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Bose-Einstein condensation and superfluidity

Key concepts in low temperature physics . Recent major progress
in atomic quantum gases (main object of the present course)

Non trivial intercorrelated effects:

- Role of interactions (are interactions friends or enemies
of BEC and superfluidity? Tunability of interaction)

- Non uniform nature of the confinement (harmonic, periodic);
BEC in both momentum and coordinate space;

- Dimensionality; (1D and 2D configurations now achievable)

- BEC (can be defined at equilibrium)
- Superfluidity (mainly related to transport phenomena)

Natural link between BEC and superfluidity provided by order parameter

¥ =|Ple” L d veloc
= e vy, =—VS  Superfluid velocity

r'éd m (irrotationality)
sqrt of condensate density
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Lecture 1. BEC and long range order
- Long range order, eigenvalues of density matrix
- order parameter and concept of classical field
- BEC in ideal gas (3D harmonic trapping)
- interactions and BEC fragmentation
(uniform gas, double potential)

Plan of
the course

Lecture 2. Superfluidity and hydrodynamics.
Landau criterion (galilean vs rotational). Hydrodynamic
theory of superfluids. Collective oscillations and expansion.

Lecture 3. Equation for the order parameter.
Gross-Pitaevskii theory. Healing length.
Time dependent theory. Bogoliubov equations.

Lecture 4. Fluctuations of the order parameter.
Quantum fluctuations and BEC depletion.
Thermal depletion. Shift of critical temperature.




Lecture 5. BEC in low dimensions.
Theorems on long range order. Algebraic decay in low D. Mean
field and beyond mean field. Collective oscillations in 1D gas.

Lecture 6. Moment of inertia and superfluidity.
Irrotational vs rotatational flow. Moment of inertia. Scissors.
Expansion of rotating BEC.

Lecture 7. Quantized vortices.
Quantization of circulation. Nucleation of vortices. Measurement
of angular momentum. Vortex lattice. Collective oscillations.

Lecture 8. Ultracold Fermi gases.
|deal Fermi gas in harmonic trap. Role of interactions. BCS-BEC
crossover. Unitarity and universality. Effects of superfluidity.

Lecture 9. BEC in periodic potentials.
Momentum distribution and interference. Bloch oscillations.
Josephson oscillations. Superfluid vs insulator phase.




Some references:
- F. Dalfovo et al. Rev. Mod Phys. 71, 463 (1999)

- “Bose-Einstein Condensation in Atomic Gases”, Enrico Fermi
Summer School, M. Inguscio et al. (1999)
(collection of experimental and theoretical papers)

-A. Leggett, Rev. Mod. Phys. 73, 307 (2001)

- E. Cornell, W. Ketterle and C. Weiman, Nobel Lectures
Rev. Mod. Phys. 74 (2002)

- C. Pethick and H. Smith, “Bose-Einstein Condensation in
Dilute Bose Gases”, Cambridge University Press (2002)

- L. Pitaevskii and S. Stringari “Bose-Einstein Condensation”,
Oxford University Press (2003)
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systematically employed
in this course




1-body density matrix and long-range order

nO(r, 1) = <‘i’+(r)‘if(r')>
(Bose\!ield operators)

Relevant observables related to 1-body density:

- Density: n(r) — n(l) (7‘, 7’)

- Momentum distribution:

n(p) = (27h)" [ dRdsn (R +5/2),R~s/2)e """

In uniform systems nW (r,r'") = n(l)(s) _ %jdpn(p)eipsm
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If n(p) is smooth function —> n(l)(S)S_)OO =0

- N
@) =N P) = (s, =, =
Smooth function Off-diagonal long range order

(Landau, Lifschitz, Penrose, Onsager)

Example of calculation

of density matrix in highly
correlated many-body
system: liquid He4

n(r)

(Ceperley, Pollock 1987)
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Long range order and eigenvalues of density matrix

j drn® (r, M. (r) = n.g,(r) n(r, )= ne (Ne, )

BEC occurs when » =N, >>1. Itis then convenient to rewrite
density matrix by separating contribution arising from condensate:

n(r,r') = NO(”(T(")% (V')+Z#O ni¢i*(r)¢i(r')

For large N the sum can be replaced by integral
which tends to zero at large distances.

Viceversa contribution from condensate remains
finite up to distances |r—r| fixed by size of @,

BEC and long range order: consequence of macroscopic

occupation of a single-partice state.
Procedure holds also in non uniform and finite size systems.




Diagonalization of 1-body density matrix
in a “small” droplet of liquid He4 at T=0

(Lewart, Pandharipande and Pieper, Phys. Rev. B (1988))

TABLE IIl. Number of particles having a given angular ! ! ! ! '
momentum for the 70-atom *He drop. The number of particles
in the condensate is shown separately.
! N,
Condensate 25.33 26.46
0 1.13
1 174
2 5.06
3 5.51
4 5.55
5 4.92
6 4.20
7 3.63
8 2.98
9 1.97
10 1.32
1
Total 65;—_1"' 0 25 5.0 7.5 10.0 12.5 15.0
r (A)

In bulk condensate fraction is 0.1. In the droplet

the fraction is larger because of surface effects.

