems). So in this degenerate case, one could not use /nU, (X},)
as a test statistic anymore (without changing the normalization). But as mentioned
above, (Anondeg) is usually satisfied in practice (see Section 2.4 for the Coinci-
dence case).

(i1) Let us introduce, as in [40], an estimator of o
rected to be unbiased under (Hp), namely

2 4
T Am—Dn—2). 2

i,j.ke{l,...n},#{i,j,k}=3

2

Plep? but which is here cor-

h(Xi, Xj)h(X;, Xp),

and the statistic

(38) Sn :\/EUn(Xn)/a_-

From Proposition 3.5 combined with Slutsky’s lemma and the law of large num-
bers for U -statistics of order 3, one easily derives that under (Hp), S, converges
in distribution to A/(0, 1). This leads to a rather simple but asymptotically sat-
isfactory test: the test which rejects (Hp) when [S,| > CD& i(l — «a/2) is indeed
asymptotically of size «. It is also consistent against any reasonable alternative P,
satisfying (Amm¢) and such that E[A(X, X")] # 0, for X, X’ i.i.d. with distribu-
tion P. Such a purely asymptotic test may of course suffer from a lack of power
when the sample size n is small or even moderate, which is typically the case for
the application in neuroscience described in Section 2 for biological reasons (from
few tens up to few hundreds at best). Though the bootstrap approach is mainly jus-
tified by asymptotic arguments, the simulation study presented in Section 5 shows
its efficiency in a nonasymptotic context, compared to this simpler test.

As Proposition 3.5 implies that the limit distribution of /nU, (X,,) has a contin-
uous c.d.f., the convergence of the conditional c.d.f. or quantiles of the considered
bootstrap distributions holds. Note that these conditional bootstrap distributions
are discrete, so the corresponding quantile functions are to be understood as the
generalized inverses of the cumulative distribution functions.
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COROLLARY 3.1. For n > 2, with the notation of Theorem 3.1, let X be a
bootstrap sample, that is, an i.i.d. n-sample from the distribution Pn1 ® Pnz. Let X,f
be another i.i.d. n-sample from the distribution P'® P2 on X2. Under (Anondeg)
and the assumptions of Theorem 3.1,

sup|P(vnU, (X*) < zIX,) — P(vVnU, (X)) <z)| — 0, P-as.in (X;);.
zeR n——+00
If moreover, for n in (0, 1), q,’;’ (X)) denotes the conditional n-quantile of
VnU,(X%) given X, and q#n denotes the n-quantile of \/nU,(X;H),

(3.9 |q;"n(Xn) — qin|n_)—+>oo 0, P-as. in (X;);.

3.5. Asymptotic properties of the bootstrap tests. We are interested in the
asymptotic behavior of sequences of tests all based on test statistics of the form
/nU,(X,). The bootstrap approach, whose consistency is studied above, allows
to define bootstrap-based critical values for these tests. Note that the permutation
approach studied in Section 4 is based on the same test statistics, but with critical
values obtained by permutation. Hence, we introduce here a condensed and com-
mon formalism for the upper-, lower- and two-tailed tests considered in this work,
taking into account that the only change in our two considered approaches con-
cerns the critical values. This will help to state our results in the shortest manner.

Let o be fixed in (0, 1), and g be a sequence of upper and lower critical values:

q= (q;—,n(xn)» q(;n(Xn))nzz-

From this sequence ¢, let us now define the family I"(q) of three sequences of tests
AY = (A, Dnz2. A7 = (Ay,Du=2. and A/~ = (AZ) )y=2, where

Ay nKn) =1 s, %)= (%) (upper-tailed test),
(3.10) { BanE) =1 iy, ) <gan(X0) (lower-tailed test),
Ao—;{; (X)) = max(A;/zﬁn (Xn), A(;/Z,n (Xn)) (two-tailed test),

the last test being implicitly defined by the corresponding choices in « /2.

Of course, ¢, ['(g), as well as AT, A~ and A*™/~, depend on the choice of «,
but since « is fixed at the beginning, to keep the notation as simple as possible,
this dependence is, like the one in &, omitted in the notation.

