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It is shown that any theory of charged fermions coupled to an abelian gauge field with 
Chern Simons term in the action is equivalent to some local theory of (locally gauge invariant) 
bosonic fields, provided the coefficient 0 multiplying the Chern-S imons  term is equal to ~r/n, 
where n is an odd integer. This result is based on a fermion-boson transformation, which also 
exists on a lattice and which is in many respects analogous to the Mandelstam bosonization 
formula in 1 + 1 dimensions. 

1. Introduction 

The "bosonizat ion" of fermion fields in ] + 1 dimensions is since many years a 
most  successful field theoretical tool, which has led to some surprising equivalences 
of seemingly unrelated models and to the solution of a number of interacting field 
theories. That  fermion fields can sometimes be represented purely in terms of boson 
fields has probably first been remarked by Jordan and Wigner [1]. Their transforma- 
tion maps a chain of fermion operators on a chain of Heisenberg spins in an 
invertible manner. It has been used, for example, to solve the 2-dimensional Ising 
model (see ref. [2] for a review) and a lattice version of the massive Thirring model 
[3, 4]. In continuum field theory, bosonization was introduced by Coleman [5], who 
established the equivalence of the sine-Gordon model with the (continuum) massive 
Thirring model. Originally, his proof only applied to the charge zero sector of the 
model, but later on Mandelstam [6] noted that the fermion field itself could be 
constructed from the scalar sine-Gordon field. Furthermore, Mandelstam's formula 
made it clear that, viewed from the sine-Gordon theory, the fermion field operator 
creates a soliton state from the vacuum. Thus, bosonization in ] + ] dimensions is 
closely related to the existence of solitons and topological quantum numbers. This is 
also borne out in the more recent application of the bosonization technique to 
conformal  field theories (see e.g. ref. [7] for an introduction). 

Early at tempts to bosonize fermions in higher dimensions (e.g. ref. [8]) did not 
lead very far, because it seemed unavoidable that some non-locality or inhomogene- 
ity with respect to spacial rotations is introduced by the transformation. This 
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difficulty is related to the fact that bosonization in 1 + 1 dimensions depends in an 
essential way on a topological property of space, namely that it decomposes into 
two disconnected pieces when a point (the position of the fermion) is removed. 
Already in 2 + 1 dimensions, this property is lost and it is quite clear then that if an 
artificial cutting of space is to be avoided, bosonization must involve some addi- 
tional elements which are specific to the topology of the plane minus a point. 

The starting point in this paper is the well-established (and physically well-under- 
stood) phenomenon that charged particles in 2 + 1 dimensions coupled to an 
abelian gauge field A,(x) with Chern-Simons term in the action may change their 
spin and statistics [9-21]. What happens in these theories is that the static Coulomb 
field attached to charged particles carries angular momentum so that the observable 
spin of the particle is the sum of the bare spin and the field angular momentum. 
Although the Coulomb force is short ranged (the photon receives a mass from the 
Chern-Simons term), the Coulomb gauge potential A,(x) in a regular gauge is only 
slowly falling off so that the topological charge 

1 2 
(1.1) 

is non-zero and in fact proportional to the electric charge of the particle. Eventually, 
this long range effect is also responsible for the change of statistics, as we shall see 
later on. 

The angular momentum J carried by the Coulomb field is inversely proportional 
to the coefficient 0 which multiplies the Chern-Simons term in the gauge field 
action [cf. eq. (2.1) below]. In this paper the goal is to find a transformation between 
fermions and bosons with ordinary spin and statistics and I will therefore only 
consider the case where J is half-integral. The possible values of 0 are then 

O = rr/n, (1.2) 

where n is any odd integer. 
Although the fermion-boson transformation discussed here is applicable in many 

different situations, I shall for the sake of definiteness only consider a simple model 
involving a single fermion field g'(x) minimally coupled to the gauge field A,(x). 
The bosonization of the theory is then achieved by constructing a new field ~/i(x) 
with the following properties: 

(1) ~ is invariant under local gauge transformations; 
(2) when applied to the vacuum state, the adjoint operator q~(x)* creates a state 

with charge one; 
(3) q~(x) commutes at space-like distances with all gauge invariant, local compos- 

ite operators (such as the energy-momentum tensor); 
(4) ~ ( x )  is a Bose field. 
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Furthermore, it turns out that the Hamilton operator (and in fact any gauge 
invariant, local composite operator) can be locally expressed through • and the 
electric and magnetic field associated to the gauge potential A~. An exact and 
complete transformation of the original fermionic theory to a local bosonic one is 
thus obtained. Moreover, the fields in this bosonic formulation of the theory are all 
locally gauge invariant and interact through short range forces only. It is then 
obvious that the fundamental charged particles are bosons (as anticipated from 
earlier studies [9-21]). 

The organization of this paper is as follows. In sect. 2 abelian Chern-Simons 
gauge theories are introduced and their quantization in the A 0 = 0 gauge is dis- 
cussed. The bosonization of the theory is then first carried out on a formal level 
(sect. 3), where short distance singularities and possible renormalizations of operator 
products are ignored. This formal treatment is nevertheless useful, because the basic 
algebraic structure becomes most transparent in this way. To demonstrate that the 
ultraviolet singularities do not spoil the transformation, the theory is put on a lattice 
in sect. 4 and it is then shown that a bosonization transformation with all the 
essential properties anticipated from the formal discussion exists for any positive 
value of the lattice spacing. In particular, the lattice model can be completely 
rewritten as a local bosonic theory. In the final sect. 5, conclusions are drawn and 
some possible further uses of the bosonization formulae are indicated. 

2. Abelian gauge theories with Chern-Simons term 

The material in this section is well known and I shall therefore be rather brief. 
For  further information see refs. [18, 22-26]. 

2.1. D E F I N I T I O N  O F  T H E  M O D E L  

The theory considered in this paper lives in 2 + 1 dimensions and involves an 
abelian gauge field A , ( x )  and a charged field ~/'(x) with charge e. The gauge field 
Lagrange density is taken to be* 

1 0 
~c, = - 4ezF~  F ~ -  4~r2~U~p A~O~A', (2.1) 

where the field tensor F,~ is given by 

F~, = O , A , -  O,A,.  (2.2) 

The second term in eq. (2.1) is the famous Chern-Simons term. The parameter 0 in 
front of it is dimensionless while e 2 and A~ have mass dimension 1. In this section, 

* Greek  indices  p_, v . . . .  run from 0 to 2 and  Lat in  indices k, l , . . .  f rom 1 to 2. Repea ted  indices  are 
s u m m e d  over. The spacet ime metric  is gu~ = d i a g ( 1 , -  1 , -  1) and  the total ly an t i symmet r i c  symbol  
%~p is no rmal i zed  such that  %12 = 1. 
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0 may assume any (non-zero) value. The restriction to the special values (1.2) will 
only be of importance later on when we discuss the bosonization formula. 

