Bootstrap for complex survey data

Stas Kolenikov

Department of Statistics
University of Missouri-Columbia

JSM 2009
 Washington, DC

Educational objectives

Upon completion of this course, you will

- become familiar with main variance estimation methods for complex survey data, their strengths and weaknesses
- be able to identify appropriate variance estimation methods depending on the sample design, complexity of the problem, confidentiality protection
- know how to utilize the existing bootstrap weights
- know how to create bootstrap weights in Stata and R
- know how to choose parameters of the bootstrap

Outline

(1) Bootstrap for i.i.d. data
(2) Variance estimation for complex surveys
(3) Survey bootstraps
(4) Software implementation
(5) References

The bootstrap for i.i.d. data

(1) Bootstrap principle
(2) Bootstrap bias and variance estimates
(3) Bootstrap confidence intervals
(4) More bootstrap theory
(5) Some extensions

Bootstrap principle

- Population: distribution F, parameter $\theta=T(F)$, both can be multivariate
- Sample: data $X_{1}, \ldots, X_{n} \sim$ i.i.d. F, distribution F_{n}, parameter estimate $\hat{\theta}_{n}=T\left(F_{n}\right)$
- Inference: need to know distribution $\mathcal{D}\left[\hat{\theta}_{n}\right]$, often in asymptotic form $\operatorname{Pr}\left[\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)<x\right]$
- Bootstrap: use F_{n} to take samples from
- Bootstrap samples: $X_{1}^{*}, \ldots, X_{n}^{*} \sim$ i.i.d. F_{n}, distribution F_{n}^{*}, parameter estimate $\hat{\theta}_{n}^{*}=T\left(F_{n}^{*}\right)$

$$
\begin{array}{lll}
F & \text { sample } & F_{n} \xrightarrow{\text { bootstrap }} \\
\downarrow T & F_{n}^{*} \\
\downarrow T & \downarrow T & \downarrow T \\
\theta & \xrightarrow{\longleftrightarrow} & \hat{\theta}_{n} \xrightarrow{\text { bootstrap }}
\end{array} \hat{\theta}_{n}^{*}
$$ bootstrap

Stas Kolenikov

Aside: what is T ?

T does something to distribution F that results in a number or a vector: $\theta=T(F)$.

- T finds a point where $F(x)=1 / 2: \theta$ is the median of the distribution
- T takes an expected value with respect to F :

$$
\theta=\mathbb{E}[X]=\int x F(d x)
$$

- T finds a solution to $\int(y-\theta x) F(d x, d y)=0$:

$$
\theta=\mathbb{E}[y] / \mathbb{E}[x]
$$

Bootstrap principle

$$
\begin{align*}
\operatorname{Bias}\left[\hat{\theta}_{n}\right] & =\mathbb{E}\left[\hat{\theta}_{n}-\theta\right] & & \doteq \mathbb{E}^{*}\left[\hat{\theta}_{n}^{*}-\hat{\theta}_{n} \mid \mathbf{X}\right] \\
\mathbb{V}\left[\hat{\theta}_{n}\right] & =\mathbb{E}\left[\left(\hat{\theta}_{n}-\mathbb{E}\left[\hat{\theta}_{n}\right]\right)^{2}\right] & & \doteq \mathbb{E}^{*}\left[\left(\hat{\theta}_{n}^{*}-\mathbb{E}\left[\hat{\theta}_{n}^{*}\right]\right)^{2} \mid \mathbf{X}\right] \\
\operatorname{MSE}\left[\hat{\theta}_{n}\right] & =\mathbb{E}\left[\left(\hat{\theta}_{n}-\theta\right)^{2}\right] & & \left.\doteq \mathbb{E}^{*}\left[\left(\hat{\theta}_{n}^{*}-\theta_{n}\right]\right)^{2} \mid \mathbf{X}\right] \\
F_{\theta_{n}-\theta}(x) & =\operatorname{Pr}\left[\hat{\theta}_{n}-\theta<x\right] & & \doteq \operatorname{Pr}^{*}\left[\hat{\theta}_{n}^{*}-\hat{\theta}_{n}<x \mid \mathbf{X}\right] \tag{1}
\end{align*}
$$

Survey

Monte Carlo bootstrap

As taking n^{n} bootstrap samples is not feasible, use Monte Carlo simulation instead:
(1) For the r-th bootstrap sample, take a simple random sample with replacement $X_{1}^{(* r)}, \ldots, X_{n}^{(* r)}$ from X_{1}, \ldots, X_{n}.
(2) Compute the parameter estimate of interest $\hat{\theta}_{n}^{(* r)}$.
(3) Repeat Steps 1-2 for $r=1, \ldots, R$.
(4) Approximate the ideal bootstrap distribution with distribution of $\hat{\theta}_{n}^{(* 1)}, \ldots, \hat{\theta}_{n}^{(* R)}$.

Estimates of bias and variance

Estimate of the bias:

$$
\operatorname{Bias}\left[\hat{\theta}_{n}\right]=\mathbb{E}\left[\hat{\theta}_{n}-\theta\right] \doteq \mathbb{E}^{*}\left[\hat{\theta}_{n}^{*}-\hat{\theta}_{n} \mid \mathbf{X}\right] \approx \frac{1}{R} \sum_{r=1}^{R} \hat{\theta}_{n}^{(* r)}-\hat{\theta}_{n}
$$

Bias corrected estimate:

$$
\tilde{\theta}_{n}=2 \hat{\theta}_{n}-\frac{1}{R} \sum_{r=1}^{R} \hat{\theta}_{n}^{(* r)}
$$

Variance estimate:

$$
\begin{aligned}
& \mathbb{V}\left[\hat{\theta}_{n}\right]=\mathbb{E}\left[\left(\hat{\theta}_{n}-\mathbb{E}\left[\hat{\theta}_{n}\right]\right)^{2}\right] \doteq \mathbb{E}^{*}\left[\left(\hat{\theta}_{n}^{*}-\mathbb{E}\left[\hat{\theta}_{n}^{*}\right]\right)^{2} \mid \mathbf{X}\right] \\
& \quad \approx \frac{1}{R} \sum_{r=1}^{R}\left(\hat{\theta}_{n}^{(* r)}-\frac{1}{R} \sum_{l=1}^{R} \hat{\theta}_{n}^{(* /)}\right)^{2} \equiv v_{B O O T}\left[\hat{\theta}_{n}\right]
\end{aligned}
$$

Number of samples

 How to chose the number of the bootstrap samples R ?- Stability of the standard errors:

$$
\operatorname{cv}^{*}\left(s_{R}\right) \approx \sqrt{\frac{\hat{\kappa}+2}{4 R}}
$$

where $\hat{\kappa}$ is the kurtosis of $\hat{\theta}_{n}^{*}$

- Confidence interval accuracy:

$$
\mathrm{cv}^{*}\left(C B_{R}-\hat{\theta}_{n}\right) \approx \frac{1}{\left|z_{\alpha}\right|} \sqrt{\frac{1}{R}\left(\frac{1}{\phi(0)^{2}}-\frac{2(1-\alpha)}{\phi(0) \phi\left(z_{\alpha}\right)}+\frac{\alpha(1-\alpha)}{\phi\left(z_{\alpha}\right)^{2}}\right)}
$$

where $C B_{R}$ is the confidence bound with level $1-\alpha$

- Estimation of moments: $R=50-200$
- Estimation of quantiles/distribution functions: $R \geq 1000$

Percentile confidence intervals

Idea:

$$
\operatorname{Pr}\left[\hat{\theta}_{n}-\theta<x\right] \doteq \operatorname{Pr}^{*}\left[\hat{\theta}_{n}^{*}-\hat{\theta}_{n}<x \mid \mathbf{X}\right]
$$

Lower confidence bound of level α :

$$
K_{B O O T}^{-1}(\alpha)
$$

where

$$
K_{\text {BOOT }}(x)=\operatorname{Pr}^{*}\left[\hat{\theta}_{n}^{*} \leq x\right]
$$

is the (ideal or Monte Carlo) bootstrap distribution of $\hat{\theta}_{n}^{*}$.

Idea:

$$
\hat{\theta}_{n} \approx N\left(\theta, \sigma_{n}^{2}\right) \doteq \hat{\theta}_{n}^{*} \approx N\left(\hat{\theta}, \sigma_{n}^{* 2}\right)
$$

Lower confidence bound of level α :

$$
\hat{\theta}_{n}+\sigma_{n}^{*} \Phi^{-1}(\alpha)
$$

where $\sigma_{n}^{* 2}$ is the variance of the bootstrap distribution.

