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Educational objectives
Upon completion of this course, you will
• become familiar with main variance estimation methods

for complex survey data, their strengths and
weaknesses

• be able to identify appropriate variance estimation
methods depending on the sample design, complexity
of the problem, confidentiality protection

• know how to utilize the existing bootstrap weights
• know how to create bootstrap weights in Stata and R
• know how to choose parameters of the bootstrap
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The bootstrap for i.i.d. data
1 Bootstrap principle
2 Bootstrap bias and variance estimates
3 Bootstrap confidence intervals
4 More bootstrap theory
5 Some extensions
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Bootstrap principle
• Population: distribution F , parameter θ = T (F ), both

can be multivariate
• Sample: data X1, . . . ,Xn ∼ i.i.d. F , distribution Fn,

parameter estimate θ̂n = T (Fn)

• Inference: need to know distribution D[θ̂n], often in
asymptotic form IPr[

√
n(θ̂n − θ) < x ]

• Bootstrap: use Fn to take samples from
• Bootstrap samples: X ∗1 , . . . ,X

∗
n ∼ i.i.d. Fn, distribution

F ∗n , parameter estimate θ̂∗n = T (F ∗n )

F
sample−→ Fn

bootstrap−→ F ∗n
↓ T ↓ T ↓ T

θ
?←→ θ̂n

bootstrap←→ θ̂∗n
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Aside: what is T?
T does something to distribution F that results in a number
or a vector: θ = T (F ).

• T finds a point where F (x) = 1/2: θ is the median of
the distribution

• T takes an expected value with respect to F :

θ = E[X ] =

∫
xF (dx)

• T finds a solution to
∫

(y − θx)F (dx ,dy) = 0:

θ = E[y ]/E[x ]
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Bootstrap principle

F
sample−→ Fn

bootstrap−→ F ∗n
↓ T ↓ T ↓ T

θ
?←→ θ̂n

bootstrap←→ θ̂∗n

Theoretical/ideal/complete bootstrap: sampling distributions
over all nn possible samples

Bias[θ̂n] = E[θ̂n − θ]
.

= E∗[θ̂∗n − θ̂n|X]

V[θ̂n] = E
[
(θ̂n − E[θ̂n])2] .

= E∗
[
(θ̂∗n − E[θ̂∗n])2|X

]
MSE[θ̂n] = E

[
(θ̂n − θ)2] .

= E∗
[
(θ̂∗n − θn])2|X

]
Fθn−θ(x) = IPr[θ̂n − θ < x ]

.
= IPr∗[θ̂∗n − θ̂n < x |X] (1)
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Monte Carlo bootstrap
As taking nn bootstrap samples is not feasible, use Monte
Carlo simulation instead:

1 For the r -th bootstrap sample, take a simple random
sample with replacement X (∗r)

1 , . . . ,X (∗r)
n from

X1, . . . ,Xn.

2 Compute the parameter estimate of interest θ̂(∗r)
n .

3 Repeat Steps 1–2 for r = 1, . . . ,R.
4 Approximate the ideal bootstrap distribution with

distribution of θ̂(∗1)
n , . . . , θ̂

(∗R)
n .

F
sample−→ Fn

bootstrap−→
[
F ∗n
] simulate−→ F (∗r)

n
↓ T ↓ T ↓ T ↓ T

θ
?←→ θ̂n

bootstrap←→
[
θ̂∗n
]

≈ θ̂
(∗r)
n
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Estimates of bias and variance
Estimate of the bias:

Bias[θ̂n] = E[θ̂n − θ]
.

= E∗[θ̂∗n − θ̂n|X] ≈ 1
R

R∑
r=1

θ̂
(∗r)
n − θ̂n

Bias corrected estimate:

θ̃n = 2θ̂n −
1
R

R∑
r=1

θ̂
(∗r)
n

Variance estimate:

V[θ̂n] = E
[
(θ̂n − E[θ̂n])2] .= E∗

[
(θ̂∗n − E[θ̂∗n])2|X

]
≈ 1

R

R∑
r=1

(
θ̂
(∗r)
n − 1

R

R∑
l=1

θ̂
(∗l)
n
)2 ≡ vBOOT [θ̂n]
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Number of samples
How to chose the number of the bootstrap samples R?

• Stability of the standard errors:

cv∗(sR) ≈
√
κ̂+ 2
4R

where κ̂ is the kurtosis of θ̂∗n
• Confidence interval accuracy:

cv∗(CBR − θ̂n) ≈ 1
|zα|

√√√√ 1
R

(
1

φ(0)2 −
2(1− α)

φ(0)φ(zα)
+
α(1− α)

φ(zα)2

)

where CBR is the confidence bound with level 1− α
• Estimation of moments: R = 50–200
• Estimation of quantiles/distribution functions: R ≥ 1000
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Percentile confidence intervals
Idea:

IPr[θ̂n − θ < x ]
.

= IPr∗[θ̂∗n − θ̂n < x |X]

Lower confidence bound of level α:

K−1
BOOT (α)

where
KBOOT (x) = IPr∗[θ̂∗n ≤ x ]

is the (ideal or Monte Carlo) bootstrap distribution of θ̂∗n.
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Normal confidence intervals
Idea:

θ̂n ≈ N(θ, σ2
n)

.
= θ̂∗n ≈ N(θ̂, σ∗2n )

Lower confidence bound of level α:

θ̂n + σ∗nΦ−1(α)

where σ∗2n is the variance of the bootstrap distribution.
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Bootstrap-t CI
Idea: pivotal quantity

t = (θ̂n − θ)/σ̂n

has asymptotic distribution that is the same for all 〈F , θ〉.