For the charged field g' we could take a Dirac field, but in order to keep the 
presentation as simple as possible, I will assume that • is a one-component 
anticommuting field which describes a non-relativistic fermion of mass M. The 
associated Lagrange density then reads 

&OF = ~P*(iD0 + 2 -~  DkDk) k°, (2.3) 

where the covariant derivative D, is given by 

D~kO= ( 0~+ iA~)~. (2.4) 

I emphasize that the restriction to a non-relativistic fermion field is in no way 
crucial for the bosonization of the theory. In fact, as one expects from the physical 
picture underlying the fermion-boson transmutation in Chern-Simons gauge theo- 
ries, the effect is mainly a consequence of the gauge field kinematics, as expressed 
through the basic commutation rules and the peculiar form of Gauss' law (cf. ref. 
[18]). This is clearly borne out in what follows; in particular, the precise form of the 
charged field dynamics will only be referred to at the very end of the discussion, 
when the Hamilton operator will be rewritten purely in terms of gauge invariant 
bosonic fields. 

2.2. Q U A N T I Z A T I O N  IN T H E  A o = 0 G A U G E  

The fundamental operator fields in the A 0 = 0 gauge are the spatial components 
A k of the gauge field, the associated canonical momenta ~r k, the charged field ~ and 
its hermitian conjugate ~t.  The non-vanishing equal time commutators and anti- 
commutators are 

[Trk(x ), A, (y) ]  = -i6kt~(x - y ) ,  (2.5) 

(~(x ) ,  vl"(y)* ) = 8 ( x - y ) ,  (2.6) 

and the Hamilton operator is given by 

H = H e + HE, (2.7) 

H e =  f d Z x  ~r k + ~ E ~ , A , )  + -~e2(Ek,OkA,) , (2.8) 

(ek~ is the antisymmetric tensor with c12 = 1). 
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Besides the dynamics, which is specified by the commutation rules and the 
hamiltonian, the quantization in the A 0 = 0 gauge involves a constraint, Gauss' law, 
which is imposed as a condition on the physical states IX)- Explicitly, we require 
that 

G(x)Ix) = 0  (2.10) 

for all x, where 

G =  P -  q, (2.11) 

P = g'*q*, (2.12) 

0 
q = Ok%- ~-~2eklOkAt. (2.13) 

At equal times, the operator fields q(x) and O(Y) commute, 

[ q ( x ) , q ( y ) ]  = [q(x) ,  0(Y)I = [0 (x) ,  O(Y)] = 0, (2.14) 

and G(x) commutes with the hamiltonian. 
The interpretation of Gauss' law is, as usual, that physical states should be locally 

gauge invariant. Thus, let A(x) be any time independent, real valued smooth 
function of compact support and set 

U(A ) = exp i f  d2x G(x)A (x) .  (2.15) 

From the basic commutation relations it then follows that 

U(A )Ak(x)U(A ) -~ = Ak(X ) + OkA(x ), 

0 
U(A)%(x )U(A)  l='B'k(X ) -- ~~2(.klOlA(X), 

(2.16) 

(2.17) 

U(A)q ' (x)U(A)  -1 = e ia(~)g'(x). (2.18) 

Thus, U(A) is a unitary representation of the group of time independent gauge 
transformations and the constraint (2.10) is equivalent to the requirement that 

U(A)Ix)  = IX) (2.19) 

for physical states IX)- 
Later on I shall also frequently refer to the "electric" and "magnetic" compo- 

nents of the gauge field tensor which are defined, in the present framework, by 

0 
E k = % + ~ ¢ k l A l ,  (2.20) 

B = %tOkAt. (2.21) 
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These fields are gauge invariant and have the equal time commutators 

0 
[Ek(x  ), E ; (y ) ]  = i 2~r---Tek;6(x - y ) ,  (2.22) 

[ B ( x ) , B C y ) ]  = 0 ,  (2.23) 

[8 (x) ,  e A y ) l  = (2.24) 

Furthermore, the gauge field hamiltonian and Gauss' law may be rewritten in the 
form 

1) 
T E k E k  + ~ e 2 B B  , (2.25) 

0 
0kEk ~--~B/Ix> = P I x ) .  (2.26) 

As far as the gauge field is concerned, eqs. (2.22)-(2.26) completely specify the 
theory and it is only for the local formulation of the dynamics of the charged field 
that the gauge potential A k must be introduced. After bosonization, this will no 
longer be necessary and the whole theory can be written in terms of E k, B and a 
(locally gauge invariant) charged boson field q~. 

2.3. G R O U N D  STATE AND STATIC CHARGES 

I here collect a few facts about the basic properties of the theory in the presence 
of static charges. This situation may be easily enforced in the present framework by 
setting M = ~ .  The fermions then do not move and the physical states IX) are 
eigenstates of the charge operator p. Explicitly, we have 

N 

p ( x ) l x )  = Y'~ 6 ( x  - x(J ) ) lx) ,  (2.27) 
j = l  

where x (j), j = 1 , . . . ,  N, are the positions of the static fermions. Once these 
positions are fixed, the properties of the gauge field are completely determined by 
eqs. (2.22)-(2.26). Since these relations only involve the gauge invariant fields E k 
and B, we may restrict ourselves to the space of gauge invariant states. Eq. (2.26) 
then becomes an operator identity which, as one may easily verify, is consistent with 
the commutation rules. 