Idea: pivotal quantity

$$
t=\left(\hat{\theta}_{n}-\theta\right) / \hat{\sigma}_{n}
$$

has asymptotic distribution that is the same for all $\langle F, \theta\rangle$.
Lower confidence bound of level α :

$$
\hat{\theta}_{n}-\hat{\sigma}_{n} G_{B O O T}^{-1}(1-\alpha)
$$

where

$$
G_{B O O T}(x)=\operatorname{Pr}^{*}\left[\left(\hat{\theta}_{n}^{*}-\hat{\theta}_{n}\right) / \hat{\sigma}_{n}^{*} \leq x\right]
$$

is the bootstrap distribution of the above pivot.

Bias corrected Cl

Idea: $\phi_{n}(\cdot)$ is an increasing transformation (e.g., variance stabilizing, skewness reducing); assume

$$
\operatorname{Pr}\left[\phi_{n}\left(\hat{\theta}_{n}\right)-\phi_{n}(\theta)+z_{0} \leq x\right] \approx \Phi(x)
$$

Lower confidence bound of level α :

$$
K_{B O O T}^{-1}\left(\Phi\left(z_{\alpha}+2 \Phi^{-1}\left(K_{\text {BOOT }}\left(\hat{\theta}_{n}\right)\right)\right)\right)
$$ bootstrap

Accelerated bias corrected Cl

Idea:

$$
\operatorname{Pr}\left[\frac{\phi_{n}\left(\hat{\theta}_{n}\right)-\phi_{n}(\theta)}{1+\boldsymbol{a} \phi_{n}(\theta)}+z_{0} \leq x\right] \approx \Phi(x)
$$

with tuning parameter a correcting for skewness of $\phi_{n}(\hat{\theta})$.
Lower confidence bound of level α :

$$
K_{B O O T}^{-1}\left(\Phi\left(z_{0}+\left(z_{\alpha}+z_{0}\right) /\left(1-a\left(z_{\alpha}+z_{0}\right)\right)\right)\right)
$$

Parameter a needs to be computed or estimated, e.g. via the jackknife.

Asymptotic justification of the bootstrap

Let us look at the diagram again:

$$
\begin{array}{lll}
F & \text { sample } & F_{n} \xrightarrow{\text { bootstrap }} \\
\downarrow T & F_{n}^{*} \\
\downarrow T & & \downarrow T \\
\theta & \stackrel{?}{\longleftrightarrow} & \hat{\theta}_{n} \\
\text { bootstrap }
\end{array} \longleftrightarrow \hat{\theta}_{n}^{*}
$$

When would the relation between $\hat{\theta}_{n} \longleftrightarrow \hat{\theta}_{n}^{*}$ be similar to the one between $\hat{\theta} \longleftrightarrow \hat{\theta}_{n}$?

Asymptotic justification of the bootstrap

- The bootstrap can only be successful if F_{n} is sufficiently close to F for the bootstrap distribution $\mathcal{D}^{*}\left[\hat{\theta}_{n}^{*}\right]$ to resemble the sampling distribution $\mathcal{D}\left[\hat{\theta}_{n}\right]$.
- Small deviations of F_{n} from F must translate to small deviations of $\mathcal{D}^{*}\left[\hat{\theta}_{n}^{*}\right]$ from $\mathcal{D}\left[\hat{\theta}_{n}\right]$.
- Taylor series expansion/the delta method for $\theta=T(F)$:

$$
\begin{aligned}
\hat{\theta}_{n}-\theta & =\left.\nabla T\right|_{F}\left(F_{n}-F\right)+o\left(\left\|F_{n}-F\right\|\right), \\
\hat{\theta}_{n}^{*}-\hat{\theta}_{n} & =\left.\nabla T\right|_{F_{n}}\left(F_{n}^{*}-F_{n}\right)+o\left(\left\|F_{n}^{*}-F_{n}\right\|\right)
\end{aligned}
$$

- Functional T must satisfy some smoothness conditions, and its "derivative" should be bounded away from zero.
- F_{n}^{*} must converge to F_{n} at the same rate as F_{n} converges to F.

Sometimes, the simple bootstrap as described above produces a misleading answer.

- Non-i.i.d. data: time series, spatial data, clustered surveys, overdispersed count data (Canty, Davison, Hinkley \& Ventura 2006)
- Non-regular problems (Shao \& Tu 1995, Sec. 3.6)
- Certain heavy tailed distributions (Canty, Davison, Hinkley \& Ventura 2006)
- Zero derivatives (Andrews 2007): \bar{X}_{n}^{2} when $\mu=0$
- Non-smooth functions (Bickel \& Freedman 1981): $\left|\bar{X}_{n}\right|$, sample quantiles/extreme order statistics $/ \mathrm{min} / \mathrm{max}$
- Different rates of convergence (Canty, Davison, Hinkley \& Ventura 2006): sample mode, shrinkage and kernel estimators
- Constrained estimation (Andrews 2000): \bar{X}_{n} when $\mu \geq 0$

Bootstrap tests

$$
H_{0}: T(F)=\theta_{0} \quad \text { vs. } \quad H_{1}: T(F) \neq \theta_{0}
$$

To compute the p^{*}-values of the bootstrap distribution, one needs to sample from the distribution that satisfies H_{0}. For continuous problems, the data distribution won't satisfy H_{0} with probability 1 . The data need to be transformed prior to the bootstrap:

- shift?
- scale?
- rotation?
- reweighting?

Non-parametric flavor will likely be lost.

Balanced bootstrap

Motivation: if $\hat{\theta}_{n}=T\left(F_{n}\right)=\bar{X}_{n}$, the complete bootstrap gives $\mathbb{E}^{*}\left[\hat{\theta}_{n}^{*}\right]=\bar{X}_{n}$ and $\mathbb{V}^{*}\left[\hat{\theta}_{n}^{*}\right]=s^{2} / n$. Is it possible to match the moments of the simulated bootstrap?

- Equality for the mean:

$$
\frac{1}{R} \sum_{r} \bar{X}_{n}^{(* r)}=\frac{1}{n R} \sum_{i} X_{i} \sum_{r} f_{i}^{(* r)}=\frac{1}{n} \sum_{i} X_{i}
$$

$f_{i}^{(* r)}=\#$ times unit i is used in the r-th bootstrap sample

- First order balance (Davison, Hinkley \& Schechtman 1986):

$$
\sum_{r} f_{i}^{(* r)}=R \text { for all } i
$$

- Practical implementation: permutation of $\{1, \ldots, n\}^{R}$ (Gleason 1988)

Balanced bootstrap

- Equality for the variance:

$$
\begin{gathered}
\frac{1}{R n^{2}} \sum_{r}\left[\sum_{i}\left(f_{i}^{(* r)}-1\right)^{2} X_{i}+\sum_{i \neq j}\left(f_{i}^{(* r)}-1\right)\left(f_{j}^{(* r)}-1\right) X_{i} X_{j}\right] \\
=\frac{n-1}{n^{3}} \sum\left(1-\frac{1}{n}\right)^{2} X_{i}+\frac{1}{n^{3}} \sum_{i \neq j} X_{i} X_{j}
\end{gathered}
$$

- Second order balance (Graham, Hinkley, John \& Shi 1990): for all i, j

$$
n \sum_{r} f_{i}^{(* r) 2}=R(2 n-1), \quad n \sum_{r} f_{i}^{(* r)} f_{j}^{(* r)}=R(n-1)
$$

- Additional restriction: R must be a multiple of n
- Practical implementation: orthogonal arrays and incomplete block designs

Special situation: heteroskedastic regression (Wu 1986) or non-parametric regression (Härdle 1990).
(1) Fit regression model $y_{i}=\widehat{f}\left(x_{i}\right)+e_{i}$
(2) Bootstrap distribution of residuals ϵ_{i}^{*} in observation i :

$$
\mathbb{E}^{*}\left[\epsilon_{i}^{*}\right]=0, \quad \mathbb{E}^{*}\left[\epsilon_{i}^{* 2}\right]=e_{i}^{2}, \quad \mathbb{E}^{*}\left[\epsilon_{i}^{* 3}\right]=e_{i}^{3}
$$

Example: two-point golden rule distribution:

$$
\epsilon_{i}^{*}=e_{i}(1 \pm \sqrt{5}) / 2 \text { with prob. }(5 \mp \sqrt{5}) / 10
$$

(3) Form bootstrap samples as $y_{i}^{*}=\widehat{f}\left(x_{i}\right)+\epsilon_{i}^{*}$

Review questions

(1) Explain how the bootstrap can be used to estimate $\mathrm{CV}\left[\bar{X}_{n}\right]$.
(2) Suggest a method to compute $\hat{\sigma}_{n}$ for bootstrap- t confidence interval method.
(3) Given that the kurtosis of the bootstrap distribution is 0.5 , find the number of replicates needed to make the CV of the bootstrap standard errors equal to 5%.
4. (requires calculus) Assuming all X_{i} 's are distinct, find $\lim _{n \rightarrow \infty} \operatorname{Pr}^{*}\left[X_{(n)}^{*}=X_{(n)}\right]$ where $X_{(n)}$ is the maximum in the data, and $X_{(n)}^{*}$ is the maximum in the bootstrap sample. Hint: find the probability of the complement of this event.