Condensate density is close to 0.1 in the center of the droplet.
It increases and reaches 1 at the surface.
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ORDER PARAMETER

Diagonalization of 1-body density matrix permits to
identify single-particle wave functions @; . In terms of such
functions one can write field operator in the form:

P (r) =@y (r)d, +

@, (r)&i

1#0

If N, >>1 one can use Bolgoliubov approximation
N /\+
a,,a, —> N,

(non commutativity [a,,ad, |=1 inessential for
most physical properties within 1/N approximation).
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From field operator to classical field

Bogoliubov approximation is equivalent to treating the
macroscopic component of the field operator as a classical field
(true also in liquid helium):

Y(r) =Y, (r)+ ¥ (r)

\ thermal and quantum
with LPo (r) _ /NO 0, (r) fluctuations

é‘i’(r):Z

?, (r)&i

10

Usually fluctuations 5\%(,/) are small in dilute gases

at T=0 == field operator is classical object

(analogy with classical limit of QED, see Lecture 3).

In helium quantum fluctuations are instead always crucial
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e (") Order parameter

W (r) =¥, (r)

« Complex function

» Defined up to a constant phase factor

 Fixing the phase S = breaking of gauge symmetry

« Corresponds to average Y, (7) =<Y¥(r) > where average

means <¥(r)>=<N|¥(F)|N+1>

- For stationary configurations | N(t) >=e *™"" | N > o

time evolution is hence fixed by chemical potential = ﬁ

Y (r,t)=e """ (r)

Chemical potential: fundamental parameter in
Bose-Einstein condenstates. Fixes time evolution of the phase
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Behaviour of BEC in non interacting gas | |7 ,, —
. _ 0P = &9,
(grand canonical ensemble):
1 value of 4 is fixed by

= exp[(g, — )/ k,T]-1 normalization condition an‘ =N

i

BEC starts when chemical potential takes minimum
value, so close to &,( &, — ¢ << k,T ) that occupation number n,=N,
of i=0 state becomes large and comparable to N:

&
kT >>1 !

&g —H &y
U

If & —u>>¢,—u for i>0 one can replace £ with &, and
occupation number of i-state does not depend any more on N

1

Mechanism of BEC: | N =N, +Z.¢O
v expl(e;, —&,)/ kT]—1

/
number of atoms out of the condensate depends only on T (not on N)

Condition fixes value of critical temperature




3D gas in harmonic potential

1
V. = Em[a))fxz + a)yzy2 + 602222]
1 1 1
g(n,n,,n.)=(n, +§)ha)x +(n, +E)ha)y +(n, +§)ha)z

BEC starts at 1 =£(0,0,0)

NT=znx,nyﬂ :

70 expl,b’h(a)xnx +on, + a)ZnZ)J—l

1/3

If k,T >>ho, one can transform sum WDy = (a)xa)ya)z)
into integral (semiclassical approximation) 3
Integration yields: N :( kBT] 2. (1)
( N, increases with T, independent of N) "o, ) 7

Condition| N, = N | then yields -
KT =094ho, N ang  NoM=N0-—5
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CONDENSATE FRACTION (Jila 96)
EXPERIMENTAL EVIDENCE
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ROLE OF INTERACTIONS ON BEC:
SOME QUESTIONS

Do interactions modify shape of order parameter?
Do interactions reinforce or weaken BEC?
Do they enhance or decrease critical temperature?

Can BEC be fragmented? (more than one s.p. state
with macroscopic occupancy?)
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BEC fragmentation and role of interactions

- Robustness of BEC ensured by (repulsive) two-body
interactions in uniform configurations (mean field effect)

- If trapping is not uniform (ex.: double well), interactions
can work in opposite direction (quantum fluctuations)




BEC fragmentation and Nozieres’ argument

Compare energy of two different configurations for a gas
confined in uniform box:

1
‘bec> — (ag)N‘ vac> atoms occupy same sp state (BEC state)
\VN!
1 atoms occupy two orthogonal
| frg) = v (ag)" (a;)""|vac)  sp states (fragmented BEC)
o N=N,+N,
H = HO T Hint

momenta of sp states
4/1/—1/3

Since p,=0,p = : Ho (kinetic energy) gives negligible contribution

Hy == [dr¥ (0¥ ()P () ¥(r)
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terms of 0- and 1- sp states ((03)2(51;)2 n ((01*)2(&;)2 o 2§0;(01*&3d1+]><

Express field operator in Liﬁ(”)Liﬁ(’”)\i’(”)qj(’”) =
Lij(’”):@o(”)&o"‘(01(’”)&1 S n o S o
[(@,) (ay)" + (@) (a,) +2¢,0,a4a, ]

