

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

15 June 2017 File No. 128868-006

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Coordinator 5 Post Office Square, Suite 100 (OEP06-01) Boston, Massachusetts 02109-3912

Attention: Ms. Shelley Puleo

Subject: NPDES RGP NOI Application Temporary Construction Dewatering Boston Children's Hospital Clinical Building (BCCB) Boston, Massachusetts

Dear Ms. Puleo:

On behalf of the project owner, The Children's Hospital Corporation, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the U.S. Environmental Protection Agency (EPA) for temporary construction site dewatering under the NPDES RGP. As defined in Table 1 of the NPDES RGP, the Activity Category is III.G (Contaminated Site Dewatering, Sites with Known Contamination). Temporary construction dewatering is planned in support of the proposed Boston Children's Hospital Clinical Building (BCCB) project located at 55 Shattuck Street on the Boston Children's Hospital (BCH) campus in Boston, Massachusetts. Refer to Figure 1. We anticipate construction dewatering will be conducted, as necessary, during foundation construction and below-grade excavation.

The site is located on a portion of the BCH campus in the vicinity of Shattuck Street and Meadow Lane as shown on Figure 2. General site grades are estimated at about El. 40.0¹. The site is a fenced construction staging area bordered by several other BCH campus buildings including the Bader building to the west, the Farley/Pavilion building to the west and north and the former I.C. Smith Library to the north (currently used as a construction field office). Shattuck Street borders the site to the south, beyond which is the Brigham and Women's Hospital Connors Center building; Meadow Lane borders the site to the east, beyond which are two Harvard Medical School buildings (the LHRRB and Seeley G. Mudd buildings).

Demolition of the Wolbach building is underway as part of the site preparation work for the project. The site enabling activities began in March 2017. Dewatering is anticipated to start in August 2017 and continue through approximately August 2019.

¹ Elevations reported herein are in feet and reference the Boston City Base (BCB) Datum.

PROPOSED CONSTRUCTION

Current site development plans include a new Clinical Building with a below-grade footprint area of approximately 34,500 square feet (sf) and four below-grade levels, with the lowest level floor slab finished at El. -22'-6". Portions of the lowest level are planned to extend deeper to El. -32'-6". Excavation to construct the below-grade space and building foundations is anticipated to range from approximately El. -24'-8" to about El. -37'-0". Excavation will proceed to depths of about 65 to 75 ft below existing site grades, corresponding to approximately 35 to 45 ft below site groundwater levels.

SITE HISTORY

The site has been part of the Longwood medical campus since its founding in 1869 and was undeveloped until the Wolbach building was built in 1909 as the Thomas Morgan Roch Jr. Memorial Hospital for Infants, and later was part of the Harvard Medical School until it was acquired by BCH in the mid-1970s. The building has been used for BCH administrative offices since the acquisition, and is currently vacant awaiting demolition. The Wolbach building is historically depicted on Sanborn maps at 55 Van Dyke (now Shattuck) Street with a tunnel connecting the building to the Harvard Medical School campus and to the power plant west of the BCH campus. A two-story infant hospital with a basement, platform walkways, and connecting tunnels occupied a portion of the site from approximately 1919 to the 1950s. Connecting tunnels still exist beneath the site. The site area included the Prouty Garden which was opened in 1956 replacing the area formerly occupied by the infant hospital. No significant changes were noted for the Wolbach building or Prouty Garden on Sanborn maps or aerial photographs through 2008.

ENVIRONMENTAL CONDITIONS AND MCP REGULATORY BACKGROUND

Multiple subsurface investigation and precharacterization programs have been conducted at the site by Haley & Aldrich in preparation for site redevelopment. Soil testing detected levels of semi-volatile organic compounds (SVOCs), primarily polycyclic aromatic hydrocarbons (PAHs), and metals (lead) in the urban fill consistent with the presence of historic urban fill, which is typical of the area. In addition, volatile organic compounds (VOCs) including trichloroethene (TCE) and tetrachloroethene (PCE), were detected in limited areas of soil and groundwater.

The site was reported as a Disposal Site to the Massachusetts Department of Environmental Protection (MassDEP) on 21 October 2016 by The Children's Hospital Corporation, who submitted three separate Release Notification Forms (RNFs) for concentrations of compounds in soil and groundwater exceeding Massachusetts Contingency Plan (MCP) Reportable Concentrations in Soil (RCS-1) and Groundwater (RCGW-2). MassDEP subsequently assigned Release Tracking Numbers (RTNs) 3-33887 (PAHs and lead in urban fill), 3-33888 (Carbon Tetrachloride in groundwater), and 3-33889 (TCE/PCE in groundwater) to the site.

Based on our review of environmental conditions at the subject site and a review of nearby documented releases, we have confirmed that the site is located within an area of known PCE contamination in groundwater caused by a historic release of PCE that occurred from a former dry cleaner, known in MassDEP records as the Mission Hill Ledge Site, or Ledge Site, and identified with RTN 3-12332. The

subject site development is located approximately 800 ft downgradient from the source location. Although the presence of TCE and PCE in groundwater at the site is associated with RTN 3-12332, The Children's Hospital Corporation filed a new RNF for administrative purposes.