1. $C V[\bar{x}]$? $-\left(\Delta[\bar{x}]^{1 / 2} / \bar{x}\right.$

$$
\begin{array}{r}
\text { 2. } \hat{\sigma}_{n}=2 \text { LINEARIZATION, JACKKNIFE, BOOT } \\
3 C V=\sqrt{\frac{K+2}{4 R}}=0,05=\sqrt{\frac{2,5}{4 R}, 0002 S}=\frac{2,5}{4 R} \\
R=\frac{2,5}{00025 \cdot 4}=250
\end{array}
$$

4 PI

Variance estimation for complex

 surveys(1) Features of complex survey data
(2) Linearization variance estimation
(3) Replication methods: overview
(4) Jackknife
(5) BRR

Survey settings

- Complex survey designs include stratification, cluster samples, multiple stages of selection, unequal probabilities of selection, non-response and post-stratification adjustments, longitudinal and rotation features.
- Unless utmost precision is required (or sampling fractions are large), it suffices to approximate real designs by two-stage stratified designs with PSUs sampled with replacement.
- Notation:
- L = \# strata
- $n_{h}=\#$ units in stratum h
- PSUs are indexed by i
- SSUs are indexed by j
- generic datum is $x_{h i j}$

Survey bootstrap

Variance estimation goals

- Reporting and analytic purposes: a survey analyst needs standard errors to include in the report; an applied researcher needs standard errors to test their substantive models.
- Design purposes: a sample designer needs to know population variances to find efficient designs, strata allocations, small area estimators. bootstrap

Explicit variance formulae

For a (very) limited number of statistics, explicit variance formulae are available.

Horvitz-Thompson estimator:

$$
t_{H T}[x]=\sum_{i \in \mathcal{S}} \frac{x_{i}}{\pi_{i}}
$$

Design variance:

$$
\mathbb{V}\left[t_{H T}[x]\right]=\frac{1}{2} \sum_{i \neq j \in \mathcal{U}}\left(\pi_{i} \pi_{j}-\pi_{i j}\right)\left(\frac{x_{i}}{\pi_{i}}-\frac{x_{j}}{\pi_{j}}\right)^{2}
$$

Yates-Grundy-Sen variance estimator:

$$
v_{Y G S}=\frac{1}{2} \sum_{i \neq j \in \mathcal{S}} \frac{\pi_{i} \pi_{j}-\pi_{i j}}{\pi_{i j}}\left(\frac{x_{i}}{\pi_{i}}-\frac{x_{j}}{\pi_{j}}\right)^{2}
$$

Stratified sample:

$$
\begin{gathered}
v_{s t r}\left[t_{s t r}[x]\right]=\sum_{h=1}^{L}\left(1-f_{h}\right) \frac{n_{h}}{n_{h}-1} \sum_{i=1}^{n_{h}}\left(t_{h i}-\bar{t}_{h}\right)^{2} \\
t_{h i}=\sum_{j \in \mathrm{PSU}_{h i}} \frac{x_{h i j}}{\pi_{h i j}} \\
\bar{t}_{h}=\frac{1}{n_{h}} \sum_{i=1}^{n_{h}} t_{h i}
\end{gathered}
$$ bootstrap

Linearization variance estimator

- $\theta=f\left(T\left[x_{1}\right], \ldots, T\left[x_{k}\right]\right)$ is a function of moments
- $\hat{\theta}=f\left(t\left[x_{1}\right], \ldots, t\left[x_{k}\right]\right)$ is its estimator
- Taylor series expansion/delta method:

$$
\hat{\theta}=\theta+\nabla f(t[\mathbf{x}]-T[\mathbf{x}])+\ldots
$$

- Hence

$$
v_{L}[\hat{\theta}] \approx \widehat{\operatorname{MSE}}[\hat{\theta}] \approx v\left[\sum_{k} \frac{\partial f}{\partial t_{k}} t_{k}\right]
$$

- Regularity conditions: $\partial f /\left.\partial t_{k}\right|_{T[\mathbf{x}]} \neq 0$.
- Example: ratio $r=t[y] / t[x]$, variance estimator

$$
v_{L}[r]=\frac{1}{t[x]^{2}} v\left(e_{i}\right), \quad e_{i}=y_{i}-r x_{i}, \quad T[x] \neq 0
$$ bootstrap

Linearization variance estimator

- $\hat{\theta}$ solves estimating equations

$$
g(\mathbf{x}, \hat{\theta})=\sum_{i \in \mathcal{S}} \frac{g\left(x_{i}, \hat{\theta}\right)}{\pi_{i}}=0
$$

- Taylor series expansion:

$$
g(\mathbf{x}, \hat{\theta})-g(\mathbf{x}, \theta)=\nabla g \cdot(\hat{\theta}-\theta)+\ldots
$$

- Invert it and account for $g(\mathbf{x}, \hat{\theta})=0$ to obtain

$$
\hat{\theta}-\theta=-(\nabla g)^{-1} g(\mathbf{x}, \theta)+\ldots
$$

- Take the variance and plug the estimates:

$$
v_{L}[\hat{\theta}] \approx \widehat{\operatorname{MSE}}[\hat{\theta}] \approx(\nabla g)^{-1} v[g(\mathbf{x}, \hat{\theta})](\nabla g)^{-1 T}
$$

- Example: GLM (Binder 1983)

For a given estimation procedure $\left(X_{1}, \ldots, X_{n}\right) \mapsto \hat{\theta}$:
(1) To create data for replicate r, reshuffle PSUs, omitting some and/or repeating others, according to a certain replication scheme.
(2) Using the original estimation procedure and the replicate data, obtain parameter estimate $\hat{\theta}^{(r)}$.
(3) Repeat Steps 1-2 for $r=1, \ldots, R$.
(4) Estimate variance/MSE as

$$
\begin{equation*}
v_{m}[\hat{\theta}]=\frac{A}{R} \sum_{r=1}^{R}\left(\hat{\theta}^{(r)}-\tilde{\theta}\right)^{2} \tag{2}
\end{equation*}
$$

where A is a scaling parameter, $\tilde{\theta}=\sum_{r} \hat{\theta}^{(r)} / R$ for variance estimation and $\tilde{\theta}=\hat{\theta}$ for MSE estimation.
Alternative implementation: replicate weights $w_{h i j}^{(r)}$

Pros and cons of resampling estimators

+ Only need software that does weighted estimation; no need to program specific estimators for each model
+ No need to release unit identifiers in public data sets
- Computationally intensive
- Post-stratification and non-response adjustments need to be performed on every set of weights
- Bulky data files with many weight variables

The jackknife

Kish \& Frankel (1974), Krewski \& Rao (1981)

- Replicates: omit only one PSU from the entire sample
- Replicate weights: if unit k from stratum g is omitted,

$$
w_{h i j}^{(g k)}= \begin{cases}0, & h=g, i=k \\ \frac{n_{g}}{n_{g}-1} w_{h i j}, & h=g, i \neq k \\ w_{h i j}, & h \neq g\end{cases}
$$

- Number of replicates: $R=n$
- Scaling factor in (2):

$$
A= \begin{cases}n-1, & L=1 \\ n_{h}-1 \text { within strata, } & L>1\end{cases}
$$

The jackknife

Variance estimators:

$$
\begin{aligned}
& v_{J 1}=\sum_{h} \frac{n_{h}-1}{n_{h}} \sum_{i}\left(\hat{\theta}^{(h i)}-\hat{\theta}^{h}\right)^{2} \\
& v_{J 2}=\sum_{h} \frac{n_{h}-1}{n_{h}} \sum_{i}\left(\hat{\theta}^{(h i)}-\hat{\theta}\right)^{2} \\
& v_{J 3}=\sum_{h} \frac{n_{h}-1}{n_{h}} \sum_{i}\left(\hat{\theta}^{(h i)}-\sum_{g} \sum_{k} \hat{\theta}^{(g k)} / n\right)^{2} \\
& v_{J 4}=\sum_{h} \frac{n_{h}-1}{n_{h}} \sum_{i}\left(\hat{\theta}^{(h i)}-\sum_{h} \hat{\theta}^{h} / L\right)^{2}
\end{aligned}
$$

where

$$
\hat{\theta}^{h}=\sum_{i} \hat{\theta}^{(h i)} / n_{h}
$$

The jackknife

Pseudo-values:

$$
\tilde{\theta}^{(h i)}=n_{h} \hat{\theta}^{h}-\left(n_{h}-1\right) \hat{\theta}^{(h i)}
$$