To solve the theory, we first eliminate the magnetic field B through 

2~ -2 

B = - -~ - (OkE k -- P) .  (2.28) 
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The field equations for the electric field then read 

1 
3oE k = m~klE ! - -  -'~EkjOj( 01El- p ) , 

where I have introduced the parameter 

563 

(2.29) 

with 

m 

Wk(X) = ~-~ f d 2 y K l ( m l x - y l )  
( x k - y  k) 

Ix -Yb 
O(Y), (2.31) 

where K 1 denotes a Bessel function [27]. The general solution of the field equations 
may thus be written in the form 

E k = d°k + E ° , (2.32) 

1 
E ° ( X ) = e f  d l~(p)[a(p)uk(p)e- iP~+a(p) tuk(p)*e ipx  ] , (2.33) 

d2p 

d /~(p)  2P0(2Tr) 2 , P0= m ~ 5 + P  2" (2.34) 

The polarization vector u k is determined by the field equations up to an arbitrary 
(momentum dependent) factor. A regular and rotationally covariant choice of u k is 

u 1 =im - P 2 ( P x -  iPz)/(Po + m),  (2.35) 

u 2 = m + P l ( P x  - iP2)/(Po + m),  (2.36) 

and the particle annihilation and creation operators a(p)  and a ( p )  t then satisfy 

[a(p), a (q )  t] = 2po(2~r)28(p - q) (2.37) 

as a consequence of the commutation rule (2.22). 
It follows from the above that the theory describes a massive photon with spin 1 

in the presence of an arbitrary distribution of static charges. The ground state [0) of 

which will shortly turn out to be the photon mass. Since the charge distribution p is 
time independent, eq. (2.29) has a static solution d~k, the Coulomb field generated 
by p, which is given by 

e20 
m = 2~.2, (2.30) 
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the theory is characterized by the absence of photons and charges, viz. 

 (p)lo) = p(x)lO> = o .  (2.38) 

For a given charge distribution (2.27), there also exists a unique lowest energy state, 
denoted by Ix ~1) . . . . .  x~N)) ,  which satisfies 

a ( p ) l x  ~1) . . . . .  X ( N ) )  = 0 .  (2.39) 

Up to an uninteresting additive constant, its energy E is given by 

e 2 N 

= - -  E K o ( m l  x(i) - x~Y)l), (2.40) 
E 4Tr i4:j 

where K 0 is another Bessel function [27]. Thus, the Coulomb force between charged 
particles is rapidly going to zero for distances greater than m 1. This is, of course, 
due to the fact that the photon is massive in this theory, a property which also 
implies that the n-point functions of the electric and magnetic field cluster exponen- 
tially. 

As already remarked in the introduction, charged states have a soliton character 
in the sense that they have a non-zero topological charge 

1 

QA = f (2.41) 

In fact, using Gauss' law (2.26) and the exponential falling off of the electric field in 
correlation functions, one concludes that 

where 

q7 

QA = - ~ Q, (2.42) 

Q = fd2xo(x) (2.43) 

denotes the total electric charge. From this relation one can already see that 
something interesting happens when 0 assumes one of the special values (1.2). QA 
then has only integer eigenvalues and a large Wilson loop around a charge at the 
origin (i.e. the total phase factor in an Aharonov-Bohm experiment) is hence equal 
to one. Since local observables such as the electric field are rapidly falling off, there 
is actually no way to detect the presence of the charge by doing experiments far 
away from the origin (unless exponentially small effects are measurable). In other 
words, charges are perfectly screened in this case and they are thus, from an 
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experimental  point of view, local excitations of the vacuum. The bosonization 
formula discussed in the following sections can be regarded as a mathematical 

expression for this physical effect. 

3. Bosonization: the basic idea 

In this section, the discussion is rather formal at various places, because I shall 
ignore all mathematical complications which arise when operator products are 
formed and exponentials of operator fields are taken. I believe that a proper 
t reatment of the associated ultraviolet divergencies will eventually be possible, but 
such a more rigorous discussion is also likely to obscure the basic structure and it is 
therefore omitted here. In any case, in the lattice model introduced in the next 
section, the ultraviolet divergencies are cut off and, following the pattern described 
below, the bosonization of the theory can then be carried out rigorously for any 
positive value of the lattice spacing. 

For  notational convenience, I shall from now on adopt the convention that in all 
formulae the operator fields involved are to be taken at the same time x °. In 
particular, commutators  are always evaluated at equal times. Also, I will now take it 
for granted that 0 assumes one of the special values (1.2), while the fermion mass 
M > 0 and the electric charge e > 0 remain unrestricted. 

3.1. CONSTRUCTION OF A LOCALIZED CHARGED FIELD 

The goal here is to find a locally gauge invariant operator ~b(x) which is charged, 

[O(x) ,  ~ ( y ) ]  = -8 (x -y ) rb (y ) ,  (3.1) 

and which is local relative to the algebra of "observables". This term refers to the 
following property. Suppose R is some compact, simply connected region in 
the plane and let 0 be any gauge invariant operator which is composed from the 
fundamental  fields Ak(z), ~rk(z), ~t'(z) and ~ ( z )  t with z ~ R. Examples of such 
operators are the electric field Ek(z ) and the charge transport operator 

T(u,v)= ~t'(u)texp(i fVdzkAk(z))~I'(v), (3.2) 

where the integral in this formula is to be taken along a simple curve cg contained in 
R. The requirement on the field ~ ( x )  then is that it commutes with all such 
operators 0, for all regions R that do not contain the point x. 

To construct ~ (x ) ,  first consider the operator 

iqr 0 (z))~kjOjlnl z (3.3) 
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Using the identity 

one quickly verifies that 

M. L~cher / Bosonization 

8kOklnlzl = 27rS(z), (3.4) 

U(A )L(x)U(A ) -1 = e i A ( x ) t ( x ) .  (3.5) 

The composite field L(x)q'(x) is therefore a gauge invariant operator, which 
annihilates a charge at x and which is thus a candidate for the field ~ ( x )  we are 
looking for. 

To see whether indeed we can identify ~ ( x )  with this composite field, we must 
work out the locality properties of L(x). For the electric and magnetic field, it is 
easy to show that 

[ L ( x ) ,  Ek(y) ]  = O, (3.6) 

2q72 
[ L ( x ) ,  B ( y ) ]  --~-8(x-y)L(x) .  (3.7) 

To compute the commutator of L(x) with the operator T(u, c) defined above, we 
first introduce an angle ~(z)  through 

ei~O(~) = (Z 1 -+- iz2)/Izl. (3.8) 

In what follows it is important to keep in mind that ep(z) is only defined for z =# 0 
and then only modulo 2~r. When z is restricted to a simply connected region R not 
containing the origin, it is possible to choose cp(z) in a differentiable manner such 
that eq. (3.8) holds. For z ~ R one may then show that 

Okcp (z) = - c kl Ozlnlzl, (3.9) 

and with the help of this relation, it follows that 

L(x)T(u, v) = T(u, o)L(x)exp i-~ [ c p ( u -  x)  - c p ( v -  x)]  , (3.10) 

provided x is not on the curve fg which connects u and v. 
From the above it is clear that the composite operator L(x)'P(x) does not quite 

have the required locality properties. However, considering eq. (3.10), one is led to 
make the ansatz 

O(x) = L(x)~P(x)exp(- i~r . 2 -~ J d zp(z)~(Z- X)), (3.11) 
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where an infinitesimal neighborhood around x should be omitted when integrating 
over z so that the order of the factors on the right-hand side is arbitrary. Note that 
even though the angle rp(z-  x) is only defined modulo 2~r, the exponential in eq. 
(3.11) is single valued, because the eigenvalues of the charge density are quantized, 
eq. (2.27), and because we have assumed that ~r/0 is an integer. It is here that the 
restriction to the special values (1.2) is of crucial importance. For general 0, one 
would have to introduce a cut in the plane and the discontinuity of q~(z - x) across 
this line would then give rise to various additional terms in the formulae that follow. 
In particular, ~ (x )  would be localized along the cut and not just at the point x. 

