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1 Introduction to the Bootstrap

1.1 Required R Packages
We will be using the R packages of:

* broom for tidy extraction of model components
* splines for working with B-splines
e tidyverse for data manipulation and visualization

library (broom)
library (splines)
library (tidyverse)

1.2 Uncertainty in a test statistic

There is often interest to understand the uncertainty in the estimated value of a test statistic.

* For example, let p be the actual/true proportion of customers who will use your company’s coupon.

* To estimate p, you decide to take a sample of n = 200 customers and find that z = 10 or p =

10/200 = 0.05 = 5% redeemed the coupon.

1.2.1 Confidence Interval

* It is common to calculate the 95% confidence interval (CI)
CI(p) = p +£2- SE(p)
=p+2

= 0.05+0.03

p(1 —p)

* This calculation is based on the assumption that { is approximately normally distributed with the mean

p(1—p) ).

equal to the unknown true p, i.e., p ~ N(p, -~

1.2.2 Bayesian Posterior Distribution

In the Bayesian world, you’d probably specify a Beta prior for p, i.e., p ~ Beta(a,b) and calculate the
posterior distribution p | x = 10 ~ Beta(a + x, b + n — =) which would fully characterize the uncertainty.
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Prior ~ Beta(1,1) [Uniform]
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1.2.3 The Bootstrap

model

prior

|E| posterior

* The Boostrap is a way to assess the uncertainty in a test statistic using resampling.

* The idea is to simulate the data from the empirical distribution, which puts a point mass of 1/n at each

observed data point (i.e., sample the original data with replacement).

— It is important to simulate n observations (same size as original data) because the uncertainty in

the test statistic is a function of n

©
c
k=)
5]
—
Q
o
1S
®
(%]
N
Q
o
E n_n.Ln_Jlg
@
(%]
s 22o |
™
Q
o
E ‘
(]
“|L_of gn_Lnj_
2 3 4 5 66 7 8 9 10

0 1
value

5.0

4.7

5.1

4.8

* Then, calculate the test statistic for each bootstrap sample. The variability in the collection of bootstrap

test statistics should be similar to the variability in the test statistic.
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Algorithm: Nonparametric/Empirical Bootstrap

Observe data D = [X1, Xo, ..., X, (n observations).
Calculate a test statistic § = 6(D), which is a function of D.
Repeat steps 1 and 2 M times:
1. Simulate D*, a new data set of n observations by sampling from D with replacement.
2. Calculate the bootstrap test statistic §* = 6(D*)
The bootstrapped samples HAT, é;, ey é}‘w can be used to estimate the distribution of 6.
* Or properties of the distribution, like standard deviation (standard error), percentiles, etc.

#: Original Data
x = c(rep(l, 10), rep(0, 190)) # 10 successes, 190 failures
n = length (x) # length of observed data

#: Bootstrap Distribution
M = 2000 # number of bootstrap samples
initialize vector for test statistic

S

P = numeric (M)
set.seed(201910) # set random seed
for(m in 1:M) {

#- sample from empirical distribution

ind = sample (n, TRUE) # sample indices with replacement
xboot = x[ind] # bootstrap sample

#- calculate proportion of successes

plm] = mean (xboot) # calculate test statistic

#: Bootstrap Percentile based confidence Intervals

quantile (p, c(.025, .975)) # 95% bootstrap interval
#> 2.5% 97.5%

#> 0.02 0.08

Prior ~ Beta(1,1) [Uniform]
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* Notice that in the above example the bootstrap distribution is close to the Bayesian posterior distribution
(using the uninformative Uniform prior).

* This is no accident, it turns out there is a close correspondence between the bootstrap derived distribution
and the Bayesian posterior distribution under uninformative priors

— See ESL 8.4 for more details

2 Bootstrapping Regression Parameters

The bootstrap is not limited to univariate test statistics. It can be used on multivariate test statistics.

Consider the uncertainty in estimates of the parameters (i.e., 8 coefficients) of a regression model.