More variance estimators:

$$
\begin{aligned}
& v_{J 5}=\sum_{h} \frac{1}{\left(n_{h}-1\right) n_{h}} \sum_{i}\left(\tilde{\theta}^{(h i)}-\sum_{g} \sum_{k} \tilde{\theta}^{(g k)} / n\right)^{2} \\
& v_{J 6}=\sum_{h} \frac{1}{\left(n_{h}-1\right) n_{h}} \sum_{i}\left(\tilde{\theta}^{(h i)}-1 / L \sum_{g} 1 / n_{g} \sum_{k} \tilde{\theta}^{(g k)}\right)^{2}
\end{aligned}
$$

Bias corrected point estimator:

$$
\hat{\theta}_{J}=(n+1-L) \hat{\theta}-\sum_{h}\left(n_{h}-1\right) \hat{\theta}^{h}
$$ bootstrap

The jackknife/linearization failures

Linearization and the jackknife estimators are inconsistent for non-smooth parameters:

- Percentiles (including median)
- Extreme order statistics: min, max
- Exotic estimation problems: $|\theta|$, matching estimators

If $n_{h}>k>1$ for all h, a variation of the jackknife is to delete k PSUs at a time rather than one.

- Replicate weight:

$$
w_{h i j}^{(r)}= \begin{cases}0, & \begin{array}{l}
\text { unit } h i \text { is omitted }, \\
\frac{n_{h}}{n_{h}-k} w_{h i j}, \\
\text { units in the same stratum } \\
\text { are omitted but not } h i,
\end{array} \\
w_{h i j}, & \begin{array}{l}
\text { units in stratum other than } h \\
\text { are omitted }
\end{array}\end{cases}
$$

- Number of replicates: $R=\sum_{h}\binom{n_{h}}{k}$
- Scaling factor in (2): $\left(n_{h}-k\right) / k$, within strata
- Pros: better performance in non-smooth problems
- Cons: increased computational complexity

Balanced repeated replication (BRR)

- Design restriction: $n_{h}=2$ PSUs/stratum
- Replicates (half-samples): omit one of the two PSUs from each stratum
- Replicate weights:

$$
w_{h i j}^{(r)}= \begin{cases}2 w_{h i j}, & \text { PSU } h i \text { is retained } \\ 0, & \text { PSU } h i \text { is omitted }\end{cases}
$$

- (2nd order) balance conditions:
- each PSU is used $R / 2$ times
- each pair of PSUs is used $R / 4$ times
- Number of replicates: $L \leq R \leq 2^{L}$
- McCarthy (1969): $L \leq R=4 m \leq L+3$ using Hadamard matrices
- Scaling factor in (2): $A=1$

Aside: Hadamard matrices

- $n \times n$ matrix with entries ± 1
- Rows are orthogonal
- Special case of orthogonal arrays (Hedayat, Sloane \& Stufken 1999)
- Hadamard conjecture: for every integer m, there exists an Hadamard matrix of order $4 m$
- Smallest order for which no matrix is known: $4 m=668$
- Sylvester construction for orders 2^{k} : if H is Hadamard, so is

$$
\left(\begin{array}{cc}
H & H \\
H & -H
\end{array}\right)
$$

- BRR designs: $w_{h i}^{(r)}=\left(1+H_{r h}\right) w_{h i}$

BRR

Complementary half-samples: swap included/excluded units, obtain $\hat{\theta}^{(r c)}$.
Variance estimators:

$$
\begin{aligned}
& v_{B R R 1}[\hat{\theta}] \equiv v_{B R R-H}[\hat{\theta}]=\frac{1}{R} \sum_{r=1}^{R}\left(\hat{\theta}_{B R R}^{(r)}-\hat{\theta}\right)^{2} \\
& v_{B R R 2}[\hat{\theta}] \equiv v_{B R R-D}[\hat{\theta}]=\frac{1}{4 R} \sum_{r=1}^{R}\left(\hat{\theta}_{B R R}^{(r)}-\hat{\theta}_{B R R}^{(r c)}\right)^{2} \\
& v_{B R R 3}[\hat{\theta}] \equiv v_{B R R-S}[\hat{\theta}]=\frac{1}{2 R} \sum_{r=1}^{R}\left(\hat{\theta}_{B R R}^{(r)}-\tilde{\theta}\right)^{2}+\left(\hat{\theta}_{B R R}^{(r c)}-\tilde{\theta}\right)^{2}
\end{aligned}
$$

Bias corrected estimate:

$$
\hat{\theta}_{B C}=2 \hat{\theta}-\frac{1}{R} \sum_{r} \hat{\theta}^{(r)} \quad \text { or } \quad 2 \hat{\theta}-\frac{1}{2 R} \sum_{r}\left(\hat{\theta}^{(r)}+\hat{\theta}^{(r c)}\right)
$$

for some $0<k \leq 1$

- Scaling constant in (2): $A=1 / k^{2}$

Extensions of BRR

What if $n_{h} \geq 2$?

- Gurney \& Jewett (1975): $n_{h}=p$ for a prime p, $R=\left(p^{k}-1\right) /(p-1) \geq L$
- Gupta \& Nigam (1987) and Wu (1991): mixed orthogonal arrays for $n_{h} \geq 2$, 1 PSU/stratum recycled, $R=$?
- Sitter (1993): orthogonal multiarrays for $n_{h} \geq 2$, about half PSUs/stratum recycled, $R=$?
- Availability of a suitable orthogonal array needs to be established for each particular design

Approximate BRR

Since BRR is a common estimation technique, some publicly released data use design approximations that would allow the end user to use BRR techniques:

- strata collapse
- grouping of PSUs
- treating SSUs as PSUs for self-representing units

Caution: Shao (1996) gives an example where grouped BRR is inconsistent.

Remedies: repeated grouping, random subsampling.

Review questions

(1) (requires calculus) If variance estimator $v[\hat{\theta}]$ is available for parameter estimate $\hat{\theta}$, what is $v_{L}\left[\mathrm{e}^{\hat{\theta}}\right]$?
(2) True or false: In regression analysis, the linear model textbook variance estimator $s^{2}\left(X^{\prime} X\right)^{-1}$ is appropriate for complex survey data.
(3) For a design with 2 PSUs/stratum, which method will be faster, the jackknife or BRR?
4. If $L=45$ and $n_{h}=2$ for every stratum, can one construct BRR designs with $R=50$? $R=60$? What's the smallest number of replicates necessary?