A site enabling Release Abatement Measure (RAM) Plan is currently in place under RTN 3-33887 for site preparation activities including the removal of the top 3 ft of soil. The remaining soil and groundwater management to occur during construction will be conducted under a separate RAM Plan.

Additionally, RAM activities were also conducted to remove limited areas of polychlorinated biphenyl (PCB) impacted soils in landscaped areas adjacent to the Wolbach building in accordance with a RAM Plan dated 14 February 2017 for RTN 3-34072. PCBs were discovered in a limited area of shallow topsoil and underlying sub-soil in landscaped areas adjacent to the Wolbach building. The PCB impacted soil area was located from 0 to 3 ft below existing ground surface. Site preparation activities did not begin in the PCB impacted area until the PCB impacted soils were removed to below 1 ppm.

TEMPORARY CONSTRUCTION DEWATERING NOTICE OF INTENT (NOI)

A total of nine (9) groundwater samples have been collected at the site between June 2015 and April 2017. Samples were submitted to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts for analysis for one or more of the following NPDES RGP permit parameters: VOCs, SVOCs, total metals (including antimony, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver and zinc), hexavalent chromium, total petroleum hydrocarbons (TPH), PCBs, total suspended solids (TSS), total chloride, total cyanide (free and amenable cyanide were also analyzed), total phenols, total residual chlorine (TRC), ammonia, hardness, pH and temperature. The analytical results identified concentrations of carbon tetrachloride, TCE and PCE above applicable NPDES RGP Effluent Limitations; information and calculations used to determine the effluent limitations are included in Appendix D. Additionally, a sample of the receiving water (Muddy River) was collected on 26 May 2017 (upstream of the discharge location shown on Figure 4C) and analyzed for the following parameters: pH, temperature, hardness, ammonia and total recoverable metals (including antimony, arsenic, cadmium, chromium, trivalent chromium, hexavalent chromium, copper, iron, lead, mercury, nickel, selenium, silver and zinc). The results of groundwater quality testing conducted at the site are summarized in Table I. The results of sampling of the receiving water (Muddy River) are summarized in Table II. The locations of the observation wells are shown on Figure 2.

A concrete diaphragm wall (slurry wall) is planned to provide groundwater cut-off and temporary excavation support as well as serve as the permanent foundation wall. Dewatering will be conducted from sumps or wells located inside the slurry wall. Dewatering is necessary to control groundwater, seepage, precipitation, and surface water runoff and construction-generated water to enable below-grade construction activities in-the-dry. Construction activities are underway; dewatering is anticipated to begin around August 2017 and continue through approximately August 2019.

Prior to discharge, collected water will be routed through a sedimentation tank with baffles and bag filters, at a minimum, to remove suspended solids and undissolved chemical constituents. A pretreatment system consisting of granular activated carbon (GAC) will be incorporated into the system. Total flow will be measured with a flow meter/totalizer. Supplemental pretreatment may be required to

meet NPDES RGP Effluent Limitations and may include pH control, ion exchange, oil/water separators and/or other components as required; refer to Figure 3. Construction dewatering under this NPDES RGP will include piping and discharge to storm drains located near the site. The proposed discharge point is located in Meadow Lane adjacent to the site; refer to Figure 2. The proposed discharge route travels northeast along Meadow Lane to Longwood Avenue, continues to the northeast along Blackfan Street, and reaches the Muddy River where it will discharge at outfall DO 045. The proposed discharge route is shown on Figures 4A through 4C.

OWNER AND OPERATOR INFORMATION

Owner:	Operator:
The Children's Hospital Corporation	Suffolk Construction Company, Inc.
300 Longwood Avenue	65 Allerton Street
Boston, MA 02115	Boston, MA 02119
Attn: Steven Smith, Director of Clinical	Attn: Jason Seaburg, Project Executive
Building Construction	

The Children's Hospital Corporation has hired Suffolk Construction Company, Inc. (Suffolk) as the General Contractor. An earthwork subcontractor (Site Contractor) has been hired by Suffolk to conduct the site work, including dewatering activities. The Site Contractor will operate the dewatering system. Haley & Aldrich will monitor the dewatering activities on behalf of The Children's Hospital Corporation in accordance with the requirements for this NOI submission.

DILUTION FACTOR CALCULATION

A Dilution Factor (DF) was calculated using the following equation:

$$\mathsf{DF} = (\mathsf{Q}_{\mathsf{d}} + \mathsf{Q}_{\mathsf{s}})/\mathsf{Q}_{\mathsf{d}}$$

Where Q_d is the maximum discharge flow rate, assumed to be 100 gallons per minute (gpm) or approximately 0.1440 million gallons per day (MGD), and Q_s is the receiving water flow rate minimum for 7 consecutive days with a recurrence interval of 10 years (7Q10), assumed to be 1.03 cubic feet per second (cfs), corresponding to 0.6657 MGD². Using these assumed values, the DF is equal to 5.62.