By construction q~(x) is a locally gauge invariant charge annihilation operator, 
eq. (3.1). Furthermore, it commutes with any gauge invariant operator 0 of the type 
described above, provided the localization region R of 0 does not contain the point 
x. To see this, recall that for all y in R we can choose the angle q0( y -  x) as a 
differentiable, single valued function, and it is then easy to show that 

q'J" 

( 1 ) 
- -  + e(x), 

~(x)~I'(y) = - e x p (  i~r -x))q'(y)~(x) 

(3.12) 

(3.13) 

(3.14) 

iqT" 
* ( x ) ' P ( y )  t =  - e x p ( - ~ - q ~ (  y -  x))~(y)t*(x). (3.15) 

Thus, ~ ( x )  acts like a gauge transformation A(y)= rr- Or/O)q~(y- x) on the 
basic fields in the region R and since the operator O is a gauge invariant 
combination of these fields, it commutes with ~(x) .  

An interesting aspect of the construction of q~(x), revealed by the discussion 
above, is that bosonization apparently depends on a relation between the geometry 
of space and the gauge group. This link is provided by the angle qp(z) which 
originally has meaning as an azimuthal angle of the position of one charge relative 
to another, but which is now also seen to appear as a gauge transformation 
representing the commutation of ~ (x )  with the fundamental fields. 

3.2. S T A T I S T I C S  O F  q~ 

I now proceed to show that ~ ( x )  is a boson field, i.e. that 

[ ~ ( x ) , ~ ( y ) ]  = [ ~ ( x l , ~ ( y ) t ]  = 0  (3.16) 
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for all x ~ y .  To this end, first consider the gauge factor L(x), eq. (3.3). From the 
fundamental  commutators it follows that 

where 

L(x)L(y)  = ei"L(y)L(x), 

1 
= f d2z %j0klnl z - xL Ojlnl z - Yl- 

(3.17) 

(3.18) 

This integral is absolutely convergent for x 4= y (the integrand is of order I z I 3 for 
large z). Because of translational and rotational invariance, a is a function of 
I x - Y l  only, and since it is odd under an interchange of x with y, it follows that 

= 0. Thus, we have 

[L(x), LIy)] = [L(x), LIy)*] =0 (3.19) 

for all x ~ y. 
The extra minus sign which makes q~(x) into a boson, comes from the last factor 

in eq. (3.11). When this exponential is commuted with ' / f ly)  one picks up a phase 
proport ional  to qo( y - x)  so that all together one obtains 

) * ( x ) * ( y ) = - e x p  -~-[q)( y -  x ) -ep (x -y ) ]  Cb(y)Cb(x). (3.20) 

Since we have assumed that ~r/0 is an odd integer and since 

exp( i [qo(z)  - q o ( - z ) ]  } = - 1  (3.21) 

for all z, the announced result follows. It is most interesting to see in such an 
explicit manner  that the requirement of locality of ~ ( x )  relative to the "observable" 
fields [such as T(u, v)] necessitates the introduction of a factor which eventually 
gives rise to a change of statistics. 

So far we have only verified that ~ ( x )  commutes with ~ ( y )  and its hermitian 
conjugate provided x ~ y. Of course, it would be interesting to know what operator 
one obtains at x = y  and whether perhaps the algebra closes. At the present level of 
rigour, this question is, however, impossible to decide, because ep(z) is discontinu- 
ous at z = 0 and because the exponential factors involved may strongly influence the 
short distance properties of q)(x) (at least this is what happens in Mandelstam's 
bosonization formula in 1 + 1 dimensions). These difficulties do not arise in the 
lattice formulation presented in the next section, where I shall show that ~, ~ t  and 
the electric and magnetic field form a closed non-degenerate equal time algebra, on 
which the whole theory may be based. 
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3.3. BOSON REPRESENTATION OF THE C H A R G E  T R A N S P O R T  OPERATOR T(u, v) 

A crucial property of bosonization in 1 + 1 dimensions is that local fermionic 
operators such as the chiral charge densities and the fermionic energy density have 
an equivalent local bose representation. As I will now demonstrate, such equiva- 
lences also hold in 2 + 1 dimensions. Consider for example the charge transport 
operator T(u, v) defined through eq. (3.2), where for simplicity I will assume that 
the integration path ¢g is the straight line between u and v. Substituting the 
bosonization formula 

we get 

"t'(x)= L(x)*~(x)exP( o f d2zo( z )w(z -  x) ) , 

T(u, v) = ~(u) te i~B+r+g)~(v) ,  

(3.22) 

(3.23) 

where the integrals/3, 7 and 8 are defined by 

/3=--ff f d 2 _-.4--~2,k,A,(z)),kjOj(lnl --ul - - l n l z - - v l ) ,  (3.24) 

7r 
y = ~ fdZzp ( z ) [w( z  - v) - w(z - u)], (3.25) 

= L~dzkAk(z). (3.26) 

The first two of these integrals are completely non-local and it thus seems that the 
rewriting of T(u, u) in terms of the Bose field • has yielded an unmanageable 
operator. However, the sum/3 + y + 8 can be transformed to a simple expression in 
the following way. 