Notes

Stas

 Kolenikov```
Bootstrap for
i.i.d. data
```

Variance
estimation for
complex
surveys
Complex survey data
Linearization
Replication
Jackknife
BRR
Survey
bootstraps
Software im-
plementation
Conclusions
References

## Complex survey bootstraps

(1) Naïve bootstrap
(2) Rescaling bootstrap
(3) Other survey bootstraps:

- bootstrap without replacement
- mirror-match bootstrap
- mean bootstap
- bootstrap for imputed data
- balanced bootstrap
- variance components bootstrap
- wild bootstrap
- parametric bootstrap for small area estimation
(4) Comparison of all methods

How about some theory?

## Naïve bootstrap

(1) Sample with replacement $n_{h}$ units from stratum $h$.
(2) For each replicate, compute $\hat{\theta}^{(r)}$.
(3) Estimate the variance using (2).

Rao \& Wu (1988):

$$
\mathbb{V}^{*}\left[\bar{x}^{*}\right]=\sum_{h} \frac{W_{h}^{2}}{n_{h}} \frac{n_{h}-1}{n_{h}} s_{h}^{2}
$$

rather than

$$
v[\bar{x}]=\sum_{h} \frac{W_{h}^{2}}{n_{h}} s_{h}^{2}
$$

Scaling issue? Choice of $A$ ?

## Rescaling bootstrap (RBS)

Rao \& Wu (1988): for parameter $\theta=f(\overline{\mathbf{x}})$,
(1) Sample with replacement $m_{h}$ out of $n_{h}$ units in stratum $h$.
(2) Compute pseudo-values

$$
\begin{gather*}
\tilde{x}_{h}^{(r)}=\bar{x}_{h}+m_{h}^{1 / 2}\left(n_{h}-1\right)^{-1 / 2}\left(\bar{x}_{h}^{(* r)}-\bar{x}_{h}\right), \\
\tilde{x}^{(r)}=\sum_{h} W_{h} \tilde{x}_{h}^{(r)}, \quad \tilde{\theta}^{(r)}=f\left(\tilde{x}^{(r)}\right) \tag{3}
\end{gather*}
$$

(3) Repeat Steps 1-2 for $r=1, \ldots, R$.
(4) Compute $v_{R B S}[\hat{\theta}]$ using (2) with $A=1$.

Rao, Wu \& Yue (1992): weights can be scaled instead of values.

- For the $r$-th replicate,

$$
\begin{equation*}
w_{h i k}^{(r)}=\left\{1-\left(\frac{m_{h}}{n_{h}-1}\right)^{1 / 2}+\left(\frac{m_{h}}{n_{h}-1}\right)^{1 / 2} \frac{n_{h}}{m_{h}} m_{h i}^{(* r)}\right\} w_{h i k} \tag{4}
\end{equation*}
$$

- $m_{h i}^{(* r)}=\#$ times the $i$-th unit in stratum $h$ is used in the $r$-th replicate
- Equivalent to RBS for functions of moments
- Applicable to $\hat{\theta}$ obtained from estimating equations

Choice of $m_{h}$ :

- $m_{h} \leq n_{h}-1$ to ensure non-negative replicate weights
- $m_{h}=n_{h}-1$ : no need for internal scaling
- $m_{h}=n_{h}-3$ : matching third moments (Rao \& Wu 1988)
- Simulation evidence (Kovar, Rao \& Wu 1988): for $n_{h}=5$, the choice $m_{h}=n_{h}-1$ leads to more stable estimators with better coverage than $m_{h}=n_{h}-3$

Choice of $R$ :

- No theoretical foundations
- Popular choices: $R=100,200$ or 500
- $R \geq$ design degrees of freedom $=n-L$

Survey

## Bootstrap without replacement

 (BWO)BWO (Sitter 1992a) mimics sampling without replacement
(1) Let $n_{h}^{*}=n_{h}-\left(1-f_{h}\right), k_{h}=\frac{N_{h}}{n_{h}}\left(1-\frac{1-f_{h}}{n_{h}}\right)$.
(2) Create pseudopopulation: in stratum $h$, replicate $\left\{y_{h i}\right\}$ $k_{h}$ times.
(3) Take SRSWOR of $n_{h}^{*}$ units from pseudopopulation stratum $h$, combine across $h$.
(4) Compute $\hat{\theta}^{(r)}$.
(5) Repeat Steps 3-4 for $r=1, \ldots, R$.
(6) Compute $v_{B w o}$ using (2).
(7) Randomize between bracketing integer values for non-integer $n_{h}^{*}, k_{h}$.
Extension to two-stage sample is available.

## Mirror-match bootstrap (MMB)

MMB (Sitter 1992b) for sampling without replacement designs
(1) Draw SRSWOR of $n_{h}^{*}<n_{h}$ PSUs from stratum $h$.
(2) Repeat Step $1 k_{h}=n_{h}\left(1-f_{h}^{*}\right) / n_{h}^{*}\left(1-f_{h}\right)$ times.
(3) Repeat Steps 1-2 independently for each stratum to form the $r$-th replicate.
(4) Compute $\hat{\theta}^{(r)}$.
(5) Repeat Steps $1-4$ for $r=1, \ldots, R$.
(6) Compute $v_{M M B}$ using (2).

- $f_{h}=n_{h} / N_{h}$ is the original sampling fraction
- $f_{h}^{*}=n_{h}^{*} / n_{h}$ is the bootstrap sampling fraction
- Randomize if $m_{h} / k_{h}$ is not integer
- Rescaling bootstrap: special case with $n_{h}^{*}=1$


## Mean bootstrap

Yung (1997), Yeo, Mantel \& Liu (1999)

- Confidentiality protection: units with a weight of 0 belong to the same PSU, risk of identification.
- Replace the number of bootstrap draws $m_{h i}^{(* r)}$ by

$$
\bar{m}_{h i}^{(* r)}=\frac{1}{K} \sum_{k=(r-1) K+1}^{r K} m_{h i}^{(* k)}
$$

- Take $K$ large enough so that $\mathbf{P r}^{*}\left[\bar{m}_{h i}^{(* r)}=0\right]$ is small.
- Proceed to compute the bootstrap weights (4).
- Compute $v_{\text {мвоот }}$ using (2) with scaling factor $A=K$.
- Number of resulting weight variables $=R / K$.

Warning: no formal theory have been developed so far.

Shao \& Sitter (1996), Rao (1996); also JASA 91 (434)
Setup:

- $\mathbf{X}_{R}$ are the available responses
- $\mathbf{X}_{M}$ are the missing data
- $A_{R}$ and $A_{M}$ are indicators of complete/missing data
- Imputation procedure: $\eta_{i}=\mathcal{J}\left(\mathbf{X}_{R} ; i\right), i \in A_{M}$
- $\mathbf{X}_{I}=\left\{x_{i}: i \in A_{R}\right\} \cup\left\{\eta_{i}: i \in A_{M}\right\}$ are imputed data

Shao \& Sitter (1996): the bootstrap data set should be imputed in the same way as the original data set was!
(1) Draw a bootstrap sample $\left(x^{(* r)}, a^{(* r)}\right)$ of size $n_{h}-1$ from $X_{/}$independently across strata $h$.
(2) For resampled non-respondents $i \in A_{M}^{(* r)}$, apply the imputation procedure $\eta_{i}^{(* r)}=\mathcal{J}\left(\mathbf{X}_{R}^{(* r)} ; i\right)$ to obtain re-imputed data set

$$
X_{I}^{(* r)}=\left\{x_{i}^{(* r)}: i \in A_{R}^{(* r)}\right\} \cup\left\{\eta_{i}^{(* r)}: i \in A_{M}^{(* r)}\right\}
$$

(3) Compute $\hat{\theta}^{(r)}$.
(4) Repeat Steps 1-3 for $r=1, \ldots, R$.
(5) Compute variance estimate using (2).

## Balanced bootstraps

Nigam \& Rao (1996)

- Special case: $m_{h}=n_{h}=n_{0}$ for all $h$
- Balance conditions:

$$
\begin{gathered}
\sum_{r} m_{h i}^{(* r)}=R, \quad n_{0} \sum_{r} m_{h i}^{(* r)} m_{h j}^{(* r)}=R\left(n_{0} \delta_{i j}+n_{0}-1\right) \\
n_{0} \sum_{r} m_{h i}^{(* r)} m_{g k}^{(* r)}=R, g \neq h
\end{gathered}
$$

- If $n_{0}=2 m$ for some integer $m$, utilize Hadamard matrices and balanced incomplete block designs
- If $n_{0}=p^{k}$ for prime $p$ and integer $k$, utilize Hadamard matrices and Galois field theory

In general, the second order balance is very difficult to achieve.

## Variance components bootstrap

Field \& Welsh (2007): model-based survey inference

- Balanced random effects model:

$$
Y_{i j}=\mu+\beta_{i}+\epsilon_{i j}, \quad i=1, \ldots, n, j=1, \ldots, m
$$

- Goal: inference for $\sigma_{\beta}^{2}, \sigma_{\epsilon}^{2}$
- Random effects bootstrap: sample $\beta_{i}^{*}$ from $\left\{\widehat{\beta}_{i}, i=1, \ldots, n\right\}$, $\epsilon_{i j}^{*}$ from $\left\{\hat{\epsilon}_{i j}, i=1, \ldots, n, j=1, \ldots, m\right\}$
- Residual bootstrap:
(1) estimate $\hat{\sigma}_{b}^{2}, \hat{\sigma}_{\epsilon}^{2}$
(2) form $\hat{C}=I_{n} \otimes\left(\hat{\sigma}_{\epsilon}^{2} I_{m}+\hat{\sigma}_{\beta}^{2} J_{m}\right)$
(3) form whitened residuals $\mathbf{r}=\hat{C}^{-1 / 2}(\mathbf{y}-\hat{\mu})$
(4) bootstrap $\mathbf{r}^{*}$ from $\mathbf{r}$
(5) form $\mathbf{y}^{*}=\hat{\mu}+\hat{C}^{1 / 2} \mathbf{r}^{*}$
- Cluster bootstrap: resample the whole cluster $\mathbf{Y}_{i}$
- All of the above are consistent when $n \rightarrow \infty$ with $m$ fixed

Cameron, Miller \& Gelbach (2008)

- Regression model:

$$
\mathbf{y}_{i}=\mathbf{X}_{i} \beta+\mathbf{u}_{i}
$$

where $i$ enumerates clusters

- Goal: inference for $\hat{\beta}_{O L S}$
- Fit the model by OLS, obtain $\hat{\mathbf{u}}_{i}$
- Form the wild bootstrap samples by taking $\mathbf{u}_{i}^{*}=z_{i}^{*} \hat{\mathbf{u}}_{i}$, $\operatorname{Pr}\left[z_{i}^{*}=1\right]=\operatorname{Pr}\left[z_{i}^{*}=-1\right]=1 / 2$
- Applicable to both variance estimation and distribution estimation with bootstrap- $t$
- Simulation evidence: the wild cluster bootstrap outperforms other cluster bootstraps


## Small area bootstrap

Lahiri (2003)

- For small area $i, Y_{i}$ are observations, $U_{i}$ are small area effects, $X_{i}$ are regressors and $Z_{i}$ are fixed constants
- Small area model:

$$
\begin{equation*}
Y_{i} \mid U_{i} \sim N\left(X_{i} \beta+Z_{i} U_{i}, R_{i}(\psi)\right), \quad U_{i} \sim N\left(0, G_{i}(\psi)\right) \tag{5}
\end{equation*}
$$

- Quantity of interest:

$$
\theta_{i}=I_{i} \beta+\lambda_{i} U_{i}
$$

- BLUP/empirical Bayes predictor:

$$
\hat{\theta}_{i}\left(Y_{i} ; \hat{\psi}\right)=I_{i} \hat{\beta}(\hat{\psi})+\lambda_{i}^{\prime} G_{i}(\hat{\psi})\left(Z_{i}^{\prime} G_{i}(\hat{\psi}) Z_{i}+R_{i}(\hat{\psi})\right)^{-1}\left[Y_{i}-X_{i} \hat{\beta}(\hat{\psi})\right]
$$

## Small area bootstrap

- Inferential goal:

$$
\begin{array}{r}
\operatorname{MSE}[\hat{\theta}]=\underbrace{+}_{\text {due to } R_{i} \text { and } G_{i} \quad \underbrace{g_{1}(\psi)}_{\text {due to } \hat{\beta}}+\underbrace{g_{2}(\psi)}_{\text {due to } \hat{\psi}}} \begin{array}{l}
\mathbb{E}\left[\left(\hat{\theta}_{i}\left(Y_{i} ; \hat{\psi}\right)-\hat{\theta}_{i}\left(Y_{i} ; \psi\right)\right)^{2}\right]
\end{array}
\end{array}
$$

- Parametric bootstrap from (5) with estimated parameters
- Bootstrap estimate:

$$
\begin{aligned}
\widehat{M S E}_{B S} & =g_{1}(\hat{\psi})+g_{2}(\hat{\psi}) \\
& -\mathbb{E}{ }^{*}\left[g_{1}\left(\hat{\psi}^{*}\right)+g_{2}\left(\hat{\psi}^{*}\right)-g_{1}(\hat{\psi})-g_{2}(\hat{\psi})\right] \\
& +\mathbb{E}\left[\left(\hat{\theta}_{i}\left(Y_{i}^{*} ; \hat{\psi}^{*}\right)-\hat{\theta}_{i}\left(Y_{i}^{*} ; \hat{\psi}\right)\right)^{2}\right]
\end{aligned}
$$

## Big-O and small-o notation

Before we compare estimators, aside on notation. For a (deterministic) sequence $a_{n}$, we shall write

- $a_{n}=O\left(n^{\alpha}\right)$ if $\left|a_{n}\right| / n^{\alpha} \leq M$ for sufficiently large $n$ and $M$
- $a_{n}=o\left(n^{\alpha}\right)$ if $a_{n} / n^{\alpha} \rightarrow 0$

Examples:

- $\frac{\sin n}{n}=O\left(n^{-1}\right)=O\left(n^{-1 / 2}\right)$
- $\log n=o\left(n^{\alpha}\right)$ for all $\alpha>0$

For a sequence of random variables $V_{n}$, we shall write

- $V_{n}=O_{p}\left(n^{\alpha}\right)$ if $V_{n} / n^{\alpha}$ is bounded in the limit in probability:

$$
\forall \epsilon>0 \exists M, n_{0}<\infty: \operatorname{Pr}\left[\left|V_{n}\right| / n^{\alpha}>M\right]<\epsilon \text { for } n \geq n_{0}
$$

for sufficiently large $n$ and $M$

- $V_{n}=o_{p}\left(n^{\alpha}\right)$ if $V_{n} / n^{\alpha} \rightarrow 0$ in probability

Example: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$

- $\mathbb{V}[\bar{X}]=O\left(n^{-1}\right)$
- $\bar{X}-\mu=O_{p}\left(n^{-1 / 2}\right)$
- $v[\bar{X}]=s^{2} / n=O_{p}\left(n^{-1}\right)$,
$v[\bar{X}] /\left(\sigma^{2} / n\right)=1+O_{p}\left(n^{-1 / 2}\right)=1+o_{p}(1)$
- $t=\frac{\bar{X}-\mu}{s / \sqrt{n}}=O_{p}(1)$

$$
v_{L}=v_{B R R}=v_{J}=v_{R B S}=v_{M M B}=v_{B W O}=v_{s t r}
$$

The bootstrap methods are understood as the ideal/complete bootstrap. The actual applications may contain Monte Carlo bootstrap variability.

## Linearization and the jackknife

Nonlinear case:

- The jackknife and linearization are consistent (Krewski \& Rao 1981)
- The six jackknife variance estimators are equivalent up to $O_{p}\left(n^{-3}\right)$ (Rao \& Wu 1985)
- Relation to linearization:

$$
v_{J}=v_{L}\left(1+O_{p}\left(n^{-1}\right)\right)
$$

- If $n_{h}=2$ for all $h$,

$$
v_{J}=v_{L}\left(1+O_{p}\left(n^{-2}\right)\right)
$$

Valliant (1996): $v_{J}$ performs better than $v_{L}$ in model-based approach to survey inference, ratio estimation, poststratification.

## Linearization and BRR

In nonlinear case, BRR is consistent (Krewski \& Rao 1981); relative accuracy (Rao \& Wu 1985):

$$
\begin{aligned}
& v_{B R R-H}=v_{L}\left(1+O_{p}\left(n^{-1 / 2}\right)\right) \\
& v_{B R R-D}=v_{L}\left(1+O_{p}\left(n^{-1}\right)\right) \\
& v_{B R R-S}=v_{L}\left(1+O_{p}\left(n^{-1}\right)\right)
\end{aligned}
$$

Stability of estimators:

$$
\text { rel.MSE }\left[v_{m}\right]=\frac{\mathbb{E}^{1 / 2}\left[\left(v_{m}-\sigma^{2}\right)^{2}\right]}{\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]}
$$

Simulation evidence (Krewski \& Rao 1981, Rao \& Wu 1988, Kovar, Rao \& Wu 1988, Sitter 1992a):
(1) Linearization (for smooth statistics)
(2) The jackknife (for smooth statistics)
(3) BRR
(4) Bootstrap

- MMB has a slight edge
- RBS with $m_{h}=n_{h}-3$ performs poorly


## Confidence intervals

Simulation evidence for both one-sided and two-sided confidence intervals (Krewski \& Rao 1981, Rao \& Wu 1988, Kovar, Rao \& Wu 1988, Sitter 1992a):
(1) Bootstrap

- MMB has a slight edge
- RBS with $m_{h}=n_{h}-3$ performs poorly
(2) BRR
(3) The jackknife (inconsistent for non-smooth statistics)

4. Linearization (inconsistent for non-smooth statistics)

## Comparisons of methods

Shao (1996): ". . . the choice of the method may depend more on nonstatistical considerations, such as the feasibility of their implementation. . . Blindly applying the resampling methods may yield incorrect results"

Similar properties in pairs of methods:

- BRR is a special case of second-order balanced bootstrap
- Delete-1 jackknife and linearization are almost identical
bootstrap


## Stas

 Kolenikov```
Bootstrap for
i.i.d. data
```