APPENDICES

The completed "Suggested Format for the Remediation General Permit Notice of Intent (NOI)" form as provided in the NPDES RGP is enclosed in Appendix A. Appendix B provides a copy of the Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application to be submitted separately to the BWSC. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, is included in Appendix C. Documents supporting the dilution factor and effluent limitation calculations, as well as information on the receiving water (Muddy River)

² 7Q10 of 1.03 cfs (0.6657 MGD) based on results from the United States Geological Survey (USGS) StreamStats 4.0 Report; refer to Appendix D for the report. The 7Q10 and DF calculations and values were confirmed by Cathy Vakalopoulos of the MassDEP on 8 June 2017.

including laboratory data reports, are included in Appendix D. Appendices E and F include the Endangered Species Act Documentation and National Register of Historic Places and Massachusetts Historical Commission Documentation, respectively. The groundwater laboratory data reports are provided in Appendix G.

The Site Contractor has not yet submitted their construction dewatering submittal which will include details of the proposed dewatering system along with Safety Data Sheets (SDSs) and fact sheets for possible chemical additives to be used in the treatment system to adjust pH or reduce suspended sediments.

CLOSING

Thank you very much for your consideration of this NPDES RGP NOI. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Jonathan M. Thibault Assistant Project Manager

Keith E. Johnson, P.E., LSP Technical Specialist

Attachments:

Table I – Summary of Groundwater Quality Data Table II - Summary of Receiving Water (Muddy River) Quality Data Figure 1 – Project Locus Figure 2 – Subsurface Exploration and Discharge Location Plan Figure 3 – Proposed Treatment System Schematic Figure 4A – Proposed Discharge Route (Figure 1 of 3) Figure 4B – Proposed Discharge Route (Figure 2 of 3) Figure 4C – Proposed Discharge Route (Figure 3 of 3) Appendix A – Suggested Format for the Remediation General Permit Notice of Intent (NOI) Appendix B – Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application Appendix C – Best Management Practices Plan (BMPP) Appendix D – Dilution Factor and Effluent Limitation Calculation Documents and Information on the Receiving Water (Muddy River) Appendix E – Endangered Species Act Documentation Appendix F – National Register of Historic Places and Massachusetts **Historical Commission Documentation** Appendix G – Groundwater Laboratory Data Reports

c: The Children's Hospital Corporation, Attn: Steven Smith, Bob Sullivan Suffolk Construction Company, Inc., Attn: Jason Seaburg, Jason Lansberry Boston Water and Sewer Commission; Attn: Matthew Tuttle

\\haleyaldrich.com\share\bos_common\128868 - BCCB\006 - Engineering Support\NPDES RGP\NOI Application\2017-0615-HAI-BCCB-NPDES RGP Application-F.docx

TABLE I SUMMARY OF GROUNDWATER QUALITY DATA BOSTON CHILDREN'S HOSPITAL CLINICAL BUILDING (BCCB) BOSTON, MASSACHUSETTS FILE NO. 128868-006