L4 .
104
5-
>
0-
[ ] Y ° °
-5 ® o
0.0 0.2 0.4 0.6 0.8 1.0
X

ml = Im(y~x, data_train) # fit simple OLS
broom: :tidy (ml, TRUE) # OLS estimated coefficients
#> # A tibble: 2 x 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 6.48 0.584 11.1 5.39e-19 5.32 7.64
#> 2 x -7.37 1.06 -6.97 3.69e-10 -9.47 -5.27
vcov (ml) %$>% round(2) # variance matrix
#> (Intercept) X
#> (Intercept) 0.34 -0.54
#> x -0.54 1.12
2.1 Bootstrap the 3’s
#-— Bootstrap Distribution
M = 2000 # number of bootstrap samples
beta = list () # initialize 1list for test statistics

set.seed(201910) # set random seed
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for(m in 1:M) {
#—- sample from empirical distribution

ind = sample (n, TRUE) # sample indices with replacement
data.boot = data_train[ind, ] # bootstrap sample
#- fit regression model
m.boot = 1lm(y~x, data.boot) # fit simple OLS
#- save test statistics
beta[[m]] = broom::tidy (m.boot) %>% select (term, estimate)
}
#- convert to tibble (and add column names)
beta = bind_rows (beta, "iteration") %>%
pivot_wider ( term, estimate) %>%
select ( "(Intercept)", "x", —iteration)
#- Plot
ggplot (beta, aes(intercept, slope)) +
geom_point () +
geom_point ( tibble ( coef (ml) [1], coef (ml) [2]),
"red", 4)
.
.
[ ]
_5.0'
[}
Q
o -7.54
n
-10.04
4 5 6 7 8
intercept

#- bootstrap estimate

var (beta) %>% round(2)
#> intercept
#> intercept 0.58
#> slope -0.87
apply (beta, 2, sd) %>%
#> Iintercept slope
#> 0.76 1.22

slope
-0.87
1.49

round (2)

# varaince matrix

# standard errors (sqrt of diagonal)
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3 Basis Function Modeling

For a univariate x, a linear basis expansion is
Flz) =2 _0;bj()
J

where b;(x) is the value of the jth basis function at  and 6, is the coefficient to be estimated.

* The b;(x) are sometimes specified in advanced (i.e., not estimated). But other approaches use sample
data to estimate (e.g., using quantiles for knot placement).
— Just be sure to estimate everything from the training data so there is no data leakage!

Examples:
* Linear Regression * Polynomial Regression
f(@) = Po+ Pz o) = S B
o fla) =3 Bja’
j=1
b1 (:B) =1 .
2.04 81
o
1.54
basis
basis — bt
1.0 — o’ -

— b3
ba

0.54

basis
— bl
— b2
— b3

b4

104 y =6.48 - 7.37x

-1

o

1= —0.16 + 48.96x — 108.291(x"2) + 57.43|(x"]

0.00 0.25 0.50 0.75 1.00

X 0.00 0.25 0.50 0.75 1.00
X
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* Piecewise Constant Regression (Regresso-

gram)
A p A
fx)=>_Bj1(z € R))
j=1
bi(z) = 1(z € Ry)
ba(z) = 1(z € Ro)
by(z) = 1z € Ry)
1.00
0.75
0.50
0.25
0.00
0.00 0.25 0.50 0.75 1.00
X
10 -1

basis

— bl
— b2

b3

b4 1.00
0.75
0.50
0.25

0.00

xe{cr,c,...,¢p}

» Categorical encoding (dummy, one-hot)

p
f@) = ZB] I(z = cj) one-hot
j=1
]A .
= 0+Z i Lz = ¢j) dummy
j=2
bo(fL‘) =1
bi(z) =1 c1)
bQ(.CE) =1 CQ)
bp(z) = Lz = ¢p)
basis
B A
B
[]c
D
A B C D
X
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3.1 Piecewise Polynomials

Piecewise Constant Piecewise Linear

£1 £z £i £z

Continuous Piecewise Lingar Piecewise-linear Basis Function

&1 £z &1 £z

FIGURE 5.1, The top left panel shows o piecewise constant function fit to some
artificial data, The broken verticnl lines indicafe the positions of the fwo knots
£y and £2. The blue eurve represents the true function, from which the data were
generated with Goussian noise. The remaining two panels show piccewise lin-
ear functions fif to the some defa—the top right unrestricked, and the lower left
reafricted fo be continuwons at the knots. The lower right panel shows o piecewise

linear basis function, ha{X) = (X — &), confinuous af £, The black points

indicale the semple evaluations fa I::.r,-}, i=1,....N.