Variance
estimation for
complex
surveys
Survey
bootstraps
Naïve bootstrap
Rescaling bootstrap
Other survey
bootstraps
Comparison of
estimators

Stas

 Kolenikov
Software implementation

(1) Cheat codes: bootstrap weights as BRR weights
(2) Stata: bsweights and bs4rw packages
(3) R: survey package, svrepdesign and
as.svrepdesign

Cheat codes

Phillips (2004):

- The variance formula is (2) for both BRR and the bootstrap.
- Bootstrap weights as BRR weights!
- The mean bootstrap can be used with Fay's correction.

```
SUDAAN:
proc procname data=... design=BRR;
    weight = sampling weight;
    repwgt = bootstrap weights / adjfay = K
run;
```


Stata survey features

- svy suite of routines described in 170 pages manual
- Design flexibility: stratification, clustering, multiple stages of selection, probability weights, finite population corrections
- Estimation commands: totals, means, ratios, contingency tables with Rao-Scott corrections, GLM, microeconometrics, Cox regression
- Variance estimation: linearization, BRR, the jackknife
- Poststratification
- Post-estimation features: DEFF, MEFF, Wald tests

Complex survey bootstrap is implemented by bsweights (by Stas Kolenikov) in conjunction with bs 4rw (by Jeff Pitblado of Stata Corp.).

bsweights syntax

```
bosweights prefix, reps(#) n(#) [balanced
replace calibrate(command @) verbose
seed(#)]
```

- reps () specifies the number of replications; required option.
- n () specifies the number of units to be resampled from each stratum; required option.
- balanced specifies balanced bootstrap.
- calibrate calls command substituting the name of the current replicate weight for @, and verbose shows the output of the calibrating command.
- replace allows overwriting the existing set of weights.
- seed (\#) sets the pseudo-random number generator seed.
bs4rw [expression list], rweights(varlist)
[vfactor(\#) mse options] : command
- rweights (varlist) specifies the bootstrap replicate variables; required option.
- vfactor (\#) specifies the scaling factor A.
- mse requests to compute the MSE estimator; the default is to compute the variance estimator.
- options: output and reporting options.
- command: the estimation procedure to be bootstrapped; must contain the original sampling weights.