Depending on the choice of ¢, the classical asymptotic properties that can be
expected to be satisfied by I'(q) are (Psize) and (Peonsist.) defined by

Each A = (Ay n)n>2 in I'(q) is asymptotically of size «,
(Psize) that is, P(Aq,n(X,) =1) —> aif P=P'® P%
n——+0oQ
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Each A = (Agy.n)n>2 in I'(g) is consistent,
that is, P(Aq,»n (X)) =1) — 1, for every P such that
n——+00

(Peonsist.) o [h(x,x)dP(x)dP(x') > 0if A =A™,
o [h(x,x)dP(x)dP(x") <0if A=A",
o [h(x,x)dP(x)dP(x') #0if A=At/

Following Corollary 3.1, our bootstrap tests family is defined from (3.10) by
['(g*), with

(31 1) q* = (qik—o(’n(xn)a q;,n(XH))nzz

THEOREM 3.2. Let T'(g™*) be the family of tests defined by (3.10) and (3.11).
If (Anondeg)> (Acent)s (A¢ent)» (Apime) and (Acont) hold, then T (g*) satisfies both
(Psize) and (Peonsist.) -

COMMENTS. In the Linear case where h is equal to h, defined by (2.6),
[h(x,x)dPx)dP(x") = [ox!, x>)[dP(x', x?) — dP'(x")dP?>(x?)]. This
means that under the assumptions of Theorem 3.2, the two-tailed test of I'(¢*)
is consistent against any alternative such that [ o(x!, x¥) dP(x!, x?) differs from
what is expected under (Hp), that is, [ @(x!, x2)d P! (x!)d P?(x?).

(i) In particular, in the Coincidence case where h is equal to & ggoine defined

by (2.5), the assumptions of Theorem 3.2 are fulfilled for instance if X! and
X2 are discretized at resolution r, with § = kr + r/2 for some integer k, or if
X! and X? have bounded conditional intensities, with § large enough so that
(pg"inC(X 1. X?) is not a.s. null. Theorem 3.2 means in such cases that the corre-
sponding two-tailed test is asymptotically of power 1, for any alternative P such
that [ Ljy—u|<sE[dNy1(u) dNy2(v)] # f Ljy—uj<s E[dNy1 (u)]E[dNx2(v)]. Note
that no § ensuring this condition can be found if heuristically, the repartition of
the delays |v — u| between points of X "and X2 is the same under (Hy) and under
(Hyp). For neuroscientists, it means that the cross-correlogram (histogram of the
delays, classically represented as a first description of the data) does not show dif-
ferent behaviors in the dependent and independent cases. This would only occur if
the dependence could not be measured in terms of delay between points.

(i) Furthermore, when ¢ is equal to ¢ defined by (2.2) with a continuous
integrable function w (see Proposition 3.1), Theorem 3.2 means that the cor-
responding two-tailed test is consistent against any alternative such that 8,, =
Jw(u, v)(E[dNx1(u) dNx2(v)] — E[dNx1 (u)]E[dNx2(v)]) # 0. For the function
w chosen in [65] and under specific Poisson assumptions, B,, is linked to a co-
efficient in the Haar basis of the so-called interaction function, which measures
the dependence between both processes X' and X2. Working nonasymptotically,
one of the main results of [65] states, after reformulation in the present setting,
that if B,, is larger than an explicit lower bound, then the second kind error rate of
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the upper-tailed test is less than a prescribed g in (0, 1). Theorem 3.2 thus gener-
alizes the result of [65] to a set-up with much less reductive assumptions on the
underlying stochastic models, but in an asymptotic way.

Whereas the above family of bootstrap tests I'(¢*) involves an exact compu-
tation of the conditional quantiles g, ,(X,), in practice, these quantiles are ap-
proximated by a Monte Carlo method. More precisely, let (B,),>2 be a sequence
of possible numbers of Monte Carlo iterations, such that B,, —,_, 4~ +00. For
n>1, let (X,’;l, e XZB”) be B, independent bootstrap samples from X,. Set
U*t, ..., U*By = (U, (Xﬁl), ..Uy (XZB”)), and introduce its corresponding or-
der statistic (U*(, ..., U*Bn)). The considered family of Monte Carlo bootstrap
tests is then defined from (3.10) by I'(gy;c), with

(3.12) qf\k/IC — (\/EU*(r(l—a)BnU \/EU*(LOZB”J'H)) Y
9y n_ .