Suppose we cut the z-plane along the straight line starting from u and passing 
through v to infinity. Up to a constant multiple of 2~r, the angle difference 

A (z) = - v )  - -  - u )  (3.27) 

is then a well-defined, differentiable function in this cut plane. Actually, the 
discontinuity of Aq0(z) vanishes along that part of the cut which extends from v to 
infinity, and Aq0(z) is hence also differentiable there. Along the cut between u and 
v, the discontinuity is 2~r. Thus, excluding a small region around this part of the cut 
from the integration in eq. (3.24) and inserting 

OkAeP(Z) = ,kj0~(lnlz -- ul -- lnlz -- v l ) ,  (3.28) 
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the integral fl can be evaluated by partial integration and one obtains 

~r 2~r 2 rv  k [ 0 ) /3=-~fd2zq(z)aw(z) ~--j. dz ,ktl~rt(z)-~z,tjAj(z ) (3.29) 

(the integration contour at infinity does not contribute because Aep(z) is of order 
Izl x for large z). It follows that 

~r 2~r 2 v 
/3+ v + 6 =  -~fd2z[p(z)-q(z)]A,~(z)---~-f~.,,, dzk,k,E,(z), (3.30) 

and if we act with T(u, v) on gauge invariant states only, we may use Gauss' law in 
operator form and thus arrive at the simple identity 

2~ 2 fv ) T(u, v) = ~ ( u ) t e x p  -i--~- L dzk%,E,(z) ~(v). (3.31) 

This operator manifestly has the right locality properties and furthermore it is 
written entirely in terms of gauge invariant Bose fields. Incidentally, although I have 
established eq. (3.31) under the assumption that the integration path ~ connecting u 
and v is the straight line, the final result is actually valid for arbitrary simple curves 
W, provided the integral in eq. (3.31) is taken along the same curve ~g. 

An interesting application of eq. (3.31) is that it allows one to rewrite the 
fermionic hamiltonian (2.9) in terms of boson fields. Indeed, differentiating twice 
with respect to v (and generously neglecting short distance singularities), one 
obtains 

~/tt Dk Dk ~ = ~t~kEr~ ~kEa~ --, (3.32) 

where the "covariant derivative" D~ is defined through 

( ) D ~ =  Ok--1 0 ~ktEl ~p" (3.33) 

At this point, the bosonization of the theory has almost been achieved. What is still 
lacking are the complete commutation relations of the basic Bose fields E k, B, qb 
and ~t, which, as I have remarked earlier, cannot safely be derived without control 
over the ultraviolet divergencies. Also, the derivation of eq. (3.32) has been quite 
formal for the same reason. 

To remove these deficiencies, I now turn to a discussion of a lattice version of the 
model. It will then be possible to determine the complete commutator algebra of the 
basic bosonic fields. Furthermore, a lattice form of eq. (3.32) will be established and 
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an exact bosonization of the lattice theory can thus be achieved along the lines 

explained above. 

4. Bosonization on the lattice 

Abelian Chern-Simons  gauge theories on a 3-dimensional euclidean lattice have 
recently been investigated by FriShlich and Marchetti [20]. Here ! shall develop the 
lattice theory in a hamiltonian framework where time is continuous and space is 
replaced by a simple square lattice with lattice spacing a. There are no fundamental 
difficulties to formulate abelian Chern-Simons gauge theories on a lattice. Still, a 
potential  problem is that the Chern-Simons term contains only one derivative and 
hence one has to make a decision whether one wants to take a right or left lattice 
derivative. This is similar to the situation encountered when relativistic fermions are 
put on a lattice and it seems in fact that in a theory where the gauge field action 
contains no other term besides the Chern-Simons term, a certain degeneracy similar 
to the fermion species doubling is unavoidable (there are some finite energy modes 
of the field that do not exist in the continuum model). In the presence of the 
ordinary kinetic energy term (the Maxwell action), this degeneracy is removed 
provided only that the dimensionless parameter e2a is finite. In particular, for fixed 
e2 .< oQ, the continuum limit of the lattice theory is expected to exist and to coincide 
with the model studied in the preceding sections. 

4.1. DEFINITION OF THE LATTICE THEORY 

The fundamental  fields on the lattice are Ak(x), qrk(x), q'(x) and q ' (x)  +, where 

x = ( x ° , x ) ,  x ° ~ R ,  x / a ~ Z  2, (4.1) 

and the basic non-vanishing commutators and anticommutators are again given by 
eqs. (2.5) and (2.6) with 

8(z)={lo/a2 otherwise.ifz=O' (4.2) 

A good choice for the generator G(x) of lattice gauge transformations requires some 
care, because one must make sure that one obtains an abelian group and that Gauss '  
law, eq. (2.10), can be imposed consistently. A simple possibility which satisfies 
these criteria is G = 0 - q, where the charge density 0 is given by eq. (2.12) as before 
and 

0 
q = O~'~r k - -~2%,OkA,. (4.3) 

The lattice derivatives O k and Off appearing here are defined, for any function 
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f ( x ) ,  through 
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3 k f ( x  ) = [ f ( x  + a[c) - f ( x ) ] / a ,  (4.4) 

Offf(x)  = [ f ( x )  - f ( x  - a~:)]/a, (4.5) 

where f¢ denotes the unit vector in the positive k-direction. The choice (4.3) for the 
field q(x) is suggested by the corresponding continuum expression (2.13) and one 
may easily verify that it satisfies eq. (2.14). As in the continuum theory, the physical 
states ]X) are required to fulfill Gauss' law, eq. (2.10). 

Finite gauge transformations A (x), x /a  ~ Z 2, are unitarily represented by 

U(A ) = exp ia2~_, G ( x ) A  ( x ) ,  (4.6) 
X 

and the corresponding transformation laws for the fundamental fields read 

v ( a  ) & ( x ) U ( a  ) -1 = & ( x )  + a ~ a ( x ) ,  (4.7) 

0 
u ( a ) ~ k ( x ) U ( a  ) l = ~ k ( x  ) - ~-~-~2,~lo,*a(x), (4.8) 

U(a  ) , l , ( x )U(a  ) -1 = e ia(x)'t"(x). (4.9) 

One is thus led to define the gauge invariant electric and magnetic fields through 

0 
Ek(x ) = ~rk(x ) + -~zEkiAi (x  -- a l ) ,  (4.10) 

B (  x ) = ~k, G A i (  x ) . (4.11) 

Finally, a simple choice for the Hamilton operator H is 

H = H e + H F , (4.12) 

= a2E - - G G  + ) i-Io x(e2 ~ 1 ~ e  2BB , (4.13) 

(1 ) 
2M Dk Dk g ' '  H F  = a 2 ~ x  ~/t? --  - -  * (4.14) 

where the covariant derivatives D k and Dff are defined by 

Dh3P(x ) = [ei'i&(x)~p(x + ak ) - ~P(x)] /a ,  (4.15) 

D ~ ' ~ ( x )  = [ , ~ ( x )  - e -iaAk(x ak~'P(X -- & ) ] / a .  (4.16) 
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This completes the definition of the lattice model. It is not difficult to show that it 
can be derived from a classical lagrangian through canonical quantization, and one 
may also verify that the continuum limit of the free gauge theory with static charges 
coincides with the continuum model discussed in sect 2.3. 