Bootstrap postestimation features (bias estimates and confidence intervals) are available with estat bootstrap.

Calibration

- Option calibrate (call @) allows to call an external program to perform additional adjustments on weights.
- The replication weight variables will be substituted for @ in the above call.
- Subpopulation estimation: set weights outside the subpopulation to zero. design.

What bsweights cannot do:

- Design effect: a post-estimation feature, use Phillips (2004) trick
- Bootstrap t-percentiles of jackknife-after-bootstrap

$$
\mathcal{D}[t]=\frac{\hat{\theta}-\theta}{\sqrt{V_{J}}} \doteq \mathcal{D}\left[t^{*}\right]=\frac{\hat{\theta}^{*}-\hat{\theta}}{\sqrt{v_{J}^{*}}}
$$

- Finite population corrections
- Missing and imputed data: need a customized command to re-impute missing data and estimate the model
- Other survey bootstraps (MMB, BWO)

R implementation

R survey capabilities (Lumley forthcoming):

- Design flexibility: stratification, clustering, multiple stages of selection, probability weights, finite population corrections, two-phase designs
- Poststratification, raking and GREG calibration
- Estimation commands: totals, means, ratios, quantiles, contingency tables with Rao-Scott corrections, GLM, quasi-MLE, Cox regression
- Graphics for survey data
- Interface to mi package also written by the Thomas Lumley

R implementation

Replication variance estimation

- R, generating weights: as.svrepdesign ()
- The jackknife:

```
as.svrepdesign(design=...,type="JKn")
```

- BRR:

```
as.svrepdesign(design=...,type="BRR")
```

- Utilities to produce Hadamard matrices are included
- RBS with $m_{h}=n_{h}-1$:

```
as.svrepdesign(design=...,
type="subbootstrap",replicates=...)
```

- Extract weights: weights (design=...)
- R, applying weights: svrepdesign()
- type= as above
- Separate data frames for variables, sampling weight and replication weights

Stata exercises

(1) Run the bootstrap with and without balancing using several different seeds with the same number of replicates. Compare the results, including both the standard errors and bias estimates.
(2) Modify the calibration program to calibrate the weights on gender and region.
(3) (Lack of identification - trick question!) Provide the bootstrap analogue of

```
svy, subpop(region1): logistic highbp
female black orace
```

Run each of the examples to produce estimation output!

Stas

 Kolenikov
What I covered was...

(1) Bootstrap for i.i.d. data
(2) Variance estimation for complex surveys
(3) Survey bootstraps
(4) Software implementation
(5) References

Question I don't know how to

answer

- Can I use the survey bootstrap for multilevel models?
- How can I apply the bootstrap to longitudinal data?
- I am using [the name of a complicated estimation procedure with several steps]. Can the bootstrap be used to provide the standard errors?
- Do I really have to run $R=500$ bootstrap replications for the imputed data bootstrap if I can get good results with $M=5$ multiple imputations?

Overview questions

For a given situation, suggest the most appropriate variance estimation technique. Explain your choice.
(1) You have collected some data on local businesses in a stratified one-stage equal probability sampling design with a handful of strata and several dozens observations in each stratum. You need to estimate several totals and proportions, and run a couple of regression analysis.
(2) You are preparing a data set from a large scale survey for public release. The sampling design includes several hundreds PSUs arranged into strata, between 1 and 3 PSUs per stratum. You want the future users to be able to run any analysis they would need.
(3) You are preparing an in-house report on income distribution and poverty for an existing large scale economics survey data with complex design. You have access to all the relevant design information, but you need to make sure that your report does not contain any information that could lead to confidentiality breaches.