PROPOSITION 3.6. Let I'(qyyc) be the family of Monte Carlo bootstrap tests
defined by (3.10) and gy in (3.12). Under the same assumptions as in Theo-
rem 3.2, then I (qyyc) also satisfies both (Pgize) and (Peonsist.)-

4. Permutation tests of independence.

4.1. The permutation approach and its known nonasymptotic properties. Con-
sider a random permutation I, uniformly distributed on the set &,, of permuta-
tions of {1,...,n}, and independent of X,,. Then a permuted sample from X, is
defined by X,l;l” = (X}_[”, e X,l?”) with Xl-n” = (Xl.l, Xlz-[n(l.)). In the same formal-
ism as for the bootstrap approach, for n > 2 and 7 in (0, 1), let g5 ,(X,) denote
the n-quantile of £(/nU,, P;|X,), where P stands for the conditional distribu-
tion of X}? " given X,,. The family of permutation tests is then defined by I"(¢*)
[see (3.10)], with

(41) q* = (qf—o[Jz (Xn)’ q;,n(xn))nzz

As for the bootstrap approach, in practice, the sequence of quantiles ¢* is ap-
proximated by a Monte Carlo method. So, let (B,),>2 be a sequence of numbers

of Monte Carlo iterations, such that B, —+> +o00. Forn > 1, let (H,ll, e Hf”)
n— 100
be a sample of B, i.i.d. random permutations uniformly distributed on S,.

Set (U*,..., U*Bry = (U, (XI), ... Uy (XI")) and U*BrH! = U, (X,). the U-
statistic computed on the original sample X,,. The order statistic associated with
(U, ..., U*Bt1y s denoted as usual by (U*D, ..., U*B*tD) The considered
family of Monte Carlo permutation tests is then defined from (3.10) by I' (gy3;c)»
with

4.2) e = (\/EU*(F(lfa)(BnH)T)’ ﬁU*(La(BnJrl)Hl))

n>2"
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The main advantage of the above families of permutation tests is that any test
Aq,n from either I'(g*) or I'(gyyc) is exactly of the desired level «, that is,

(4.3) if P=P'® P2,  P(Ag.(X))=1)<a.

Such nonasymptotic results for the permutation tests are well known (see, e.g.,
[63], Lemma 1 and [52]). Though similar results are since recently available for
bootstrap tests in other settings [6, 7, 20, 25], there is no known exact counterpart
for the bootstrap in the present context.

4.2. Consistency of the permutation approach. In this section, we focus on
the Linear case where h is of the form h, for some integrable function ¢, as
defined in (2.6). Indeed, it is the most general case for which we are able to prove
a combinatorial central limit theorem under any alternative as well as under the
null hypothesis (Theorem 4.1). Hence in this section, U, refers to Uy j o Notice
that the centering assumption (Acen) is then always satisfied by U, (X,,). We here
only need the following moment assumption:

For (Xl, X2) with distribution P or P! ® P2 on XZ,

(Ag.Mmo) E[g* (X!, X?)] < o0.

Though we have no exact counterpart of Theorem 3.1 for our permutation ap-
proach, the following result combined with Proposition 3.5 gives a similar result.

THEOREM 4.1.  Forall n > 2, let P} be the conditional distribution of a per-
muted sample given X,,. In the Linear case where the kernel h is of the form (2.6)
for an integrable function ¢, under (Anondeg) and (Ay mmt), with the notation of
Section 3,

4.4) do(L(VUp, PYIXn), N(0, 021 p2)) —> 0,

n—+00

P . .y
where —> stands for the usual convergence in P-probability.

COMMENTS. As pointed out above, unlike the bootstrap approach, the condi-
tional permutation distribution of the test statistic is not here directly compared to
the initial distribution of the test statistic under the null hypothesis. It is in fact com-
pared to the Gaussian limit distribution of the test statistic under the null hypoth-
esis, when the nondegeneracy assumption (Apondeg) holds. Moreover, the conver-
gence occurs here in probability and not almost surely, but note that no continuity
assumption for the kernel 4, is used anymore. The price to pay is that the moment
assumption is stronger than the one used for the bootstrap. This assumption, due
to our choice to use an existing central limit theorem for martingale difference
arrays in the proof, is probably merely technical and maybe dispensable. Indeed,
the result of Theorem 4.1 is close to asymptotic results for permutation known as
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combinatorial central limit theorems [36, 52], where this kind of higher moment
assumption can be replaced by some Lindeberg conditions [31, 33, 47]. However,
all these existing results can only be applied directly in our case either when (X;);
is deterministic or under the null hypothesis. To our knowledge, no combinatorial
central limit theorem has been proved for nondeterministic and nonexchangeable
variables, like here under any alternative.

The above result is thus one of the newest results presented here and its scope is
well beyond the only generalization to the point processes setting. Indeed, because
it holds not only under (Hp) but also under (H1), it goes further than any existing
one for independence test statistics such as the ones of Romano [62]. The behavior
under (Hp) of the permuted test statistic of van der Vaart and Wellner was also left
as an open question in [70].