Location Name				B115(D)	B115(S)	B5	B5	B102(D)	B114(S)	B114(D)	B115(S)	B115(D)
Sample Name				B115D 04182017	B115S 04192017	HA15-B5	B5(OW)	B102(D)	B114(S)	B114(D)	B115(S)	B115(D)
Sample Date	2014 MCP	NPDES RGP		4/18/2017	4/19/2017	6/30/2015	5/20/2016	5/24/2016	5/20/2016	5/20/2016	5/20/2016	5/24/2016
Lab Sample ID	RCGW-2	Effluent	Units	1712207-01	1712/02-01	1151/057-01	11615308-04	11615600-01	11615308-01	11615208-02	11615308-03	11615600-02
Well Screen Interval (ft. BCB)	Reportable	Limitations	onics	20 E to 20 E	1 E to 9 E	21 to 41	21 to 41	26 to 16	14 to 10	28 to 48	1 E to 8 E	20 E to 20 E
Groundwater Elevation (ft. BCB) ⁴	Concentrations	LIMILATIONS		-29.3 (0-39.3	1.5 10 -0.5	-5110-41	-51 (0 -41	-50 10 -40	-14 (0 -15	-38 10 -48	1.5 10 -0.5	-29.3 10 -39.3
Groundwater Elevation (II, BCB)				9.99 Groupdwator	9.72 Groupdwater	0.50 Croundwater	9.25 Groundwator	6.11 Groundwator	10.10 Groundwater	9.37 Groundwater	9.45 Groupdwator	9.04 Groundwator
sample type				Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
A. Inorganics												
Ammonia	NA	Report	ug/L	224	-	-	-	-	-	-	-	-
Chloride	NA	Report	ug/L	566000	-	436000	-	-	-	-	-	-
Total Residual Chlorine	NA	62	ug/L	ND(20)	-	ND(20)	-	-	-	-	-	-
Total Suspended Solids	NA	30000	ug/L	16000	-	27000	-	-	-	-	-	-
Antimony, Total	8000	206	ug/L	1.41 J	-	5.3	-	-	-	-	-	-
Arsenic, Total	900	104	ug/L	1.83	-	1.4	-	-	-	-	-	-
Cadmium, Total	4	10.2	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Chromium, Total	300	323	ug/L	7.01	-	31.9	-	-	-	-	-	-
Chromium, Hexavalent	300	323	ug/L	ND(10)	-	30	-	-	-	-	-	-
Copper, Total	100000	242	ug/L	3.55	-	2.5	-	-	-	-	-	-
Iron Total	NA	5000		102	-	120	-	-	-	-	-	-
Lead Total	10	160	ug/I	0.55	-	ND(0.5)	-	-	-	-	-	-
Mercury Total	20	0 720	110/1	ND(0.2)		ND(0.3)				-		
Nickel Total	20	1450	ug/L	1 / 8		2.4			_	_		
Selenium Total	200	1450	ug/L	1.40 J	-	2.4	-	-	-	-	-	-
Selemum, Total	100	255.6	ug/L		-		-	-	-	-	-	-
Silver, Total	/	35.1	ug/L	ND(0.4)	-	ND(0.4)	-	-	-	-	-	-
Zinc, Total	900	420	ug/L	4.62 J	-	ND(10)	-	-	-	-	-	-
Cyanide, Total	30	178000	ug/L	2 J	-	ND(5)	-	-	-	-	-	-
Total Hardness	NA	NA	ug/L	589000	-	-	-	-	-	-	-	-
pH⁵	NA	6.5 to 8.3	SU	8.39	6.64	8.01	9.04	7.17	6.75	7.85	6.73	8.20
Temperature ⁵	NA	28.33	°C	18.2	19.4	20.3	19.9	18.9	19.9	19.4	20.8	19.3
· · · · · · · · · · · · · · · · · · ·			-									
B. Non-Halogenated Volatile Organic Compounds												
Benzene	1000	5	11g/I	ND(0.5)	0.7	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
Toluene	40000	NA	ug/L	ND(0.75)	ND(0.75)	ND(0.75)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Ethylhonzono	40000 E000	NA	ug/L	ND(0.73)	0.271	ND(0.73)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
a wileno	2000	NA	ug/L	ND(0.5)	0.27 J	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
	3000	INA NA	ug/L	ND(1)	0.5 J	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
p/m-xylene	5000	100	ug/L		0.92 J	ND(1)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
	NA	100	ug/L	ND ND(2)	2.39	ND ND(2)	ND ND(250)	ND ND(050)	ND ND(070)	ND ND(250)	ND	ND ND(050)
1,4-Dioxane	6000	200	ug/L	ND(3)	4.5	ND(3)	ND(250)	ND(250)	ND(250)	ND(250)	ND(250)	ND(250)
Acetone	50000	7970	ug/L	ND(5)	ND(5)	10	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Phenol	2000	1080	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
C. Halogenated Volatile Organic Compounds												
Carbon tetrachloride	2	4.4	ug/L	ND(0.5)	7	ND(0.5)	ND(1)	ND(1)	1.3	ND(1)	15	ND(1)
1,2-Dichlorobenzene	2000	600	ug/L	ND(2.5)	ND(2.5)	ND(2.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,3-Dichlorobenzene	6000	320	ug/L	ND(2.5)	ND(2.5)	ND(2.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,4-Dichlorobenzene	60	5	ug/L	ND(2.5)	ND(2.5)	ND(2.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Total Dichlorobenzene	NA	NA	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	2000	70	ug/L	ND(0.75)	0.3 J	ND(0.75)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,2-Dichloroethane	5	5	ug/L	ND(0.5)	ND(0.5)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,1-Dichloroethene	80	3.2	ug/L	ND(0.5)	ND(0.5)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1.2-Dibromoethane	2	0.05	ug/L	ND(0.01)	-	ND(0.01)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Methylene chloride	2000	4.6	ug/L	ND(3)	ND(3)	ND(3)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
1 1 1-Trichloroethane	4000	200	ug/I	ND(0.5)	ND(0.5)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1 1 2-Trichloroethane	900	5	110/1	ND(0.5)	ND(0.75)	ND(0.75)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Trichloroethene	500	5	ug/L	1 5	3 4	2	(1) A A	60	3.2	0.4	2	5 1
Tatrashlarasthana	5	5	ug/L	1.5	3.0	2	4.4	0.9	3.3 20	9.4	2	5.1
retraction Dettiene	50	5	ug/L	5.0	43	3.1	2/	55	28	39	24	51
US-1,2-DICHIOLOETNENE	20	70	ug/L	3	5.2	8 ND(4)	8.3 ND(4)	13	4.3	9.7	2.2	8.0 ND(4)
vinyi chioride	2	2	ug/L	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