4.2. ANGLES AND GREEN FUNCTIONS ON THE LATTICE 

For the bosonization of the lattice theory, some technical preparation is needed. 
In particular, a lattice substitute for the functions lnlz] and cp(z) which play a 
crucial role in the transformation must be found. The fundamental property of the 
first of these is that it is a Green function for the laplacian, cf. eq. (3.4). On the 
lattice, one is thus looking for a function g(z) such that 

OffOkg(z ) = 2~r3(z). (4.17) 

A well-behaved solution to this equation is 

where 

1 d 2 p  (1  - 2 , 
g(z)  = G 

2 2 
j~2 = V E (1 -- c o s a P k  ) .  

k = l  

(4.18) 

(4.19) 

In the continuum limit a --* 0, this function reduces to In[ z ] plus a (logarithmically 
divergent) constant whose value is unimportant, because ultimately only derivatives 
of g(z) occur in what follows. 

To find an appropriate lattice definition of the angle ¢g(z), first consider the 
vector field 

fk (z)  = - %,9ffg(z) .  (4.20) 

From eq. (4.17) one immediately obtains 

akf , (z )  = 2 = 8 ( Z ) .  (4.21) 

An integral form of this relation is as follows. Suppose cg is some closed oriented 
loop of links on the lattice and let riga) be the lattice line integral of fk(z) around ~g 
(defined in the obvious way). Using the lattice Stokes' theorem, eq. (4.21) then 
implies that f(cg)  is equal to 2~rk, where k is the number of times the curve c£ 
winds around 

o* = ( a/2, a/2) ,  (4.22) 

the origin of the dual lattice. It follows from this observation that the product of the 
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phase factors exp[iafk(z)] along ff is equal to 1 for any closed loop ~,  and hence 
there exists a phase ~(z)  such that 

exp[i~(O)] = 1, (4.23) 

exp[ iaOk~p(z )] = exp[ iafk(z )] . (4.24) 

As in the continuum, ~(z)  is only defined modulo 2~r, but in any region R of the 
lattice which contains no loop of links winding around the point o*, we may choose 
¢~(z) in such a way that 

Okq~ (z) = fk (z) (4.25) 

for all links (z, z + a/~) belonging to R. 
The lattice formula corresponding to the relation (3.21) (which is crucial for 

proving that the field • satisfies Bose statistics) reads 

exp{i [¢~(z) - ¢~(2o* - =)l} = - 1 .  (4.26) 

Note that the transformation z ---' 2o* - z is just a reflection at the origin o* of the 
dual lattice. To prove eq. (4.26) one first makes use of the defining property (4.24) 
of the angle ¢~(z) to rewrite the left-hand side as an exponential of a lattice line 
integral of fk along some (arbitrary) curve ¢g from 2o* - z to z. This line integral 
can be shown to be equal to ~r (mod2~r). Indeed, under a reflection at the point o*, 
the integration path ~g is mapped onto another path ~ '  which starts at z and ends at 
2o* - z. The corresponding lattice line integral of fk is equal to the integral along cg 
because of the symmetry property 

fk(z) = - fk (2o*  - z - a/~), (4.27) 

which may be easily derived from the definitions (4.18) and (4.20). On the other 
hand, the curve ff followed by cg' is a closed loop which winds around o* an odd 
number of times and the associated line integral is hence equal to 2~rk with k odd, 
according to the discussion above. Since the integral along ¢Y is exactly half this 
value, the desired result follows. 

4.3. DEFINITION OF THE BOSE FIELD ~(x)  

In complete analogy to the continuum construction, a charged, locally gauge 
invariant lattice field ~ ( x )  may be defined by 

qb(x) = L(x) '~ ' (x)exp(-  iqr 2 ~-a ~ p ( z ) c ~ ( z - x ) ) ,  (4.28) 

where the operator L(x) is composed from the gauge field A k and the canonical 
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momentum ~r k. Note that because of the normalization (4.23), the exponential factor 
commutes with ~O(x) and could hence be written on either side of the expression. 
Setting 

A ( x ) = ¼ [ A l ( x ) + A l ( X + a 2 ) + A 2 ( x ) + A 2 ( x + a ] ) ] ,  (4.29) 

0 
rk(x ) = ~rk(x ) - -~5~2,ktA,(x + ak), (4.30) 

the explicit formula for L(x)  reads 

L ( x )  = exp - i a A ( x ) -  ~ -a2~rk(z ) fk (Z- -  x) . (4.31) 

The introduction of the field rk(x ) is motivated by 

3~'r k = q, (4.32) 

a property which I shall later refer to when the lattice charge transport operator 
T(u, o) will be rewritten in terms of bosonic fields. Under a gauge transformation, 
we have 

0 
U(A)rk(x )U(A ) 1 = rk(x ) _ ~5~2cktO.(A(x ) + A ( x  + 2o*)) ,  (4.33) 

and it is due to the fact that not only the derivative of A at the point x appears 
here, but also at the point x + 2o*, that the field A(x) must be introduced in the 
definition of L(x)  to guarantee the validity of the transformation law (3.5). 

The field q~(x) is local relative to the algebra of locally gauge invariant "observa- 
bles" 0 on the lattice. This property can be established in exactly the same way as in 
the continuum (cf. sect. 3.1) and the argument is therefore not repeated here. 