The proof is presented in the supplementary material [2].

From Theorem 4.1, we deduce the following corollary.

COROLLARY 4.1. Under the assumptions of Theorem 4.1 and with the nota-
tion of Proposition 3.5, for n in (0, 1),

. P _
gy Xn) — oL .

0,0
n—-400 plgp2

4.3. Asymptotic properties of the permutation tests. As for the bootstrap tests,
we obtain the following result.

THEOREM 4.2. Let I'(q*) and I'(qyyc) be the families of permutation and
Monte Carlo permutation tests defined by (3.10) combined with (4.1) and (4.2),
respectively. In the Linear case, if (Anondeg) and (Ay mme) hold, then T'(g*) and
F(Qf\(/[c) both satisfy (Psize) and (Peonsist.) -

S. Simulation study. In this section, we study our testing procedures from a
practical point of view, by giving estimations of the size and the power for various
underlying distributions that are coherent with real neuronal data. This allows to
verify the usability of these new methods in practice, and to compare them with
existing classical methods. A real data sets study and a more operational and com-
plete method for neuroscientists derived from the present ones is the subject of [1].
The programs have been optimized, parallelized in C++ and interfaced with R. The
code is available at https://github.com/ybouret/neuro-stat.

5.1. Presentation of the study. All along the study, % is taken equal to h ggoine

[see (2.5)], where <p§°i“° is defined in (2.1) and o = 0.05. We only present the
results for upper-tailed tests, but an analogous study has been performed for lower-
tailed tests with similar results. Five different testing procedures are compared.
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5.1.1. Testing procedures.

(CLT) Test based on the central limit theorem for U -statistics (see Proposi-
tion 3.5) which rejects (Hp) when the test statistic S, in (3.8) is larger than the
(1 — a)-quantile of the standard normal distribution.

(B) Monte Carlo bootstrap upper-tailed test of I"(gy;-) [(3.10) and (3.12)].
(P) Monte Carlo permutation upper-tailed test of I'(gy;c) [(3.10) and (4.2)].

(Ga) Upper-tailed tests introduced in [69], Definition 3, under the notation
AgAUE(a), based on a Gaussian approximation of the total number of coinci-
dences.

(TS) Trial-shuffling test based on a Monte Carlo approximation of the p-value
introduced in [53], equation (3), but adapted to the present notion of coincidences.
This test is the reference distribution-free method for neuroscientists. More pre-
cisely, let C(X,,) =7, (pgomc(X l.l, Xl.z) be the total number of coincidences of
X,;. The trial-shuffling method consists in uniformly drawing with replacement n
i.i.d. pairs of indices {(i*(k), j*(k))}1<k<n in {(i, j), 1 <i # j <n}, and consid-
ering the associated T'S-sample X,{S = (X il*(k), X?*(k)))lfkfn. The Monte Carlo
p-value is defined by ags = %Zle LexISt)scex,) where X151 XT5.8 are

B independent T'S-samples, and the test rejects (Hp) if ozgs < «. This procedure
is therefore close in spirit to our bootstrap procedure except that it is applied on a
noncentered quantity under (Hp), namely C(X,,).

The number B of steps in the Monte Carlo methods is taken equal to 10,000.

5.1.2. Simulated data. Various types of point processes are simulated here to
check the distribution-free character of our approaches and to investigate their lim-
its. Of course, each of the considered point processes satisfies the moment assump-
tions on the number of points so that the theorems in this article can be applied.
From now on and to be coherent with the neuroscience application which origi-
nally motivated this work, the point processes are simulated on [0, 0.1]. Indeed the
following experiments have been done to match neurophysiological parameters
[28, 69] and the classical necessary window for detection is usually.

Estimation of the size. The three data sets simulated under (Hy) consist of i.i.d.
samples of pairs of independent point processes. For simplicity, both processes
have the same distribution, though this is not required.

Exp. A. Homogeneous Poisson processes on [0, 0.1] with intensity A = 60.

Exp. B. Inhomogeneous Poisson processes with intensity f : ¢ € [0,0.1] — At
and A = 60.

Exp. C. Hawkes processes as detailed in [69], that is, point processes with con-
ditional intensity A(#) = max(0, u — fé V1o, (t — s)dNx(s)), for ¢ in [0, 0.1],
with spontaneous intensity u = 60, refractory period r = 0.001, and v > pu such
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that for all point 7 in X and ¢ in ]7T, T + r], A(¢) = 0. This choice of v prevents
two points to occur at a distance less than the refractory period r to reflect typical
neuronal behavior. This model is also sometimes called Poisson process with dead
time.