Lower confidence bound of level α:

θ̂n − σ̂nG−1
BOOT (1− α)

where
GBOOT (x) = IPr∗[(θ̂∗n − θ̂n)/σ̂∗n ≤ x ]

is the bootstrap distribution of the above pivot.



Survey
bootstrap

Stas
Kolenikov

Bootstrap for
i.i.d. data
Bootstrap principle

Bias and variance
estimates

Bootstrap CIs

More bootstrap
theory

Some extensions

Variance
estimation for
complex
surveys

Survey
bootstraps

Software im-
plementation

Conclusions

References

Bias corrected CI
Idea: φn(·) is an increasing transformation (e.g., variance
stabilizing, skewness reducing); assume

IPr[φn(θ̂n)− φn(θ) + z0 ≤ x ] ≈ Φ(x)

Lower confidence bound of level α:

K−1
BOOT (Φ(zα + 2Φ−1(KBOOT (θ̂n))))
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Accelerated bias corrected CI
Idea:

IPr
[φn(θ̂n)− φn(θ)

1 + aφn(θ)
+ z0 ≤ x

]
≈ Φ(x)

with tuning parameter a correcting for skewness of φn(θ̂).

Lower confidence bound of level α:

K−1
BOOT (Φ(z0 + (zα + z0)/(1− a(zα + z0))))

Parameter a needs to be computed or estimated, e.g. via
the jackknife.
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Asymptotic justification of the
bootstrap

Let us look at the diagram again:

F
sample−→ Fn

bootstrap−→ F ∗n
↓ T ↓ T ↓ T

θ
?←→ θ̂n

bootstrap←→ θ̂∗n

When would the relation between θ̂n ←→ θ̂∗n be similar to the
one between θ̂ ←→ θ̂n?
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Asymptotic justification of the
bootstrap

• The bootstrap can only be successful if Fn is sufficiently
close to F for the bootstrap distribution D∗[θ̂∗n] to
resemble the sampling distribution D[θ̂n].

• Small deviations of Fn from F must translate to small
deviations of D∗[θ̂∗n] from D[θ̂n].

• Taylor series expansion/the delta method for θ = T (F ):

θ̂n − θ = ∇T
∣∣
F (Fn − F ) + o(‖Fn − F‖),

θ̂∗n − θ̂n = ∇T
∣∣
Fn

(F ∗n − Fn) + o(‖F ∗n − Fn‖)

• Functional T must satisfy some smoothness conditions,
and its “derivative” should be bounded away from zero.

• F ∗n must converge to Fn at the same rate as Fn
converges to F .
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Bootstrap failures
Sometimes, the simple bootstrap as described above
produces a misleading answer.

• Non-i.i.d. data: time series, spatial data, clustered
surveys, overdispersed count data (Canty, Davison,
Hinkley & Ventura 2006)

• Non-regular problems (Shao & Tu 1995, Sec. 3.6)
• Certain heavy tailed distributions (Canty, Davison,

Hinkley & Ventura 2006)
• Zero derivatives (Andrews 2007): X̄ 2

n when µ = 0
• Non-smooth functions (Bickel & Freedman 1981): |X̄n|,

sample quantiles/extreme order statistics/min/max
• Different rates of convergence (Canty, Davison, Hinkley

& Ventura 2006): sample mode, shrinkage and kernel
estimators

• Constrained estimation (Andrews 2000): X̄n when µ ≥ 0
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Bootstrap tests

H0 : T (F ) = θ0 vs. H1 : T (F ) 6= θ0

To compute the p∗-values of the bootstrap distribution, one
needs to sample from the distribution that satisfies H0. For
continuous problems, the data distribution won’t satisfy H0
with probability 1. The data need to be transformed prior to
the bootstrap:
• shift?
• scale?
• rotation?
• reweighting?

Non-parametric flavor will likely be lost.
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Balanced bootstrap
Motivation: if θ̂n = T (Fn) = X̄n, the complete bootstrap gives
E∗[θ̂∗n] = X̄n and V∗[θ̂∗n] = s2/n. Is it possible to match the
moments of the simulated bootstrap?

• Equality for the mean:

1
R

∑
r

X̄ (∗r)
n =

1
nR

∑
i

Xi

∑
r

f (∗r)
i =

1
n

∑
i

Xi

f (∗r)
i = # times unit i is used in the r -th bootstrap sample

• First order balance (Davison, Hinkley & Schechtman 1986):∑
r

f (∗r)
i = R for all i

• Practical implementation: permutation of {1, . . . ,n}R

(Gleason 1988)
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Balanced bootstrap
• Equality for the variance:

1
Rn2

∑
r

[∑
i

(f (∗r)
i − 1)2Xi +

∑
i 6=j

(f (∗r)
i − 1)(f (∗r)

j − 1)XiXj
]

=
n − 1

n3

∑
(1− 1

n
)2Xi +

1
n3

∑
i 6=j

XiXj

• Second order balance (Graham, Hinkley, John & Shi 1990):
for all i , j

n
∑

r

f (∗r)
i

2 = R(2n − 1), n
∑

r

f (∗r)
i f (∗r)

j = R(n − 1)

• Additional restriction: R must be a multiple of n

• Practical implementation: orthogonal arrays and incomplete
block designs
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Wild bootstrap
Special situation: heteroskedastic regression (Wu 1986) or
non-parametric regression (Härdle 1990).

1 Fit regression model yi = f̂ (xi) + ei

2 Bootstrap distribution of residuals ε∗i in observation i :

E∗[ε∗i ] = 0, E∗[ε∗2i ] = e2
i , E∗[ε∗3i ] = e3

i

Example: two-point golden rule distribution:

ε∗i = ei(1±
√

5)/2 with prob. (5∓
√

5)/10

3 Form bootstrap samples as y∗i = f̂ (xi) + ε∗i
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Review questions
1 Explain how the bootstrap can be used to estimate

CV[X̄n].
2 Suggest a method to compute σ̂n for bootstrap-t

confidence interval method.
3 Given that the kurtosis of the bootstrap distribution is

0.5, find the number of replicates needed to make the
CV of the bootstrap standard errors equal to 5%.