TABLE I SUMMARY OF GROUNDWATER QUALITY DATA BOSTON CHILDREN'S HOSPITAL CLINICAL BUILDING (BCCB) BOSTON, MASSACHUSETTS FILE NO. 128868-006

Location Name				B115(D)	B115(S)	B5	B5	B102(D)	B114(S)	B114(D)	B115(S)	B115(D)
Sample Name				B115D 04182017	B1155 04192017	HA15-B5	B5(OW)	B102(D)	B114(S)	B114(D)	B115(S)	B115(D)
Sample Name	2014 MCP	NIDDES DOD		4/10/2017	4/10/2017	C/20/2015	E3(0W)	E /24/2016	E (20/2016	E (20/2016	E (20/2016	E (24/2016
Sample Date	RCGW-2	Effluent	Unite	4/18/2017	4/19/2017	0/30/2015	5/20/2010	5/24/2010	5/20/2010	5/20/2010	5/20/2010	5/24/2010
Lab Sample ID	Reportable	Enluent	Units	L1/12207-01	L1/12403-01	L1514957-01	L1615398-04	L1615699-01	L1615398-01	L1615398-02	L1615398-03	L1615699-02
Well Screen Interval (ft, BCB)	Concentrations	Limitations		-29.5 to -39.5	1.5 to -8.5	-31 to -41	-31 to -41	-36 to -46	-14 to -19	-38 to -48	1.5 to -8.5	-29.5 to -39.5
Groundwater Elevation (ft, BCB)				9.99	9.72	8.30	9.25	8.11	10.16	9.37	9.45	9.64
Sample Type				Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
D. Non-Halogenated Semi-Volatile Organic Compounds												
Butyl benzyl phthalate	10000	NA	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
Di-n-butylphthalate	5000	NA	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
Di-n-octylphthalate	100000	NA	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
Diethyl phthalate	9000	NA	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
Dimethyl phthalate	50000	NA	ug/L	ND(5)	-	ND(5)	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate	50000	101	ug/L	ND(3)	-	ND(3)	-	-	-	-	-	-
Total Phthalates	NA	190	ug/L	ND	-	ND	-	-	-	-	-	-
Benzo(a)anthracene	1000	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Benzo(a)pyrene	500	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Benzo(b)fluoranthene	400	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Benzo(k)fluoranthene	100	1		ND(0.2)		ND(0.2)						
Chrysene	70	1	ug/L	ND(0.2)		ND(0.2)	-				-	
Dibanza(a b)anthracana	70	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Indene (1, 2, 2, ed) nurene	40	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Tatal Casus I Dalumatia Anomatia Under anthema	100	1	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Total Group I Polycyclic Aromatic Hydrocarbons	NA	1	ug/L	ND ND(0.4)	-	ND ND(0.2)	-	-	-	-	-	-
Acenaphthene	10000	NA	ug/L	ND(0.1)	-	ND(0.2)	-	-	-	-	-	-
Acenaphthylene	40	NA	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Anthracene	30	NA	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Benzo(ghi)perylene	20	NA	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Fluoranthene	200	NA	ug/L	ND(0.2)	-	0.2	-	-	-	-	-	-
Fluorene	40	NA	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Naphthalene	700	20	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Phenanthrene	10000	NA	ug/L	ND(0.2)	-	0.4	-	-	-	-	-	-
Pyrene	20	NA	ug/L	ND(0.2)	-	ND(0.2)	-	-	-	-	-	-
Total Group II Polycyclic Aromatic Hydrocarbons	NA	100	ug/L	ND	-	0.6	-	-	-	-	-	-
			0.									
E. Halogenated Semi-Volatile Organic Compounds												
Aroclor 1016	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	-
Aroclor 1221	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	-
Aroclor 1232	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	-
Aroclor 1242	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	-
Aroclor 1248	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	-
Aroclor 1254	5	NA	ug/L	ND(0.287)	-	ND(0.25)	-	-	-	-	-	_
Aroclor 1260	5	NA	ug/L	ND(0.23)	-	ND(0.2)	-	-	-	-	-	_
Total Polychlorinated Biphenyls	NA	0.000064	ug/L	ND	-	ND	-	-	-	-	-	-
Pentachlorophenol	200	1	ug/L	ND(0.8)	-	ND(0.8)	-	-	-	-	-	-
			. 0,	()		()						
F. Fuels Parameters												
Total Petroleum Hydrocarbons	5000	5000	ug/L	ND(5200)	-	ND(4000)	-	-	-	-	-	-
Ethanol	NA	Report	ug/L	ND(250)	ND(250)	-	-	-	-	-	-	-
Methyl tert butyl ether	5000	70	ug/L	0.77 J	0.41 J	ND(1)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Tert-Butyl Alcohol	NA	120	ug/L	ND(10)	ND(10)	ND(10)	-	-	-	-	-	-
Tertiary-Amyl Methyl Ether	NA	90	ug/L	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Other Volatile Organic Compounds												
Chloroform	50	NA	ug/L	0.23 J	2.1	1.1	ND(1)	ND(1)	1.8	1.1	3.9	ND(1)
Chloromethane	10000	NA	ug/L	0.45 J	ND(2.5)	ND(2.5)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Naphthalene	700	20	ug/L	0.52 J	ND(2.5)	ND(2.5)	ND(2)	ND(2)	ND(2)	ND(2)	3	ND(2)
Trichlorofluoromethane	100000	NA	ug/L	ND(2.5)	6.8	ND(2.5)	ND(2)	ND(2)	3	ND(2)	10	ND(2)