4.4. COMMUTATOR ALGEBRA OF THE BASIC BOSE FIELDS 

I now proceed to show that the fields E, ,  B, @ and q~* form a closed (equal time) 
commutator  algebra. The commutators of the electric and magnetic field are easy to 
work out and one finds that 

0 
[Ek(x) ,Et (y)]  = i - ~ 2 , k , [ 3 ( x - y - a l ) + 3 ( x - y + J c ) ] ,  (4.34) 

[ B ( x ) ,  B ( y ) ]  = 0, (4.35) 

[ B ( x ) ,  Ek (y ) ]  = - i ,  k tO ,3 (x -y ) .  (4.36) 
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Next, from the definition (4.28)-(4.31) of the charged field ~(x), one straightfor- 
wardly derives the commutators 

[~(x),Ek(y)]=¼a[8(x-y)+8(x-y+2o*-a[~)]Cb(x ), (4.37) 

27r  2 

[~(x), B(y)I O 8(x-y)~(x) .  (4.38) 

To compute the commutator of ~(x)  with itself and with ~(y)*, first note that eq. 
(3.17) is still valid, but because of the appearance of the field -4(x) in the lattice 
definition of L(x), the phase a receives an additional non-vanishing contribution of 
order a. Explicitly, we have 

a q r  2 

a- 20 2 [fk(x--Y)+fk(x--y+20*--ak)], (4.39) 
k = l  

and it follows that 

( i~r ia) ~( (4.40) *(x)~(y) = - e x p - ~ - [ q 3 ( y - x ) - ~ ( x - y ) l  + y)ff~(x) 

for all x and y. 
The phase appearing in this formula can be simplified by invoking the symmetry 

property (4.26) of the angle q~(z) and by using eq. (4.24) to represent the angle 
difference q~(z + 2 o * ) -  q~(z) in terms of the field fk(Z). Collecting all contribu- 
tions, one then finds that they combine to give eklakft(x- y) SO that by eq. (4.21) 
one finally arrives at 

q~(x)* (y )  = exp( ~ - a  i7r2 28(x_  y))*(y)*(x). (4.41) 

In particular, q>(x) commutes with q)(y) for x ¢ y and the result of the calculation 
may be summarized more concisely by 

[ * ( x ) ,  * ( y ) ]  = 0, *(x)~(x) = 0. (4.42) 

Similarly, one shows that 

[~ (x ) ,  ~(y)*]  =8(x-y)[1-Za2~*(x)~(x)], (4.43) 

and we have thus established the complete commutator algebra of the basic bosonic 
fields. 
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An important question is what irreducible representations this algebra has. 
Actually, not all representations are required but only those which satisfy Gauss' 
law 

0 
O~'Ek(x ) - 4~r----- 5 [ B ( x )  + B(x  - 2o*)] = O(x),  (4.44) 

where, in terms of bosonic fields, the charge density may be written as 

(4.45) 

It is easy to check that this operator relation is consistent with the commutation 
rules. I would now like to show that at least in a finite volume, there is only one 
such irreducible representation. To this end it is helpful to define the auxiliary fields 

E/,(x) : Ek(x ) _ t~a[p(x) + p ( x -  20* + ale)], (4.46) 

27r 2 
B'(x)  : B(x )  + ~ O(x). (4.47) 

Among themselves, these fields have the same commutation relations as E k and B, 
eqs. (4.34)-(4.36), but they commute with the charged field • and, furthermore, 
Gauss' law reduces to 

0 
O*E'(x)  - 4er2 k k - - [ B ' ( x )  + B ' ( x -  20*)] = 0. (4.48) 

Thus, there is a complete decoupling between E[, B' and the charged field ~. 
That  there is only one irreducible representation of the algebra of the charged 

fields • and ~t  is rather obvious, because fields at different points commute and 
the fields at the same point just satisfy the algebra of a single pair of fermion 
creation and annihilation operators. An explicit model for the irreducible represen- 
tation is given by 

(4.49) 

where ok(x ) denotes a Pauli matrix at site x (as in a 2-dimensional Heisenberg 
ferromagnet). 

The algebra satisfied by the modified electric and magnetic fields E[  and B' is an 
ordinary canonical algebra which could be brought to a diagonal form of the type 
(2.37) by going to momentum space. That this is possible is a consequence of the 
fact that the commutation rules (4.34)-(4.36) together with the constraint (4.48) 
form a non-degenerate system in the sense that any linear combination of E[  and 
B'  which commutes with all fields is equal to zero, at least in any finite volume with 
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periodic boundary conditions. In particular, there is only one irreducible representa- 
tion of this algebra in a finite volume. 

The discussion in this subsection shows that the algebra of the Bose fields E k, B, 
q~ and ~* can be taken as the fundamental structure on which a quantum theory 
can be built. The nice thing about this fact is that the unphysical gauge degrees of 
freedom have completely disappeared in this framework since all fields are locally 
gauge invariant and Gauss' law can be considered an operator identity rather than 
just a condition on the physical states. 

4.5 BOSE REPRESENTATION OF THE HAMILTON OPERATOR 

In the final step of the bosonization procedure, the lattice Hamilton operator 
(4.12)-(4.14) is exactly rewritten in terms of the basic bosonic fields. This is trivial 
for the gauge field part H G. To transform the fermion hamiltonian HF, first note 
that 

( 2 
Hv=~- ~ 4 p ( x ) -  Y'~ [Tk(x ) + Tk(x)* ] 

k = l  

(4.50) 

where Tk(x ) denotes the charge hopping operator 

Tk(x ) = g ' (x)  t exp[iaAk(x)] g ' (x + ak) .  (4.51) 

As in the continuum case, such operators have an equivalent Bose representation 
which can be derived following the procedure explained in sect. 3.3. 

The most difficult step in this calculation is the evaluation of the integral fl, 
whose lattice form in the present case reads 

2 fi= - ~ a  Y~rt(z)[fl(z- x ) - f t ( z - x -a~c  ) ] (4.52) 

here and below, k denotes the index of the operator Tk(x ) which is being 
transformed]. In subsect. 3.3, the quantity corresponding to f t(z-  x)-f t(z - x -  
a/~ ) was represented as a gradient of the angle difference Aq0(z) and the integral 
could then be simplified by partial integration, cf. eq. (3.28). This strategy can be 
carried over to the lattice by introducing a function Aq~(z) through 

O,A~(z) = 2~ra%,8(Z -x-a~:) -fl(z - x )  +ft(z -x--ale), (4.53) 

which is consistent because the curl of the right-hand side of this equation vanishes, 
as one may easily verify. Actually, eq. (4.53) determines z~q~(z) only up to an 
arbitrary additive constant, which may be fixed by requiring that aq~(z) goes to zero 
for large z. From the definition of ~(z), it is then straightforward to show that 

exp[iAq~(z)] = exp[ i (~(z  - x -- ale) -- q~(z -- x ) ) ] ,  (4.54) 
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and A~(z) thus has all the relevant properties to play the role A~o(Z) did in the 
continuum case. In particular, by performing a "partial  summation", the integral fl 
becomes 

vr 2~r 2 
B = - ~a2Eq(z )a~(z )  - --~-%,art(x + a~:), (4.55) 

z 

where I have made use of eq. (4.32). 
The other steps involved in the transformation of Tk(X) present no difficulty and 

the details are therefore omitted here. As a result one obtains 

Tk(X )=~(x) texp(  2¢r2 a~:))~(x a~c) --i~--%laEl(X + + 

xexP{¼i(3kl-Sk2)a2[B(x)+B(x+ak)]}, (4.56) 

which, in view of eq. (4.50), proves that the Hamilton operator can be written 
locally in terms of the basic Bose fields. This completes the bosonization of the 
lattice theory. Note that what we have obtained in the end is a completely 
well-defined and self-contained local lattice quantum field theory, which could now 
be studied in various ways, using analytical and perhaps numerical techniques, 
without taking recourse to the old fermionic formulation of the theory. 