4 (requires calculus) Assuming all Xi ’s are distinct, find
lim

n→∞
IPr∗[X ∗(n) = X(n)] where X(n) is the maximum in the

data, and X ∗(n) is the maximum in the bootstrap sample.
Hint: find the probability of the complement of this
event.
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Variance estimation for complex
surveys

1 Features of complex survey data
2 Linearization variance estimation
3 Replication methods: overview
4 Jackknife
5 BRR
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Survey settings
• Complex survey designs include stratification, cluster

samples, multiple stages of selection, unequal
probabilities of selection, non-response and
post-stratification adjustments, longitudinal and rotation
features.

• Unless utmost precision is required (or sampling
fractions are large), it suffices to approximate real
designs by two-stage stratified designs with PSUs
sampled with replacement.

• Notation:
• L = # strata
• nh = # units in stratum h
• PSUs are indexed by i
• SSUs are indexed by j
• generic datum is xhij
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Variance estimation goals
• Reporting and analytic purposes: a survey analyst

needs standard errors to include in the report; an
applied researcher needs standard errors to test their
substantive models.

• Design purposes: a sample designer needs to know
population variances to find efficient designs, strata
allocations, small area estimators.
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Explicit variance formulae
For a (very) limited number of statistics, explicit variance
formulae are available.

Horvitz-Thompson estimator:

tHT [x ] =
∑
i∈S

xi

πi

Design variance:

V
[
tHT [x ]

]
=

1
2

∑
i 6=j∈U

(πiπj − πij)
(xi

πi
−

xj

πj

)2

Yates-Grundy-Sen variance estimator:

vYGS =
1
2

∑
i 6=j∈S

πiπj − πij

πij

(xi

πi
−

xj

πj

)2
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Explicit variance formulae
Stratified sample:

vstr
[
tstr [x ]

]
=

L∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(thi − t̄h)2

thi =
∑

j∈PSUhi

xhij

πhij

t̄h =
1
nh

nh∑
i=1

thi
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Linearization variance estimator
• θ = f (T [x1], . . . ,T [xk ]) is a function of moments
• θ̂ = f (t [x1], . . . , t [xk ]) is its estimator
• Taylor series expansion/delta method:

θ̂ = θ +∇f (t [x]− T [x]) + . . .

• Hence
vL[θ̂] ≈ M̂SE[θ̂] ≈ v

[∑
k

∂f
∂tk

tk
]

• Regularity conditions: ∂f/∂tk |T [x] 6= 0.
• Example: ratio r = t [y ]/t [x ], variance estimator

vL[r ] =
1

t [x ]2
v(ei), ei = yi − rxi , T [x ] 6= 0
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Linearization variance estimator
• θ̂ solves estimating equations

g(x, θ̂) =
∑
i∈S

g(xi , θ̂)

πi
= 0

• Taylor series expansion:

g(x, θ̂)− g(x, θ) = ∇g · (θ̂ − θ) + . . .

• Invert it and account for g(x, θ̂) = 0 to obtain

θ̂ − θ = −(∇g)−1g(x, θ) + . . .

• Take the variance and plug the estimates:

vL[θ̂] ≈ M̂SE[θ̂] ≈ (∇g)−1v [g(x, θ̂)](∇g)−1T

• Example: GLM (Binder 1983)
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Replication methods
For a given estimation procedure (X1, . . . ,Xn) 7→ θ̂:

1 To create data for replicate r , reshuffle PSUs, omitting
some and/or repeating others, according to a certain
replication scheme.

2 Using the original estimation procedure and the
replicate data, obtain parameter estimate θ̂(r).

3 Repeat Steps 1–2 for r = 1, . . . ,R.
4 Estimate variance/MSE as

vm[θ̂] =
A
R

R∑
r=1

(θ̂(r) − θ̃)2 (2)

where A is a scaling parameter, θ̃ =
∑

r θ̂
(r)/R for

variance estimation and θ̃ = θ̂ for MSE estimation.

Alternative implementation: replicate weights w (r)
hij



Survey
bootstrap

Stas
Kolenikov

Bootstrap for
i.i.d. data

Variance
estimation for
complex
surveys
Complex survey data

Linearization

Replication

Jackknife

BRR

Survey
bootstraps

Software im-
plementation

Conclusions

References

Pros and cons of resampling
estimators

+ Only need software that does weighted estimation; no
need to program specific estimators for each model

+ No need to release unit identifiers in public data sets
– Computationally intensive
– Post-stratification and non-response adjustments need

to be performed on every set of weights
– Bulky data files with many weight variables
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The jackknife
Kish & Frankel (1974), Krewski & Rao (1981)

• Replicates: omit only one PSU from the entire sample
• Replicate weights: if unit k from stratum g is omitted,

w (gk)
hij =


0, h = g, i = k

ng
ng−1whij , h = g, i 6= k

whij , h 6= g

• Number of replicates: R = n
• Scaling factor in (2):

A =

{
n − 1, L = 1
nh − 1 within strata, L > 1
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The jackknife
Variance estimators:

vJ1 =
∑

h

nh − 1
nh

∑
i

(θ̂(hi) − θ̂h)2

vJ2 =
∑

h

nh − 1
nh

∑
i

(θ̂(hi) − θ̂)2

vJ3 =
∑

h

nh − 1
nh

∑
i

(θ̂(hi) −
∑

g

∑
k

θ̂(gk)/n)2

vJ4 =
∑

h

nh − 1
nh

∑
i

(θ̂(hi) −
∑

h

θ̂h/L)2

where
θ̂h =

∑
i

θ̂(hi)/nh
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The jackknife
Pseudo-values:

θ̃(hi) = nhθ̂
h − (nh − 1)θ̂(hi)

More variance estimators:

vJ5 =
∑

h

1
(nh − 1)nh

∑
i

(θ̃(hi) −
∑

g

∑
k

θ̃(gk)/n)2

vJ6 =
∑

h

1
(nh − 1)nh

∑
i

(θ̃(hi) − 1/L
∑

g

1/ng
∑

k

θ̃(gk))2

Bias corrected point estimator:

θ̂J = (n + 1− L)θ̂ −
∑

h

(nh − 1)θ̂h
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The jackknife/linearization
failures

Linearization and the jackknife estimators are inconsistent
for non-smooth parameters:

• Percentiles (including median)
• Extreme order statistics: min, max
• Exotic estimation problems: |θ|, matching estimators
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Delete-k jackknife
If nh > k > 1 for all h, a variation of the jackknife is to delete
k PSUs at a time rather than one.

• Replicate weight:

w (r)
hij =



0, unit hi is omitted,

nh

nh − k
whij ,

units in the same stratum
are omitted but not hi ,

whij , units in stratum other than h
are omitted

• Number of replicates: R =
∑

h
(nh

k

)
• Scaling factor in (2): (nh − k)/k , within strata
• Pros: better performance in non-smooth problems
• Cons: increased computational complexity
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Balanced repeated replication
(BRR)

• Design restriction: nh = 2 PSUs/stratum
• Replicates (half-samples): omit one of the two PSUs

from each stratum
• Replicate weights:

w (r)
hij =

{
2whij , PSU hi is retained
0, PSU hi is omitted

• (2nd order) balance conditions:
• each PSU is used R/2 times
• each pair of PSUs is used R/4 times

• Number of replicates: L ≤ R ≤ 2L

• McCarthy (1969): L ≤ R = 4m ≤ L + 3 using
Hadamard matrices

• Scaling factor in (2): A = 1
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Aside: Hadamard matrices
• n × n matrix with entries ±1
• Rows are orthogonal
• Special case of orthogonal arrays (Hedayat, Sloane &

Stufken 1999)
• Hadamard conjecture: for every integer m, there exists

an Hadamard matrix of order 4m
• Smallest order for which no matrix is known: 4m = 668
• Sylvester construction for orders 2k : if H is Hadamard,

so is (
H H
H −H

)
• BRR designs: w (r)

hi = (1 + Hrh)whi
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BRR
Complementary half-samples: swap included/excluded
units, obtain θ̂(rc).
Variance estimators:

vBRR1[θ̂] ≡ vBRR−H [θ̂] =
1
R

R∑
r=1

(θ̂
(r)
BRR − θ̂)2

vBRR2[θ̂] ≡ vBRR−D[θ̂] =
1

4R

R∑
r=1

(θ̂
(r)
BRR − θ̂

(rc)
BRR)2

vBRR3[θ̂] ≡ vBRR−S[θ̂] =
1

2R

R∑
r=1

(θ̂
(r)
BRR − θ̃)2 + (θ̂

(rc)
BRR − θ̃)2

Bias corrected estimate:

θ̂Bc = 2θ̂ − 1
R

∑
r

θ̂(r) or 2θ̂ − 1
2R

∑
r

(
θ̂(r) + θ̂(rc)

)
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Fay’s modification
• Confidentiality protection: if units have a replicate

weight of 0 they belong to the same PSU
• Modified weights:

w (r)
hi = (1 + kHrh)whi

for some 0 < k ≤ 1
• Scaling constant in (2): A = 1/k2
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Extensions of BRR
What if nh ≥ 2?

• Gurney & Jewett (1975): nh = p for a prime p,
R = (pk − 1)/(p − 1) ≥ L

• Gupta & Nigam (1987) and Wu (1991): mixed
orthogonal arrays for nh ≥ 2, 1 PSU/stratum recycled,
R =?

• Sitter (1993): orthogonal multiarrays for nh ≥ 2, about
half PSUs/stratum recycled, R =?

• Availability of a suitable orthogonal array needs to be
established for each particular design
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Approximate BRR
Since BRR is a common estimation technique, some
publicly released data use design approximations that would
allow the end user to use BRR techniques:
• strata collapse
• grouping of PSUs
• treating SSUs as PSUs for self-representing units

Caution: Shao (1996) gives an example where grouped
BRR is inconsistent.

Remedies: repeated grouping, random subsampling.
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Review questions
1 (requires calculus) If variance estimator v [θ̂] is available

for parameter estimate θ̂, what is vL[eθ̂]?
2 True or false: In regression analysis, the linear model

textbook variance estimator s2(X ′X )−1 is appropriate
for complex survey data.

3 For a design with 2 PSUs/stratum, which method will be
faster, the jackknife or BRR?

4 If L = 45 and nh = 2 for every stratum, can one
construct BRR designs with R = 50? R = 60? What’s
the smallest number of replicates necessary?
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Notes
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Complex survey bootstraps
1 Naı̈ve bootstrap
2 Rescaling bootstrap
3 Other survey bootstraps:

• bootstrap without replacement
• mirror-match bootstrap
• mean bootstap
• bootstrap for imputed data
• balanced bootstrap
• variance components bootstrap
• wild bootstrap
• parametric bootstrap for small area estimation

4 Comparison of all methods

How about some theory?
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Naı̈ve bootstrap
1 Sample with replacement nh units from stratum h.
2 For each replicate, compute θ̂(r).
3 Estimate the variance using (2).