ABBREVIATIONS AND NOTES:

-: Not Analyzed

MCP: Bottom City Base Datum MCP: 310 CMR 40.0000 Massachusetts Contingency Plan effective 25 April 2014; revisions 23 May 2014

NA: Not Applicable

ug/L: micrograms per liter

ND (2.5): Not detected, number in parentheses is the laboratory reporting limit

J: Estimated value. The Target analyte concentration is below the quantitation limit (RL) but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

1. This table shows Volatile and Semi-Volatile Organic Compounds detected in at least one sample and/or listed in Table 2 of the NPDES RGP. For a complete list of analytes see the laboratory data reports.

2. Samples B115D_04182017 and B1155_04192017 were analyzed for Volatile and Semi-Volatile Organic Compounds using multiple analytical methods. The result from the method with the highest detection or the lowest quantitation limit (RL) is shown in this table. For a complete list of analytes and

analyses see the laboratory data reports.
 Bold values indicate an exceedance of NPDES RGP Effluent Limitations.
 Bold ND values indicate the laboratory reporting limit exceeds the NPDES RGP Effluent Limitations.
 Groundwater elevations measured in the field on the sampling dates indicated.

5. pH and temperature measured in the field on the sampling dates indicated.

TABLE II

SUMMARY OF RECEIVING WATER (MUDDY RIVER) QUALITY DATA BOSTON CHILDREN'S HOSPITAL CLINICAL BUILDING (BCCB) BOSTON, MASSACHUSETTS FILE NO. 128868-006

Location Name		MUDDY RIVER
Sample Name		MUDDY RIVER_05262017
Sample Date	Units	5/26/2017
Lab Sample ID		L1712207-01
Sample Type		Surface Water
A. Inorganics		
Ammonia	ug/L	161
Antimony, Total	ug/L	ND(4)
Arsenic, Total	ug/L	1.46
Cadmium, Total	ug/L	ND(0.2)
Chromium, Total	ug/L	1.94
Chromium, Hexavalent	ug/L	ND(10)
Copper, Total	ug/L	13.85
Iron, Total	ug/L	1090
Lead, Total	ug/L	12.36
Mercury, Total	ug/L	ND(0.2)
Nickel, Total	ug/L	ND(2)
Selenium, Total	ug/L	ND(5)
Silver, Total	ug/L	ND(1)
Zinc, Total	ug/L	34.3
Total Hardness	ug/L	40900
рН	SU	7.4
Temperature ²	°C	12.2

ABBREVIATIONS AND NOTES:

ug/L: micrograms per liter

ND (2.5): Not detected, number in parentheses is the laboratory reporting limit

1. Sample collected upstream of the proposed discharge location at outfall DO 045.

2. Temperature measured in the field on the sampling date indicated.

APPENDIX A

Suggested Format for the Remediation General Permit Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:							
	Street:							
	City:		State:	Zip:				
2. Site owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
Owner is (check one): □ Federal □ State/Tribal □ Private □ Other; if so, specify:	City:		State:	Zip:				
3. Site operator, if different than owner	Contact Person:							
	Telephone: Email:							
	Mailing address:	Mailing address:						
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
	□ MA Chapter 21e; list RTN(s):	□ CERCI	LA					
NPDES permit is (check all that apply: \Box RGP \Box DGP \Box CGP	□ NH Groundwater Management Permit or	□ UIC Program						
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Groundwater Release Detection Permit:	\Box POTW	Pretreatmen	t				
			Section 404					

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):								
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary territorial sea Wild and Scenic River										
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): Yes No										
Are sensitive receptors present near the site? (check one): \Box Yes \Box No If yes, specify:										
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.										
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.										
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received:	6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): \Box Yes \Box No If yes, indicate date confirmation received:									
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): \Box Yes \Box No										

C. Source water information:

1. Source water(s) is (check any that apply):										
□ Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other								
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	□ Other; if so, specify:							
□ Yes □ No	\Box Yes \Box No									

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): \Box Yes \Box No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No						
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): \Box Yes \Box No							

D. Discharge information

1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New discharge \Box New source							
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that apply): Direct discharges	ge to the receiving water \Box Indirect discharge, if so, specify:						
\Box A private storm sewer system \Box A municipal storm sewer system							
If the discharge enters the receiving water via a private or municipal storm sewer sys	otem:						
Has notification been provided to the owner of this system? (check one): \Box Yes \Box N	Ňo						
Has the operator has received permission from the owner to use such system for discharges? (check one): \Box Yes \Box No, if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): \Box Yes \Box No							
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 mor	ths \Box 12 months or more \Box is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): \Box Yes \Box No							