3.2 B-Splines
* A degree = 0 B-spline is a regressogram basis. Will lead to a piecewise constant fit.
* A degree = 3 B-spline (called cubic splines) is similar in shape to a Gaussian pdf. But the B-spline has
finite support and facilitates quick computation (due to the induced sparseness).
3.2.1 Parameter Estimation

In matrix notation,
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B-splines of degree 0
1.00+ T T ]
0.75 1

0.50 1 ' !
0.25 1 F
0.00 ‘

B-splines of degree 1

1.00
0.751
0.504
0.254
0.00+

B-splines of degree 2

1.00

0.75 1 /—\
0.50 A

0.25 \ _/

0.00 4 — —

B-splines of degree 3

1.00-
0.75 1
0.50 1
0.251 X\\\-ﬂg
0.00 ——
. T T T T T A B T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X

Figure 1: Like ESL Fig 5.20, B-splines (knots shown by vertical dashed lines)

where B is the basis matrix.

* For example, a polynomial matrix is

1 X, X3 x{

B 1 X"z X22 Xy

1 X, X2 ... x/

* More generally,
bl(.’L'l) bg(l‘l) bJ(Qﬁl)
bl (xg) b2 ((EQ) b](l‘g)
B = .

bl(l‘n) bg(xn) e bJ(a?n)

* Now, its in a form just like linear regression! Estimate with OLS

0= (B"B)"'BTY
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L4 .
10
54 model
— 25 knots: deg=3
> — 6 knots: deg=0
— 6 knots: deg=3
truth
O -
L]
-5 L )

It may be helpful to think of a basis expansion as similar to a dummy coding for categorical variables.
— This expands the single variable z into df new variables.
* In R, the function bs () can be put directly in formula to make a B-spline.
#- fit a 5 df B-spline
# Note: don't need to include an intercept in the Im()
# Note: the boundary.knots are set just a bit outside the range of the data

# so prediction is possible outside the range (see below for usage).
# You probably won't need to set this in practice.

kts.bdry = c(-.2, 1.2)

model_bs = 1lm(y~bs(x, df=5, deg=3, Boundary.knots = kts.bdry)-1,

data=data_train)
tidy (model_bs)
#> # A tibble: 5 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 bs(x, df = 5, deg = 3, Boundary.knots =~ -2.50 1.51 -1.65 1.02e- 1
#> 2 bs(x, df = 5, deg = 3, Boundary.knots =~ 10.9 1.27 8.61 1.53e-13
#> 3 bs(x, df = 5, deg = 3, Boundary.knots =~ -0.241 1.53 -0.157 8.76e—- 1
#> 4 bs(x, df = 5, deg = 3, Boundary.knots =~ -4.71 3.07 -1.53 1.28e- 1
#> 5 bs(x, df = 5, deg = 3, Boundary.knots =~ 1.45 6.90 0.211 8.34e- 1

ggplot (data_train, aes(x,y)) + geom_point () +
geom_smooth (method="'1m', formula='y~bs(x, df=5, deg=3, Boundary.knots = kts.bdry)-1")
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 Setting d£=5 will create a B-spline design matrix with 5 columns
— So there are 5 basis functions
* The number of (internal) knots is equal to df-degree and at equally spaced quantiles of the data
— With df=5 and deg=3, there are 2 internal knots at the 33.33% and 66.66% percentiles of
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3.3 Bootstrap Confidence Interval for f(z)

Bootstrap can be used to understand the uncertainty in the fitted values
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#-—— Bootstrap CI (Percentile Method)

M = 100 # number of bootstrap samples
data_eval = tibble (x=seq(0, 1, length=300)) # evaluation points
YHAT = matrix (NA, nrow(data_eval), M) # initialize matrix for fitted values

#-— Spline Settings
for(m in 1:M) {
#- sample from empirical distribution
ind = sample(n, replace=TRUE) # sample indices with replacement
#- fit bspline model
m_boot = lm(y~bs(x, df=5, Boundary.knots=kts.bdry)-1,

data=data_train(ind, ]) # fit bootstrap data
#- predict from bootstrap model
YHAT[,m] = predict (m_boot, data_eval)

#-— Convert to tibble and plot
data_fit = as_tibble (YHAT) $%>% # convert matrix to tibble

bind_cols (data_eval) %>% # add the eval points
pivot_longer (-x, names_to="simulation", values_to="y") # convert to long format

ggplot (data_train, aes(x,y)) +
geom_smooth (method="1m",

formula=as.formula ('y~bs (x, df=5, deg=3, Boundary.knots = kts.bdry)-1"'))

geom_line (data=data_fit, color="red", alpha=.10, aes(group=simulation)) +
geom_point ()

b4 °
10+
5 -
>
0 -
-5 e o
0.00 0.25 0.50 0.75 1.00
X
#-— Calculate Confidence intervals

## for a 90% CI, find the upper and lower 5% values at every x location
## Homework Exercise

+
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4 More Bagging

4.1 Out-of-Bag Samples

Your Turn #1 : Observations not in bootstrap sample

What is the expected number of observations that will not be in a bootstrap sample? Suppose n
observations.
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Let’s look at a few bootstrap fits:

B-Spline with df=10
Red dots are out-of-bag
® ®

104

Original

Boot 1

Boot 2

g b~ W N P

Y X XK

Boot 3

0.00

0.25

0.50 0.75 1.00
X

* Notice that each bootstrap sample does not include about 37% of the original observations.