Rao & Wu (1988):

V∗[x̄∗] =
∑

h

W 2
h

nh

nh − 1
nh

s2
h

rather than

v [x̄ ] =
∑

h

W 2
h

nh
s2

h

Scaling issue? Choice of A?
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Rescaling bootstrap (RBS)
Rao & Wu (1988): for parameter θ = f (x̄),

1 Sample with replacement mh out of nh units in stratum
h.

2 Compute pseudo-values

x̃ (r)
h = x̄h + m1/2

h (nh − 1)−1/2(x̄ (∗r)
h − x̄h),

x̃ (r) =
∑

h

Whx̃ (r)
h , θ̃(r) = f (x̃ (r)) (3)

3 Repeat Steps 1–2 for r = 1, . . . ,R.
4 Compute vRBS[θ̂] using (2) with A = 1.
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Scaling of weights
Rao, Wu & Yue (1992): weights can be scaled instead of
values.

• For the r -th replicate,

w (r)
hik =

{
1−

( mh

nh − 1

)1/2
+
( mh

nh − 1

)1/2 nh

mh
m(∗r)

hi

}
whik

(4)

• m(∗r)
hi = # times the i-th unit in stratum h is used in the

r -th replicate
• Equivalent to RBS for functions of moments
• Applicable to θ̂ obtained from estimating equations
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Bootstrap scheme options
Choice of mh:
• mh ≤ nh − 1 to ensure non-negative replicate weights
• mh = nh − 1: no need for internal scaling
• mh = nh − 3: matching third moments (Rao & Wu 1988)
• Simulation evidence (Kovar, Rao & Wu 1988): for

nh = 5, the choice mh = nh − 1 leads to more stable
estimators with better coverage than mh = nh − 3

Choice of R:
• No theoretical foundations
• Popular choices: R = 100, 200 or 500
• R ≥ design degrees of freedom = n − L
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Bootstrap without replacement
(BWO)

BWO (Sitter 1992a) mimics sampling without replacement

1 Let n∗h = nh − (1− fh), kh = Nh
nh

(1− 1−fh
nh

).

2 Create pseudopopulation: in stratum h, replicate {yhi}
kh times.

3 Take SRSWOR of n∗h units from pseudopopulation
stratum h, combine across h.

4 Compute θ̂(r).
5 Repeat Steps 3–4 for r = 1, . . . ,R.
6 Compute vBWO using (2).
7 Randomize between bracketing integer values for

non-integer n∗h, kh.

Extension to two-stage sample is available.
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Mirror-match bootstrap (MMB)
MMB (Sitter 1992b) for sampling without replacement designs

1 Draw SRSWOR of n∗h < nh PSUs from stratum h.

2 Repeat Step 1 kh = nh(1− f ∗h )/n∗h(1− fh) times.

3 Repeat Steps 1–2 independently for each stratum to form
the r -th replicate.

4 Compute θ̂(r).

5 Repeat Steps 1–4 for r = 1, . . . ,R.

6 Compute vMMB using (2).

• fh = nh/Nh is the original sampling fraction

• f ∗h = n∗h/nh is the bootstrap sampling fraction

• Randomize if mh/kh is not integer

• Rescaling bootstrap: special case with n∗h = 1
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Mean bootstrap
Yung (1997), Yeo, Mantel & Liu (1999)

• Confidentiality protection: units with a weight of 0
belong to the same PSU, risk of identification.

• Replace the number of bootstrap draws m(∗r)
hi by

m̄(∗r)
hi =

1
K

rK∑
k=(r−1)K+1

m(∗k)
hi

• Take K large enough so that IPr∗[m̄(∗r)
hi = 0] is small.

• Proceed to compute the bootstrap weights (4).
• Compute vMBOOT using (2) with scaling factor A = K .
• Number of resulting weight variables = R/K .

Warning: no formal theory have been developed so far.
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Imputed data
Shao & Sitter (1996), Rao (1996); also JASA 91 (434)

Setup:
• XR are the available responses
• XM are the missing data
• AR and AM are indicators of complete/missing data
• Imputation procedure: ηi = J (XR; i), i ∈ AM

• XI = {xi : i ∈ AR} ∪ {ηi : i ∈ AM} are imputed data
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Imputed data
Shao & Sitter (1996): the bootstrap data set should be
imputed in the same way as the original data set was!

1 Draw a bootstrap sample (x (∗r),a(∗r)) of size nh − 1
from XI independently across strata h.

2 For resampled non-respondents i ∈ A(∗r)
M , apply the

imputation procedure η(∗r)
i = J (X(∗r)

R ; i) to obtain
re-imputed data set

X (∗r)
I = {x (∗r)

i : i ∈ A(∗r)
R } ∪ {η(∗r)

i : i ∈ A(∗r)
M }

3 Compute θ̂(r).
4 Repeat Steps 1–3 for r = 1, . . . ,R.
5 Compute variance estimate using (2).
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Balanced bootstraps
Nigam & Rao (1996)

• Special case: mh = nh = n0 for all h
• Balance conditions:∑

r

m(∗r)
hi = R, n0

∑
r

m(∗r)
hi m(∗r)

hj = R(n0δij + n0 − 1),

n0
∑

r

m(∗r)
hi m(∗r)

gk = R,g 6= h

• If n0 = 2m for some integer m, utilize Hadamard
matrices and balanced incomplete block designs

• If n0 = pk for prime p and integer k , utilize Hadamard
matrices and Galois field theory

In general, the second order balance is very difficult to
achieve.
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Variance components bootstrap
Field & Welsh (2007): model-based survey inference

• Balanced random effects model:

Yij = µ+ βi + εij , i = 1, . . . ,n, j = 1, . . . ,m

• Goal: inference for σ2
β , σ2

ε

• Random effects bootstrap: sample β∗i from {β̂i , i = 1, . . . ,n},
ε∗ij from {ε̂ij , i = 1, . . . ,n, j = 1, . . . ,m}