Actually, from the Bose form of the theory, one immediately concludes that the 
physical charged particles in this initially fermionic model are bosons. Because the 
electric and magnetic field cluster exponentially and because the charged particles 
are heavy, it is also rather obvious from eq. (4.56) that these particles have only 
short range interactions (a rigorous proof of this statement could presumably be 
given by performing a "hopping parameter" expansion in powers of l /M).  Thus, 
the bosonization transformation reveals the true physical content of this theory in a 
most concise way. 

5. Conclusions 

It is a quite common phenomenon, also in higher dimensions, that solitons in 
theories which only involve bosonic fields at the fundamental level turn out to be 
fermions. That  in such a case the theory would be exactly equivalent to a local 
fermion model, seemed so far to be a possibility reserved exclusively to theories 
living in 1 + 1 dimensions. The transformation introduced in this paper now shows 
that at least in 2 + 1 dimensions equivalences between non-trivial interacting local 
field theories exist, where one of the theories involves a basic fermion field while the 
other is purely bosonic. Although not all aspects of this transformation have yet 
been worked out, the principles involved seem quite general and thus one may hope 
that similar structures also exist in higher dimensions (an interesting starting point 
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for attempts in this direction are the theories of the type introduced recently in ref. 
[30]). 

The 2 + 1 dimensional bosonization formulae discussed in this paper can be 
expected to apply to many different theories involving an abelian Chern-Simons 
gauge field coupled to a multiplet of charged fields. It is unimportant for the 
transformation whether these are Fermi or Bose fields; in both cases it flips the 
statistics and produces an equivalent local theory of gauge invariant fields. A 
particularly interesting case to consider would be the CP 1 model with Hopf term, 
which has recently received a lot of attention because of its possible relation to high 
T c superconductivity [31,32,12,13]. One should, however, be careful with the 
physical interpretation of the transformed theory when Dirac fermions are involved, 
because these can, in certain instances, strongly polarize the vacuum state and in 
this way produce an effective Chern-Simons term (see ref. [21] for a recent 
discussion of this issue and further references). 

The existence of a fermion-boson transformation through which a local fermion 
theory can be mapped exactly on a local bosonic model could turn out to be of 
considerable practical importance. Eventually one hopes to apply the transforma- 
tion to lattice gauge theories with dynamical fermions (which are in their original 
form almost intractable numerically), but to this end the transformation presented 
in this paper is not yet quite suitable. The problem is that if a single fermion is to be 
represented by bosons, one needs a charged boson field plus an abelian gauge field 
with Chern-Simons term in the action, and these are more degrees of freedom per 
site than the fermion field has. An idea here would be to take the limit e 2 ---, oo so 
that the dynamical gauge degrees of freedom are frozen out, but one then has to 
face the degeneracy problem alluded to at the beginning of sect. 4. Anyway, it 
would certainly be worthwhile to study this aspect of bosonization in greater depth 
than is possible here. 

Although the bosonization formula (3.11) is obviously covariant under spatial 
rotations, I did not discuss the spin of the charged particles in the model considered 
for the following reasons. First, in a non-relativistic theory the angular momentum 
operator J is ambiguous because one could always modify it by adding a function 
of the total electric charge. Secondly, if J is assumed to be the integral of a local 
gauge invariant angular momentum density (which is natural because it then has an 
equivalent Bose representation), its commutator with the Bose field q~(x) is entirely 
determined by short distance effects, and these are so far not well-understood in the 
continuum model. On the lattice, on the other hand, there is no conserved angular 
momentum operator and a formal discretization of the continuum expression 
presumably leads to ambiguous results for the commutator. Thus, in the present 
framework, the question of spin probably remains unresolved until the bosonization 
transformation in the continuum has been put on a more rigorous footing. 

In a relativistic theory, the angular momentum operator J belongs to a simple Lie 
algebra, the Lorentz algebra, and it does therefore not suffer from the ambiguity 
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mentioned above. In this case, the general arguments of ref. [28] (where only 
theories in 3 + 1 dimensions were considered) presumably carry over to 2 + 1 
dimensions [19, 20], and it then follows from the strict locality of the charged boson 
field q)(x) that the corresponding charged particles must have integer spin, i.e. the 
ordinary connection between spin and statistics must hold. 

Finally, I would like to add some remarks on what happens when 0 does not 
assume one of the special values (1.2). First, if 0 = 7r/n with n an even non-zero 
integer, the construction of (b(x) goes through with no change at all. The only 
difference is that the statistics of q)(x) comes out to be the same as that of the 
original charged field g'(x). The transformation is still interesting, because the 
theory which one obtains involves only locally gauge invariant fields and the physics 
it describes hence becomes more transparent. 

If ~r/0 is not an integer, the situation is substantially more complicated because 
the physical charged particles then have intermediate statistics and spin: they are 
"anyons"  [33]. This is reflected in the construction of q)(x) by the necessity to 
introduce a cut in the plane from x to infinity (cf. discussion after eq. (3.11)). As a 
consequence, q)(x) only commutes with locally gauge invariant composite operators 
which are away from the cut, i.e. ~ ( x )  should be considered to be localized along 
the cut. That  this would be the general situation for charged fields in theories with a 
mass gap, has actually been anticipated by Buchholz and Fredenhagen [29] many 
years ago in their abstract work on gauge charges. 

I am indebted to A. Coste for a careful and critical reading of the manuscript. I 
have also profited from discussion with D. Buchholz on some conceptual questions 
concerning the relation between locality, spin and statistics. 

Note added 

I have been kindly informed by Jan Ambjorn that he and Gordon Semenoff 
have recently applied a bosonization transformation to map the 2-dimensional 
Heisenberg antiferromagnet on a fermionic system [34, 35]. An important difference 
compared to the transformation presented here is that the operator L(x) is missing. 
As a consequence, the (formal) limit ¢ 2 ~ OQ must be taken to achieve the locality 
of the transformed Hamilton operator. 
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