* These are called out-of-bag samples and can be used to assess model fit

— The out-of-bag observations were not used to estimate the model parameters, so will be sensitive

to over/under fitting

* Below, we evaluate the oob error over the spline complexity (df = number of estimated coefficients)
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M = 500 # number of bootstrap samples
DF = seq(4, 15, by=1) # edfs for spline

results = list () # initialize results 1ist
set.seed (2019) # set seed so reproducible

#-— Spline Settings
for(m in 1:M) {
#- sample from empirical distribution
ind = sample (n, replace=TRUE) # sample indices with replacement
oob.ind = setdiff (l:n, ind) # out—-of-bag samples
#— fit bspline models
for (df in DF) {
if (length(oob.ind) < 1) next
#— fit with bootstrap data
m_boot = Ilm(y~bs(x, df=df, Boundary.knots=kts.bdry)-1,
data=data_train[ind, ])
#- predict on oob data
vhat.oob = predict (m_boot, data_train[oob.ind, 1)
#- get errors
sse = sum( (data_trainS$Sy[oob.ind] - yhat.oob) "2 )
n.oob = length (ocob.ind)
#- save results

results = c(results, list (tibble(m, df, sse, n.oob)))

}
}
results = bind_rows (results) # convert from list to tibble
avg = results %>% group_by (df) %>% summarize (mse = sum(sse)/sum(n.oob))
plotl = results %>%

ggplot (aes (x=df, y=sse/n.oob)) +

geom_line (aes (group=m), alpha=.10) +

coord_cartesian(ylim=c (2, 9)) +
scale_x_continuous (breaks=1:20) + scale_y_continuous (breaks=1:20) +
labs (x = "edf", y="MSE")

plotl +
geom_point (data=avg, aes(df,mse), size=4) + geom_line (data=avg, aes(df,mse), size=2) +
geom_point (data=avg %$>% slice_min (mse), aes(df, mse), color="red", size=4)
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4 5 6 7 8 9 10 11 12 13 14 15
edf

* The minimum out-of-bag error occurs at d£=5. This matches the optimal complexity in a polynomial
fit from the previous lecture notes.

14 °
101
5 - model
— bspline_5
> — knn_15
— poly_4
— true
0-
[ J ('Y ° °
—5 - ® o
0.00 0.25 0.50 0.75 1.00
X

4.2 Number of Bootstrap Simulations

Hesterberg recommends using M > 15,000 for real applications to remove most of the Monte Carlo


https://amstat.tandfonline.com/doi/full/10.1080/00031305.2015.1089789#.XatDC-hKjb0
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variability.

* For the examples in class I used much less to demonstrate the principles.

5 More Resources

* Bootstrap

- ISL5.2
- ESL 7.11

* Splines

- ISL 7.2-7.5
- ESL5.1-54

What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics
Curriculum, by Tim C. Hesterberg

* The boot package and boot () function provides some more advanced options for bootstrapping

* R’s tidymodels package

Bootstrap resampling and tidy regression models

rsample for resampling

vardstick for evaluation metrics

broom for extracting properties (e.g., estimated parameters) of fitted models in a tidy form

5.1 Variations of the Bootstrap

* We have discussed only one type of bootstrap, nonparametric/empirical/ordinary where the observa-
tions are resampled

* Another option is to simulate from the fitted model. This is called the parametric bootstrap.

— For example, in the regression setting, estimate 0 and &
— Then given the original X’s simulate new vy | z; ~ f(z;6) + ¢(5)


https://amstat.tandfonline.com/doi/full/10.1080/00031305.2015.1089789#.XatDC-hKjb0
https://amstat.tandfonline.com/doi/full/10.1080/00031305.2015.1089789#.XatDC-hKjb0
https://www.tidyverse.org/articles/2018/08/tidymodels-0-0-1/
https://www.tidymodels.org/learn/statistics/bootstrap
https://tidymodels.github.io/rsample/
https://tidymodels.github.io/yardstick/
https://broom.tidyverse.org/
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