• Residual bootstrap:

1 estimate σ̂2
b , σ̂2

ε

2 form Ĉ = In ⊗ (σ̂2
ε Im + σ̂2

βJm)

3 form whitened residuals r = Ĉ−1/2(y− µ̂)
4 bootstrap r∗ from r
5 form y∗ = µ̂+ Ĉ1/2r∗

• Cluster bootstrap: resample the whole cluster Yi

• All of the above are consistent when n→∞ with m fixed
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Wild bootstrap
Cameron, Miller & Gelbach (2008)

• Regression model:

yi = Xiβ + ui

where i enumerates clusters
• Goal: inference for β̂OLS

• Fit the model by OLS, obtain ûi

• Form the wild bootstrap samples by taking u∗i = z∗i ûi ,
IPr[z∗i = 1] = IPr[z∗i = −1] = 1/2

• Applicable to both variance estimation and distribution
estimation with bootstrap-t

• Simulation evidence: the wild cluster bootstrap
outperforms other cluster bootstraps
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Small area bootstrap
Lahiri (2003)

• For small area i , Yi are observations, Ui are small area
effects, Xi are regressors and Zi are fixed constants

• Small area model:

Yi |Ui ∼ N(Xiβ + ZiUi ,Ri(ψ)), Ui ∼ N(0,Gi(ψ)) (5)

• Quantity of interest:

θi = liβ + λiUi

• BLUP/empirical Bayes predictor:

θ̂i (Yi ; ψ̂) = li β̂(ψ̂)+λ′i Gi (ψ̂)(Z ′i Gi (ψ̂)Zi +Ri (ψ̂))−1[Yi−Xi β̂(ψ̂)]
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Small area bootstrap
• Inferential goal:

MSE[θ̂] = g1(ψ)︸ ︷︷ ︸
due to Ri and Gi

+ g2(ψ)︸ ︷︷ ︸
due to β̂

+ E[(θ̂i(Yi ; ψ̂)− θ̂i(Yi ;ψ))2]︸ ︷︷ ︸
due to ψ̂

• Parametric bootstrap from (5) with estimated
parameters

• Bootstrap estimate:

M̂SEBS = g1(ψ̂) + g2(ψ̂)

− E∗[g1(ψ̂∗) + g2(ψ̂∗)− g1(ψ̂)− g2(ψ̂)]

+ E[(θ̂i(Y ∗i ; ψ̂∗)− θ̂i(Y ∗i ; ψ̂))2]
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Big-O and small-o notation
Before we compare estimators, aside on notation.
For a (deterministic) sequence an, we shall write
• an = O(nα) if |an|/nα ≤ M for sufficiently large n and M
• an = o(nα) if an/nα → 0

Examples:

•
sin n

n
= O(n−1) = o(n−1/2)

• log n = o(nα) for all α > 0
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Big-O and small-o notation
For a sequence of random variables Vn, we shall write
• Vn = Op(nα) if Vn/nα is bounded in the limit in

probability:

∀ε > 0 ∃M,n0 <∞ : IPr[|Vn|/nα > M] < ε for n ≥ n0

for sufficiently large n and M
• Vn = op(nα) if Vn/nα → 0 in probability

Example: X̄ ∼ N(µ, σ2/n)

• V[X̄ ] = O(n−1)

• X̄ − µ = Op(n−1/2)

• v [X̄ ] = s2/n = Op(n−1),
v [X̄ ]/(σ2/n) = 1 + Op(n−1/2) = 1 + op(1)

• t =
X̄ − µ
s/
√

n
= Op(1)
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Comparisons of methods
Linear case: all estimators coincide!

vL = vBRR = vJ = vRBS = vMMB = vBWO = vstr

The bootstrap methods are understood as the
ideal/complete bootstrap. The actual applications may
contain Monte Carlo bootstrap variability.
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Linearization and the jackknife
Nonlinear case:

• The jackknife and linearization are consistent (Krewski
& Rao 1981)

• The six jackknife variance estimators are equivalent up
to Op(n−3) (Rao & Wu 1985)

• Relation to linearization:

vJ = vL
(
1 + Op(n−1)

)
• If nh = 2 for all h,

vJ = vL
(
1 + Op(n−2)

)
Valliant (1996): vJ performs better than vL in model-based
approach to survey inference, ratio estimation,
poststratification.
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Linearization and BRR
In nonlinear case, BRR is consistent (Krewski & Rao 1981);
relative accuracy (Rao & Wu 1985):

vBRR−H = vL
(
1 + Op(n−1/2)

)
vBRR−D = vL

(
1 + Op(n−1)

)
vBRR−S = vL

(
1 + Op(n−1)

)
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Stability
Stability of estimators:

rel.MSE[vm] =
E1/2[(vm − σ2)2]

E[(θ̂ − θ)2]

Simulation evidence (Krewski & Rao 1981, Rao &
Wu 1988, Kovar, Rao & Wu 1988, Sitter 1992a):

1 Linearization (for smooth statistics)
2 The jackknife (for smooth statistics)
3 BRR
4 Bootstrap

• MMB has a slight edge
• RBS with mh = nh − 3 performs poorly
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Confidence intervals
Simulation evidence for both one-sided and two-sided
confidence intervals (Krewski & Rao 1981, Rao &
Wu 1988, Kovar, Rao & Wu 1988, Sitter 1992a):

1 Bootstrap
• MMB has a slight edge
• RBS with mh = nh − 3 performs poorly

2 BRR
3 The jackknife (inconsistent for non-smooth statistics)
4 Linearization (inconsistent for non-smooth statistics)
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Comparisons of methods
Shao (1996): “. . . the choice of the method may depend
more on nonstatistical considerations, such as the feasibility
of their implementation. . . Blindly applying the resampling
methods may yield incorrect results”

Similar properties in pairs of methods:

• BRR is a special case of second-order balanced
bootstrap

• Delete-1 jackknife and linearization are almost identical
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Review questions
1 Which of the survey bootstrap methods has the most

demanding memory requirements? The most
demanding computational requirements?