Notes

Stas

 Kolenikov```
Bootstrap for
i.i.d. data
```

Variance
estimation for
complex
surveys
Survey
bootstraps
Software im
plementation
Conclusions

## Major references

- Shao (1996): a deep review of theory of resampling methods
- Rust \& Rao (1996): a straightforward explanation of the methods with medical applications
- Rao \& Wu (1988) and Rao, Wu \& Yue (1992): major rescaling bootstrap papers
- Wolter (2007): in-depth advanced level coverage of all mathematical details

See list with links to full text at http: / /www. citeulike.
org/user/ctacmo/tag/ce_jsm09_svy_bstrap

## Complete list I

A ${ }^{\text {nindrews, D. F. (2007), 'Robust likelihood inference for public policy', The }}$ Canadian Journal of Statistics 35(3), 341-350.
Andrews, D. W. K. (2000), 'Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space', Econometrica 68(2), 399-405. doi:10.1111/1468-0262.00114.
Bicikel, P. J. \& Freedman, D. A. (1981), 'Some asymptotic theory for the bootstrap', The Annals of Statistics 9(6), 1196-1217.
Biinder, D. A. (1983), 'On the variances of asymptotically normal estimators from complex surveys', International Statistical Review 51, 279-292.
Câmeron, C. A., Miller, D. \& Gelbach, J. B. (2008), 'Bootstrap-based improvements for inference with clustered errors', The Review of Economics and Statistics 90(3), 414-427.
Ceânty, A. J., Davison, A. C., Hinkley, D. V. \& Ventura, V. (2006), 'Bootstrap diagnostics and remedies', The Canadian Journal of Statistics/La revue canadienne de statistique 34(1), 5-27.

## Complete list II

Dâvison, A. C., Hinkley, D. V. \& Schechtman, E. (1986), 'Efficient bootstrap simulation', Biometrika 73(3), 555-566.
Fieild, C. A. \& Welsh, A. H. (2007), 'Bootstrapping clustered data', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(3), 369-390.
Gileason, J. R. (1988), 'Algorithms for balanced bootstrap simulations', The American Statistician 42(4), 263-266.
Ginaham, R. L., Hinkley, D. V., John, P. W. M. \& Shi, S. (1990), 'Balanced design of bootstrap simulations', Journal of the Royal Statistical Society 52(1), 185-202.
Gutpta, V. K. \& Nigam, A. K. (1987), 'Mixed orthogonal arrays for variance estimation with unequal numbers of primary selections per stratum', Biometrika 74(4), 735-742.
Gibirney, M. \& Jewett, R. S. (1975), 'Constructing orthogonal replications for variance estimation', Journal of the American Statistical Association 70(352), 819-821.

## Complete list III

Hâtrdle, W. (1990), Applied Nonparametric Regression, Cambridge University Press, Cambridge.
Hêdayat, A., Sloane, N. J. A. \& Stufken, J. (1999), Orthogonal Arrays: Theory and Applications, Springer Series in Statistics, Springer-Verlag, New York.
kishh, L. \& Frankel, M. R. (1974), 'Inference from complex samples', Journal of the Royal Statistical Society, Series B 36, 1-37.
KOvar, J. G., Rao, J. N. K. \& Wu, C. F. J. (1988), 'Bootstrap and other methods to measure errors in survey estimates', Canadian Journal of Statistics 16, 25-45.
Kremski, D. \& Rao, J. N. K. (1981), 'Inference from stratified samples: Properties of the linearization, jackknife and balanced repeated replication methods', The Annals of Statistics 9(5), 1010-1019.
Lahiri, P. (2003), 'On the impact of bootstrap in survey sampling and small-area estimation', Statistical Science 18, 199-210.
uumley, T. (forthcoming), Complex Surveys: A guide to analysis using R, Wiley, New York.

## Complete list IV

Merearthy, P. J. (1969), 'Pseudo-replication: Half samples', Review of the International Statistical Institute 37(3), 239-264.
Nigam, A. K. \& Rao, J. N. K. (1996), 'On balanced bootstrap for stratified multistage samples', Statistica Sinica 6(1), 199-214.
Phillips, O. (2004), Using bootstrap weights with WesVar and SUDAAN, Technical Report 2, Statistics Canada.
Râo, J. N. K. (1996), 'On variance estimation with imputed survey data', Journal of the American Statistical Association 91(434), 499-506.
Râo, J. N. K. \& Wu, C. F. J. (1985), 'Inference from stratified samples: Second-order analysis of three methods for nonlinear statistics', Journal of the American Statistical Association 80(391), 620-630.
Rata, J. N. K. \& Wu, C. F. J. (1988), 'Resampling inference with complex survey data', Journal of the American Statistical Association 83(401), 231-241.
Râo, J. N. K., Wu, C. F. J. \& Yue, K. (1992), 'Some recent work on resampling methods for complex surveys', Survey Methodology 18(2), 209-217.

## Complete list V

Rüst, K. F. \& Rao, J. N. (1996), 'Variance estimation for complex surveys using replication techniques', Statistical Methods in Medical Research 5(3), 283-310.
\$hiao, J. (1996), 'Resampling methods in sample surveys (with discussion)', Statistics 27, 203-254.
\$hao, J. \& Sitter, R. R. (1996), 'Bootstrap for imputed survey data', Journal of the American Statistical Association 91(435), 1278-1288.
\$7nao, J. \& Tu, D. (1995), The Jackknife and Bootstrap, Springer, New York.
Sititer, R. R. (1992a), 'Comparing three bootstrap methods for survey data', The Canadian Journal of Statistics 20(2), 135-154.
Sititer, R. R. (1992b), 'A resampling procedure for complex survey data', Journal of the American Statistical Association 87(419), 755-765.
Sititer, R. R. (1993), 'Balanced repeated replications based on orthogonal multi-arrays', Biometrika 80(1), 211-221.
Valliant, R. (1996), 'Discussion of "Resampling Methods in Sample Surveys" by J. Shao', Statistics 27, 247-251.

## Complete list VI

Wolter, K. M. (2007), Introduction to Variance Estimation, 2nd edn, Springer, New York.
WH, C. F. J. (1986), 'Jackknife, bootstrap and other resampling methods in regression analysis', The Annals of Statistics 14(4), 1261-1295.
WH, C. F. J. (1991), 'Balanced repeated replications based on mixed orthogonal arrays', Biometrika 78(1), 181-188.
Yeb, D., Mantel, H. \& Liu, T.-P. (1999), Bootstrap variance estimation for the National Population Health Survey, in 'Proceedings of Survey Research Methods Section', The American Statistical Association, pp. 778-785.
Yûng, W. (1997), Variance estimation for public use files under confidentiality constraints, in 'Proceedings of Statistics Canada Symposium', Statistics Canada, pp. 434-439.

## Notation I

The generic datum $x_{h i j}$ denotes the measurement on variable $y$ taken on the $j$-th observation in the $i$-th PSU in stratum $h$.
$h \quad$ stratum index; $h=1, \ldots, L$
$i \quad$ PSU index within strata; $i=1, \ldots, n_{h}$
$j \quad$ observation index within PSU
$L$ number of strata
$m_{h} \quad$ bootstrap sample size; the number of PSUs resampled from stratum $h$
$m_{h i}^{(* r)}$ bootstrap frequency; the number of times unit $h, i$ is sampled in the $r$-th replicate
$n \quad$ total sample size; the total number of PSUs in the sample: $n=\sum_{n=1}^{L} n_{h}$
$N$ population size; the total number of PSUs in the population: $N=\sum_{h=1}^{L} N_{h}$
$n_{h} \quad$ sample size in stratum $h$; the number of PSUs taken from stratum $h$
$N_{h} \quad$ population size; the number of PSUs in stratum $h$
the number of replicates; the number of replicate weights in the mean bootstrap
$T[x] \quad$ population total: $T[x]=\sum_{h} \sum_{i} \sum_{j} x_{h i j}$
$t[x] \quad$ estimate of the population total $T[x]$
$v[\hat{\theta}] \quad$ estimator of variance $\mathbb{V}[\hat{\theta}]$
$v_{m}[\hat{\theta}] \quad$ estimator of variance $\mathbb{V}[\hat{\theta}]$ obtained by method $m$; the methods include linearization $L$, the jackknife $J$, BRR, or bootstrap schemes RBS, MMB, BWO and BWR
$\mathbb{V}[\hat{\theta}] \quad$ (design) variance of the estimate $\hat{\theta}$ with respect to the sampling distribution
$W_{h} \quad$ fraction of stratum $h$ in population: $W_{h}=N_{h} / N$
$w_{h i j} \quad$ sampling weight of unit $h, i, j$
$w_{\text {hij }}^{(r)} \quad$ replicate weight of unit $h, i, j$ in the $r$-th replicate
$\theta$ population parameter, such as total, mean, ratio, regression coefficient
$\hat{\theta} \quad$ parameter estimate obtained from survey data
$\hat{\theta}^{(r)} \quad$ parameter estimate obtained in the $r$-th replicate

| BRR | balanced repeated replication | 39 |
| :--- | :--- | ---: |
| BWO | bootstrap without replacement | 50 |
| MSE | mean-squared error |  |
| NBS | naïve bootstrap | 48 |
| MMB | mirror-match bootstrap | 53 |
| PSU | primary sampling unit | 26 |
| RBS | rescaling bootstrap | 49 |
| SRSWOR | simple random sample without replacement |  |

## Survey bootstrap theory: SRSWR I

- Design: SRSWR sampling $n$ out of $N$
- Population parameters:

$$
\bar{x}_{U}=\frac{1}{N} \sum_{i \in \mathcal{U}} x_{i}, \quad \sigma^{2}=\frac{1}{N} \sum_{i \in \mathcal{U}}\left(x_{i}-\bar{x}\right)^{2}
$$

- Sample statistics:

$$
\bar{x}=\frac{1}{n} \sum_{i \in \mathcal{S}} x_{i}, \quad s^{2}=\frac{1}{n-1} \sum_{i \in \mathcal{S}}\left(x_{i}-\bar{x}\right)^{2}
$$

- Bootstrap sample: SRSWR $n^{*}$ out of $n$ units, $x_{i}^{*}$ from $\left\{x_{1}, \ldots, x_{n}\right\}$


## Survey bootstrap theory: SRSWR II

- Ideal bootstrap variance:

$$
\begin{aligned}
\mathbb{V}^{*}\left[x_{1}^{*}\right] & =\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{n-1}{n} s^{2} \\
\mathbb{V}^{*}[\bar{x}] & =\frac{1}{n^{*}} \mathbb{V}^{*}\left[x_{1}^{*}\right]=\frac{n-1}{n n^{*}} s^{2} \neq v[\bar{x}]=\frac{s^{2}}{n}
\end{aligned}
$$

- Unbiased: only if $n^{*}=n$
bootstrap
Stas
Kolenikov


## Survey bootstrap theory: SRSWORI

- Design: SRSWOR sampling $n$ out of $N$
- Population parameters:

$$
\bar{x}_{U}=\frac{1}{N} \sum_{i \in \mathcal{U}} x_{i}, \quad S^{2}=\frac{1}{N-1} \sum_{i \in \mathcal{U}}\left(x_{i}-\bar{x}\right)^{2}
$$

- Sample statistics:

$$
\bar{x}=\frac{1}{n} \sum_{i \in \mathcal{S}} x_{i}, \quad s^{2}=\frac{1}{n-1} \sum_{i \in \mathcal{S}}\left(x_{i}-\bar{x}\right)^{2}
$$

- Bootstrap sample: SRSWR $n^{*}$ out of $n$ units, $x_{i}^{*}$ from $\left\{x_{1}, \ldots, x_{n}\right\}$ bootstrap


## Survey bootstrap theory: SRSWOR II

- Ideal bootstrap variance:

$$
\begin{aligned}
\mathbb{V}^{*}\left[x_{1}^{*}\right] & =\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{n-1}{n} s^{2} \\
\mathbb{V}^{*}[\bar{x}] & =\frac{1}{n^{*}} \mathbb{V}^{*}\left[x_{1}^{*}\right]=\frac{n-1}{n n^{*}} s^{2} \neq v[\bar{x}]=(1-f) \frac{s^{2}}{n}
\end{aligned}
$$

- Solutions:
- scale the variance by $(1-f) n^{*} /(n-1)$
- use internal scaling (Rao \& Wu 1988)
- use special algorithms (BWR, BWO, MMB)

Jump back to the middle of the notes

## The end

- Questions? Clarifications? Additional help? Email me: kolenikovs@missouri.edu
- Please fill ASA course evaluation forms.
- If you liked this course, invite me to give it at your organization.