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)						
	a. If Activity Category I or II: (check all that apply)						
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 						
	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)						
 III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks 	□ G. Sites with Known Contamination	□ H. Sites with Unknown Contamination					
 V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)						
□ VIII – Dredge-Related Dewatering	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply					

4. Influent and Effluent Characteristics

	Known Known		Inf	uent	Effluent Limitations			
Parameteror believed absentor or believed present# of method (#)	at Detection and limit b (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
A. Inorganics								
Ammonia							Report mg/L	
Chloride							Report µg/l	
Total Residual Chlorine							0.2 mg/L	
Total Suspended Solids							30 mg/L	
Antimony							206 µg/L	
Arsenic							104 µg/L	
Cadmium							10.2 µg/L	
Chromium III							323 µg/L	
Chromium VI							323 µg/L	
Copper							242 µg/L	
Iron							5,000 µg/L	
Lead							160 µg/L	
Mercury							0.739 μg/L	
Nickel							1,450 µg/L	
Selenium							235.8 µg/L	
Silver							35.1 µg/L	
Zinc							420 µg/L	
Cyanide							178 mg/L	
B. Non-Halogenated VOCs								
Total BTEX							100 µg/L	
Benzene							5.0 µg/L	
1,4 Dioxane							200 µg/L	
Acetone							7.97 mg/L	
Phenol							1,080 µg/L	

	Known	Known				Inf	luent	Effluent Li	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 µg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 µg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 µg/L	
1,2 Dichloroethane								5.0 µg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 µg/L	
Methylene Chloride								4.6 µg/L	
1,1,1 Trichloroethane								200 µg/L	
1,1,2 Trichloroethane								5.0 µg/L	
Trichloroethylene								5.0 µg/L	
Tetrachloroethylene								5.0 µg/L	
cis-1,2 Dichloroethylene								70 µg/L	
Vinyl Chloride								2.0 µg/L	
D. Non-Halogenated SVOC	s			1					
Total Phthalates								190 µg/L	
Diethylhexyl phthalate								101 µg/L	
Total Group I PAHs								1.0 µg/L	
Benzo(a)anthracene									
Benzo(a)pyrene									
Benzo(b)fluoranthene									
Benzo(k)fluoranthene								As Total PAHs	
Chrysene									
Dibenzo(a,h)anthracene									
Indeno(1,2,3-cd)pyrene									

Parameter	KnownKnownororbelievedbelievedabsentpresent				Influent		Effluent Limitations		
		or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 µg/L	
Naphthalene								20 µg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 µg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature, hardness, salinity, LC ₅₀ , additional pollutants present); if so, specify:									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

 \Box Adsorption/Absorption \Box Advanced Oxidation Processes \Box Air Stripping \Box Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption \Box Ion Exchange \Box Precipitation/Coagulation/Flocculation \Box Separation/Filtration \Box Other; if so, specify:

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Identify each major treatment component (check any that apply):

 \Box Fractionation tanks \Box Equalization tank \Box Oil/water separator \Box Mechanical filter \Box Media filter

 \Box Chemical feed tank \Box Air stripping unit \Box Bag filter \Box Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 \Box Chlorination \Box De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component:

Is use of a flow meter feasible? (check one): \Box Yes \Box No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm.

Provide the average effluent flow in gpm.

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): \Box Yes \Box No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □

scavengers \Box pH conditioners \Box Bioremedial agents, including microbes \Box Chlorine or chemicals containing chlorine \Box Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No; if no, is consultation underway? (check one): □

 $Yes \ \square \ No$

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the EWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so specify:

FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): \Box Yes \Box No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🗆 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \Box Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \Box Yes \Box No

Appendix IV – Part 1 – NOI Page 24 of 24

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP MEETING THE REQUIREMENTS OF THIS GENERAL PERMIT WILL BE DEVELOPED BMPP certification statement: AND IMPLEMENTED UPON INITIATION OF DISCHARGE.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🗆	No 🗖		
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆		
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	No 🗆 NA 🗆		
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No 🔳 NA 🗆		
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit	Check one: Yes 🗆	No 🗆 NA 🔳		
□ Other; if \$0, specify:				
Signature: Dette Dette Date	e: 4/15/17			
Print Name and Title: STEVEN SMITH, DIRECTOR OF CLINICAL BUILDING CONSTRUCTION				

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP MEETING THE REQUIREMENTS OF THIS GENERAL PERMIT WILL BE DEVELOPED BMPP certification statement: AND IMPLEMENTED UPON INITIATION OF DISCHARGE.