2 How can stability of the bootstrap estimators improved?
3 Can the mean bootstrap be used for imputed data?
4 Give an example of an applied problem where the

bootstrap will be preferred to linearization; linearization
will be preferred to the bootstrap.
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Software implementation
1 Cheat codes: bootstrap weights as BRR weights
2 Stata: bsweights and bs4rw packages
3 R: survey package, svrepdesign and
as.svrepdesign
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Cheat codes
Phillips (2004):

• The variance formula is (2) for both BRR and the
bootstrap.

• Bootstrap weights as BRR weights!
• The mean bootstrap can be used with Fay’s correction.

SUDAAN:
proc procname data=... design=BRR;

weight = sampling weight ;
repwgt = bootstrap weights / adjfay = K
...

run;
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Stata survey features
• svy suite of routines described in 170 pages manual
• Design flexibility: stratification, clustering, multiple

stages of selection, probability weights, finite population
corrections

• Estimation commands: totals, means, ratios,
contingency tables with Rao-Scott corrections, GLM,
microeconometrics, Cox regression

• Variance estimation: linearization, BRR, the jackknife
• Poststratification
• Post-estimation features: DEFF, MEFF, Wald tests

Complex survey bootstrap is implemented by bsweights
(by Stas Kolenikov) in conjunction with bs4rw (by Jeff
Pitblado of Stata Corp.).
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bsweights syntax
bsweights prefix, reps(#) n(#) [balanced
replace calibrate(command @) verbose
seed(#)]

• reps() specifies the number of replications; required
option.

• n() specifies the number of units to be resampled from each
stratum; required option.

• balanced specifies balanced bootstrap.

• calibrate calls command substituting the name of the
current replicate weight for @, and verbose shows the
output of the calibrating command.

• replace allows overwriting the existing set of weights.

• seed(#) sets the pseudo-random number generator seed.
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bs4rw syntax
bs4rw

[
expression list

]
, rweights(varlist)[

vfactor(#) mse options
]
: command

• rweights(varlist) specifies the bootstrap replicate
variables; required option.

• vfactor(#) specifies the scaling factor A.
• mse requests to compute the MSE estimator; the default is to

compute the variance estimator.
• options: output and reporting options.
• command : the estimation procedure to be bootstrapped;

must contain the original sampling weights.

Bootstrap postestimation features (bias estimates and
confidence intervals) are available with estat bootstrap.
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Calibration
• Option calibrate(call @) allows to call an external

program to perform additional adjustments on weights.
• The replication weight variables will be substituted for

@ in the above call.
• Subpopulation estimation: set weights outside the

subpopulation to zero.
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Balancing conditions
First order balance can be achieved by bsweights:

• Each unit in stratum h is used the same number of
times dh.

• Total number of units used in all replications:
dhnh = mhR.

• Balancing condition: mhR is a multiple of nh for all h;
e.g., if nh takes values 2, 3, 4 and 5, R must be a
multiple of 3 · 4 · 5 = 60.

Second order balance is difficult to satisfy for an arbitrary
design.
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Limitations
What bsweights cannot do:

• Design effect: a post-estimation feature, use Phillips
(2004) trick

• Bootstrap t-percentiles of jackknife-after-bootstrap

D[t ] =
θ̂ − θ
√

vJ

.
= D[t∗] =

θ̂∗ − θ̂√
v∗J

• Finite population corrections
• Missing and imputed data: need a customized

command to re-impute missing data and estimate the
model

• Other survey bootstraps (MMB, BWO)
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R implementation
R survey capabilities (Lumley forthcoming):

• Design flexibility: stratification, clustering, multiple
stages of selection, probability weights, finite population
corrections, two-phase designs

• Poststratification, raking and GREG calibration
• Estimation commands: totals, means, ratios, quantiles,

contingency tables with Rao-Scott corrections, GLM,
quasi-MLE, Cox regression

• Graphics for survey data
• Interface to mi package also written by the Thomas

Lumley
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R implementation
Replication variance estimation

• R, generating weights: as.svrepdesign()
• The jackknife:
as.svrepdesign(design=...,type="JKn")

• BRR:
as.svrepdesign(design=...,type="BRR")

• Utilities to produce Hadamard matrices are included
• RBS with mh = nh − 1:
as.svrepdesign(design=...,
type="subbootstrap",replicates=...)

• Extract weights: weights(design=...)
• R, applying weights: svrepdesign()

• type= as above
• Separate data frames for variables, sampling weight

and replication weights
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Stata exercises
1 Run the bootstrap with and without balancing using

several different seeds with the same number of
replicates. Compare the results, including both the
standard errors and bias estimates.

2 Modify the calibration program to calibrate the weights
on gender and region.

3 (Lack of identification — trick question!) Provide the
bootstrap analogue of
svy, subpop(region1): logistic highbp
female black orace

Run each of the examples to produce estimation output!
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What I covered was. . .

1 Bootstrap for i.i.d. data

2 Variance estimation for complex surveys

3 Survey bootstraps

4 Software implementation

5 References



Survey
bootstrap

Stas
Kolenikov

Bootstrap for
i.i.d. data

Variance
estimation for
complex
surveys

Survey
bootstraps

Software im-
plementation

Conclusions

References

Question I don’t know how to
answer

• Can I use the survey bootstrap for multilevel models?
• How can I apply the bootstrap to longitudinal data?
• I am using [the name of a complicated estimation

procedure with several steps]. Can the bootstrap be
used to provide the standard errors?