Study of the power. The three data sets simulated under (H;) are such that the
number of coincidences is larger than expected under (Hp). The models (injection
or Hawkes) are classical in neuroscience and already used in [29, 69].

Exp. D. Homogeneous injection model. X! = Xilml U Xcom and X2 = Xiznd U
Xecom»> X ilnd and X iznd being two independent homogeneous Poisson processes with
intensity Ajng = 54, Xcom being a common homogeneous Poisson process with
intensity Acom = 6, independent of X ilnd and X iznd.

Exp. E. Inhomogeneous injection model. Similar to Exp. D, X[ ; and X2 ; be-
ing two independent inhomogeneous Poisson processes with intensity f;. , (see
Exp. B), Aing = 54, Xcom being a homogeneous Poisson process with intensity
Acom = 6, independent of X! ; and X2 .

Exp. F. Dependent bivariate Hawkes processes. The coordinates X' and X2 of
a same pair respectively have the conditional intensities

t t
kl(t) = maxiO, w— /(; vijo,,(t — ) dNx1(s) +/O n1y0,.(t — ) dNXz(s)},

t t
AZ(t) = max{O, w— /(; V1ot —5)dNx2(s) +/(; N1yt —5)dNx1 (s)},

with the spontaneous intensity p = 54, the interaction intensity = 6 in the
period designated by u = 0.005 and the refractory period designated by r = 0.001
with v > u + nu such that once again, AJ(t) is null on each 17, T + r], for T in
X/. We arbitrarily took v =502u + ).

5.2. Results.

Varying number of trials n. In Figure 1, the delay is fixed at § = 0.01 and
the number n of trials varies in {10, 20, 50, 100}. Note that when the number of
trials is too small (n = 10), the estimated variance in (CL'T) is sometimes negative,
therefore, the test cannot be implemented.

The left-hand side of Figure 1 corresponds to estimated sizes. On the one hand,
one can see in the case of homogeneous Poisson processes (Exp. A) and in the
case of refractory Hawkes processes (Exp. C) that the methods (CLT), (B), (P) and
(Ga) are quite equivalent, but the size (first kind error rate) seems less controlled
in the bootstrap approach (B) especially for small numbers of trials. Yet, one can
see the convergence of the size of the bootstrap test towards « as the number of
trials goes to infinity, which illustrates Proposition 3.6. Note that the (CLT) test
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with a level a = 0.05. The circles represent the percentage of rejection on 5000 simulations for
each method, the triangles represent the corresponding endpoints of a 95% confidence interval. The
corresponding experiments are described in Section 5.1.2.

also has a well controlled size even if it cannot be used for very small 7. On the
other hand, in the case of inhomogeneous Poisson processes (Exp. B), one can
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see that the (GA) test has a huge size and is thus inadequate here. Indeed, it is
based on the strong assumption that the data are homogeneous Poisson processes
though they are in fact strongly nonstationary. The test tends thus to reject the
independence null hypothesis even when the data are independent. Finally, in the
three considered cases, the (TS) approach has a very small size, and is thus too
conservative as one can see in the power study. The study of [1] shows that this
lack of performance is due to the fact that the (T'S) approach is applied here on a
not correctly centered quantity.

The right-hand side of Figure 1 corresponds to estimated powers, which in-
crease as n grows. This is in line with the consistency of the tests. Now, as it could
be expected when looking at its estimated sizes, for the (TS) approach, the esti-
mated powers are distinctly lower than the ones for the other methods, which con-
firms its conservative behavior. The other approaches are more similar in Exp. D
or Exp. F though (B) clearly seems to outperform all tests, but at the price of a less
controlled size. Note that in the inhomogeneous case (Exp. E), (GA) seems to have
the best power, but this time, at the price of a totally uncontrolled size.

This part of the simulation study illustrates the convergences of the size and
the power of the bootstrap and permutation tests introduced here. The permutation
approach seems to actually guarantee the best control of the size as expected, as
compared with the bootstrap approach. Nevertheless, both approaches are quite
effective for any considered kind of point processes and any sample size, unlike
the (G2) test which has very restrictive assumptions. The reference method (TS)
for neuroscientists is clearly too conservative. Moreover, the (CLT) test seems to
have also satisfying results, but with a slower convergence than the (B) and (P)
tests. This seems to illustrate that the conditional bootstrap and permutation distri-
butions give better approximations of the original one under independence than a
simple central limit theorem. This phenomenon is well known as the second-order
accuracy of the bootstrap in more classical frameworks.