1 (N,, N, >>1)

1
E (frg) =§g[N§“(00‘4 +N12‘”§01‘4 +4N0N1H§90‘2‘¢1‘2]

|
E(bec) =—g(Ny+ N, [l

_ 2 2
Since ‘(00‘ = \gol\ ( full overlap between s.p. wave functions)

AE = E(fig)— E(bec) = gN,N, [lp,|" >0

fragmentation is inhibited by
repulsive interactions (mean field effect)
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If condensates are
separated interactions
favour fragmentation
Example:

BEC in double well potential

V;zxt “
A
a

By writing field operator as Y = goa& + gobl; ' ' ' ' '

—20 —10 0

and neglecting higher order terms originating e
from overlap between wave functions a and b the many-body Hamiltonian

= J-dr\i“(r)(—%vz + ext(r)}l‘(r) +& J-dr‘P (PP ()P ()P (r)

tunneling

P

takes Boson Hubbard form H

§K

(&73 +b*a)

h
with  E. = 2gjgoj and 0, = —2_‘-017’%(’”)(_EV2 + V. (1)@, (1)

In the absence of interaction ( £,

the eigenstates of H are:

0)

¢0> = (&+
g01> =(a" —l;+)‘vac>

i vac>

0, =& —&




We are now ready to compare interaction energy between

| .
bec) = T p)yYY (ground state in the absence
‘ €C> VN2V @+ ‘vac> of two-body interaction)
)= JN/zv;v/zva AR R
1 +
‘frgdb> JN/2IN /2! (@ )N/z(b N/z‘vac>

Nozieres’ argument applies to configurations ‘bec> and ‘frg01>

since wave functions @, T @, fully overlap in space:
interactions make ‘bec> robust against ‘frg01>
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Different behaviour if one considers
configurations ‘bec> and ‘f”gab>( @_.and @, do not overlap!)

Comparison between interaction energy in ‘ >and ‘f”gab>

Eyy(bec) == N(N =)
4

/

E
Eint(ﬁ’gab) :TC Na(Na _1)+Nb(Nb —1)]=
E.
= ?N(N—Z) < E._ (bec)

4
interactions favour BEC fragmentation ( £, > 0)
(role of quantum fluctuations, see Lecture 4)

In general competition between interaction and tunneling
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Can we distinguish experimentally between | )and | )?

Look at interference fringes in T —
density after expansion (Lecture 3) n (p)=<¥"(p)¥(p)> A
or in ‘in situ’ momentum distribution | \Y(p)=¢,(p)a+¢,(p)b

Assume, for simplicity.

| 0,(2) =, (z+d)
®, and ¥, do not overlap in ipd /1
= ?,(P)

coordinate space; they fully P, (p)=e
overlap in momentum space n (p)=n,(p)
a b

With BEC
1 F N (z) = i @)+ " =)
\bec>=W(a +b%)"|vac) n(p)=2(+cos(pd/h))n, (p)
1 N/2 b+ N/2 n(Z) = na (Z)-I_nb(z)
[ figu) = JN/2IN /2! (a”)""( |vac) n(p)=2n,(p)
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Momentum distribution
in double well potential

| | | | | |
BEC
- n(p) — _
fragmented
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\ \\f\p[ﬂh/d]
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1 .
1-body density | n'"(z) = v j dpn(p)e "

With BEC fragmentation nM(z) = Ne =2 /2%

Wlth BEC n(l) (Z) _ N[e—z /2y +(e—(z+d) /2y _l_e—(z—d)//;)( )/2]

\ width of
I each condensate

long range order

nM (s, /d)




Measurement of the phase

Results for momentum distribution described in

last slides correspond to averaging procedure.

Result of single measurement (via for example

inelastic photon scattering) can be different:

- If the state is coherent (BEC) each measurement
will reproduce same positions of peaks of n(p)

(the phase is reproducible).

- If condensates are in fragmented BEC state the
measurement process will “create” the relative
phase |S,| and the measured momentum distribution
will exhibit interference fringes according to the law

n(p)=2[1+cos(pd/h+S.)n, (p)

In this case the value of the phase is random
and the averaging procedure washes out
interference effects in n(p).




- Measurements of the phase are more easily obtained by
imaging density distribution after release of the traps.
The two condensates overlap in coordinate space giving
rise to interference fringes (Lecture 3).

- Measurement of momentum distribution has the
advantage of determining the phase in situ (non
destructive measurement).

unresolved condensates
/

In situ measurement
of the phase in —
momentum distribution
(double well configuration)
Saba et al., MIT 2005

oscillations in the stream
of outcoupled atoms « n(p)



This lecture

Lecture 1. BEC and long range order.
Long range order and order parameter.
BEC fragmentation and role of interactions.

Next lecture

Lecture 2. Superfluidity and hydrodynamics.
Landau criterion (galilean vs rotational). Hydrodynamic
theory of superfluids. Collective oscillations and expansion.
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