• Do I really have to run R = 500 bootstrap replications
for the imputed data bootstrap if I can get good results
with M = 5 multiple imputations?
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Overview questions
For a given situation, suggest the most appropriate variance
estimation technique. Explain your choice.

1 You have collected some data on local businesses in a
stratified one-stage equal probability sampling design with a
handful of strata and several dozens observations in each
stratum. You need to estimate several totals and proportions,
and run a couple of regression analysis.

2 You are preparing a data set from a large scale survey for
public release. The sampling design includes several
hundreds PSUs arranged into strata, between 1 and 3 PSUs
per stratum. You want the future users to be able to run any
analysis they would need.

3 You are preparing an in-house report on income distribution
and poverty for an existing large scale economics survey
data with complex design. You have access to all the
relevant design information, but you need to make sure that
your report does not contain any information that could lead
to confidentiality breaches.
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Major references
• Shao (1996): a deep review of theory of resampling

methods
• Rust & Rao (1996): a straightforward explanation of the

methods with medical applications
• Rao & Wu (1988) and Rao, Wu & Yue (1992): major

rescaling bootstrap papers
• Wolter (2007): in-depth advanced level coverage of all

mathematical details

See list with links to full text at http://www.citeulike.
org/user/ctacmo/tag/ce_jsm09_svy_bstrap

http://www.citeulike.org/user/ctacmo/tag/ce_jsm09_svy_bstrap
http://www.citeulike.org/user/ctacmo/tag/ce_jsm09_svy_bstrap
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Notation I
The generic datum xhij denotes the measurement on variable y
taken on the j-th observation in the i-th PSU in stratum h.

h stratum index; h = 1, . . . ,L
i PSU index within strata; i = 1, . . . ,nh
j observation index within PSU
L number of strata
mh bootstrap sample size; the number of PSUs

resampled from stratum h
m(∗r)

hi bootstrap frequency; the number of times unit h, i
is sampled in the r -th replicate

n total sample size; the total number of PSUs
in the sample: n =

∑L
h=1 nh

N population size; the total number of PSUs
in the population: N =

∑L
h=1 Nh

nh sample size in stratum h; the number of PSUs
taken from stratum h

Nh population size; the number of PSUs in stratum h
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Notation II
R the number of replicates; the number of replicate

weights in the mean bootstrap
T [x ] population total: T [x ] =

∑
h
∑

i
∑

j xhij

t [x ] estimate of the population total T [x ]

v [θ̂] estimator of variance V[θ̂]

vm[θ̂] estimator of variance V[θ̂] obtained by method m;
the methods include linearization L, the jackknife J, BRR,
or bootstrap schemes RBS, MMB, BWO and BWR

V[θ̂] (design) variance of the estimate θ̂ with respect to
the sampling distribution

Wh fraction of stratum h in population: Wh = Nh/N
whij sampling weight of unit h, i , j
w (r)

hij replicate weight of unit h, i , j in the r -th replicate
θ population parameter, such as total, mean, ratio,

regression coefficient
θ̂ parameter estimate obtained from survey data
θ̂(r) parameter estimate obtained in the r -th replicate
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Notation III
BRR balanced repeated replication 39
BWO bootstrap without replacement 50
MSE mean-squared error
NBS naı̈ve bootstrap 48
MMB mirror-match bootstrap 53
PSU primary sampling unit 26
RBS rescaling bootstrap 49
SRSWOR simple random sample without replacement
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Survey bootstrap theory:
SRSWR I

• Design: SRSWR sampling n out of N
• Population parameters:

x̄U =
1
N

∑
i∈U

xi , σ2 =
1
N

∑
i∈U

(xi − x̄)2

• Sample statistics:

x̄ =
1
n

∑
i∈S

xi , s2 =
1

n − 1

∑
i∈S

(xi − x̄)2

• Bootstrap sample: SRSWR n∗ out of n units, x∗i from
{x1, . . . , xn}
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Survey bootstrap theory:
SRSWR II

• Ideal bootstrap variance:

V∗[x∗1 ] =
1
n

∑
i

(xi − x̄)2 =
n − 1

n
s2

V∗[x̄ ] =
1
n∗ V∗[x∗1 ] =

n − 1
nn∗

s2 6= v [x̄ ] =
s2

n

• Unbiased: only if n∗ = n
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Survey bootstrap theory:
SRSWOR I

• Design: SRSWOR sampling n out of N
• Population parameters:

x̄U =
1
N

∑
i∈U

xi , S2 =
1

N − 1

∑
i∈U

(xi − x̄)2

• Sample statistics:

x̄ =
1
n

∑
i∈S

xi , s2 =
1

n − 1

∑
i∈S

(xi − x̄)2

• Bootstrap sample: SRSWR n∗ out of n units, x∗i from
{x1, . . . , xn}
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Survey bootstrap theory:
SRSWOR II

• Ideal bootstrap variance:

V∗[x∗1 ] =
1
n

∑
i

(xi − x̄)2 =
n − 1

n
s2

V∗[x̄ ] =
1
n∗ V∗[x∗1 ] =

n − 1
nn∗

s2 6= v [x̄ ] = (1− f )
s2

n

• Solutions:
• scale the variance by (1− f )n∗/(n − 1)
• use internal scaling (Rao & Wu 1988)
• use special algorithms (BWR, BWO, MMB)

Jump back to the middle of the notes
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The end
• Questions? Clarifications? Additional help? Email me:

kolenikovs@missouri.edu
• Please fill ASA course evaluation forms.
• If you liked this course, invite me to give it at your

organization.

THANKS!