Varying delay 5. We now investigate the impact of the choice for the delay &
by making § vary in {0.001, 0.005, 0.01, 0.02} for a fixed number of trials n = 50.
The results for the sizes being similar to the previous study, only the estimated
powers are presented in Figure 2.

On the top row of Figure 2, the same process is injected in both coordinates:
the coincidences are exact in the sense that they have no delay. Therefore, the
best choice for the delay parameter § is the smallest possible value: the obtained
power is 1 for very small §’s (e.g., § = 0.001) and then decreases as § increases.
On the contrary on the bottom row, it can be noticed that the highest power is for
8 = 0.005 which is the exact length of the interaction period u. Once again, the
(TS) method performs poorly, as does the (CLT) method. The three other methods
seem to be quite equivalent except in the inhomogeneous case (Exp. E) where the
(Ga) method has a power always equal to 1, but at the price of an uncontrolled size.



2560 ALBERT, BOURET, FROMONT AND REYNAUD-BOURET

Exp. D Exp. E
delta=0.001 delta=0.005 delta=0.01 delta=0.02 delta=0.001 delta=0.005 delta=0.01 delta=0.02
v—*ﬂﬁoﬂﬁééeé ‘——ocoocaeaoeéééa &
6.4 % 0
@
]
] 9 8 @ |
o 8 o
§
51 e |
;r_ 1 [ g b 8
N N
o o
B
o o
CLTB P GATSCLTB P GATSCLTB P GATSCLTB P GATS CLTB P GATSCLTB P GATSCLTB P GATSCLTB P GATS
Exp. F
delta=0.001  delta=0.005 delta=0.01 delta=0.02

@ |

o

21 e

8 ¢
3 ¥y
g ¢ ¢
8 e
8 § ¢ 4
¢
o4 &

CLTB P GATSCLTB P GATSCLTB P GATSCLTB P GATS
FI1G. 2.  Estimated powers for different §. Same convention as in Figure 1.

6. Conclusion. In the present paper, we have introduced nonparametric inde-
pendence tests between point processes based on U -statistics. The proposed crit-
ical values are obtained either by bootstrap or permutation approaches. We have
shown that both methods share the same asymptotic properties under the null hy-
pothesis as well as under the alternative. From a theoretical point of view, the main
asymptotic results (Theorems 3.1 and 4.1) have almost the same flavor. However,
there are additional assumptions in the permutation case which make the bootstrap
results more general (despite the additional continuity assumption, which is very
mild). From a more concrete point of view, it is acknowledged (see, e.g., [22]) that
permutation should be preferred because of its very general nonasymptotic proper-
ties (4.3). This is confirmed by the experimental study, where clearly permutation
leads to a better first kind error rate control. However, both approaches perform
much better than a naive procedure, based on a basic application of a central limit
theorem, when the number of observation is small. They also outperform existing
procedures of the neuroscience literature, namely [69], which assumes the point
processes to be homogeneous Poisson processes and the trial-shuffling procedures
[53, 54], which are biased bootstrap variants applied on a noncentered quantity.
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One of the main open questions with respect to the existing literature is whether
our results can be extended to test statistics as sup;, U, j. A first obstacle to this
question lies in the nature of the observed random variables (point processes) and
the fact that controlling such a supremum leads to controlling the whole U -process.
This difficulty can probably be overcome, since the asymptotic Gaussian behavior
of similar statistics has already been proved in general spaces under (Hy) for prod-
uct type kernels (see [12]). The study of such behavior under (Hy) is surely much
more complex. A second obstacle comes from a more practical aspect. In neuro-
science, and in the particular case of coincidence count, the use of sups U,

h (pcoinc
leads to the following fundamental problems. On the one hand, such a statistic ﬁsnay
not be computable if § varies in a too large space, typically [0, 1]. On the other
(more important) hand, neuroscientists are especially interested in the value of §
which leads to a rejection, since it actually provides the delay of interaction (see
also Section 5). In this respect, our work in [1] involves multiple testing aspects,
which may answer this issue.
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SUPPLEMENTARY MATERIAL

Technical results and proofs of “Bootstrap and permutation tests of in-
dependence for point processes” (DOI: 10.1214/15-A0S1351SUPP; .pdf). This
Supplement consists of all the proofs. It also contains some additional results about
nondegeneracy and the empirical centering assumption.
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