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes \Box	No 🗖
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOL if requested	Check one: Yes 🔳	No 🗆 NA 🗆
Dermission obtained from the owner of a private or municipal storm sower system if such system is used for site		
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes \Box	No 🔳 NA 🗆
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit	Check one: Yes \Box	No 🗆 NA 🔳
\Box Other; if so, specify:		
Signature: In M Color Date	e: 6/15/17	

Print Name and Title: Jason Seaburg, Project Executive

APPENDIX B

Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

15 June 2017 File No. 128868-006

Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue Boston, Massachusetts 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering Boston Children's Hospital 55 Shattuck Street Boston, Massachusetts

Dear Mr. Tuttle:

On behalf of our client, The Children's Hospital Corporation, this letter submits the Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit Application in support of the proposed Clinical Building construction at 55 Shattuck Street on the Boston Children's Hospital Campus in Boston, Massachusetts.

Dewatering is necessary to enable construction in-the-dry, and is anticipated to begin in August 2017 and continue for up to 24 months. Prior to discharge, collected water will be routed through at minimum a frac tank, bag filters and granular activated carbon (GAC). Other pretreatment may be conducted as necessary to comply with National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) effluent limitations. The proposed dewatering discharge route and BWSC outfall location are shown on Figures 4A through 4C of the submitted NPDES RGP Notice of Intent (NOI), attached for reference. Discharge of the dewatering effluent is currently under review by the U.S. Environmental Protection Agency (EPA) under the NPDES RGP.

If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours, HALEY & ALDRICH, INC.

M. Thibak

Jonathan M. Thibault Assistant Project Manager

Keith E. Johnson, P.E., LSP Technical Specialist

Attachments: BWSC Dewatering Discharge Permit Application Copy of NPDES RGP NOI Application

\\haleyaldrich.com\share\bos_common\128868 - BCCB\006 - Engineering Support\NPDES RGP\NOI Application\Appendix B - BWSC Permit\2017-0615-HAI-BCCB-BWSC Letter-F.docx

Boston Water and Sewer Commission 980 Harrison Avenue Boston, MA 02119-2540

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INF	CORMATION HERE:	
Company Name: THE CHILDREN'S HOSPITAL CORP	Address:300 LONGWOOD AVE	NUE, BOSTON, MA 02115
Phone Number:857-218-4031	Fax number:617-730-0975	
Contact person name: STEVEN SMITH	Title: DIRECTOR OF CLINICAL	BUILDING CONSTRUCTION
Cell number: 617-293-3653	Email address: STEVEN.SMITH@	DCHILDRENS.HARVARD.EDU
Permit Request (check one): 🛛 New Application 🛛	Permit Extension	cify):
Owner's Information (if different from above):		
Owner of property being dewatered:		
Owner's mailing address:	Phon	e number:
Location of Discharge & Proposed Treatment Syste	em(s):	
Street number and name: 55 SHATTUCK STREET	Neighborhood L	ONGWOOD MEDICAL AREA
Discharge is to a: Sanitary Sewer FRAC. T/ Describe Proposed Pre-Treatment System(s): TO ATTA BWSC Outfall No. DO 045 Receivin	g Waters <u>MUDDY RIVER</u>	COMPONENTS AS NECESSARY (REFER N) To AUGUST 2019
Groundwater Remediation Utility/Manhole Pumping	□ Tank Removal/Installation □ Test Pipe	 ➢ Foundation Excavation ➢ Trench Excavation
M Accumulated Surface Water	Hydrogeologic Testing	□ Other
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process	Crawl Space/Footing Drain Non-contact/Uncontaminated Coolin Other;	g
 Attach a Site Plan showing the source of the discharge and the number, size, make and start reading. Note. All discharges to If discharging to a sanitary or combined sewer, attach a copy of If discharging to a separate storm drain, attach a copy of EPA's as other relevant information. Dewatering Drainage Permit will be denied or revoked if appli Submit Completed Application to: Boston Water and Sew Bagi Harrison Avenue, Attn: Matthew Tuttle, F E-mail: tuttlemp@bws Phone: 617-989-7204 	location of the point of discharge (i.e. the so the Commission's sewer system will be ass of MWRA's Sewer Use Discharge permit or s NPDES Permit or NOI application, or NPI cant fails to obtain the necessary permits fro er Commission Services Boston, MA 02119 ingineering Customer Service c. org Fax: 617-989-7716	wer pipe or catch basin). Include meter type, meter essed current sewer charges. application. DES Permit exclusion letter for the discharge, as well om MWRA or EPA.
Signature of Authorized Representative for Property Owner:	THE ALMANT	Date

APPENDIX C

Best Management Practices Plan (BMPP)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) REMEDIATION GENERAL PERMIT (RGP) TEMPORARY CONSTRUCTION DEWATERING BOSTON CHILDREN'S HOSPITAL CLINICAL BUILDING (BCCB) BOSTON, MASSACHUSETTS

Best Management Practices Plan

A Notice of Intent (NOI) for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the U.S. Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering planned to occur during proposed construction of the Boston Children's Hospital Clinical Building (BCCB) at 55 Shattuck Street on the Boston Children's Hospital (BCH) campus in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

Construction dewatering will be conducted from sumps located inside the excavation, inside a relatively watertight slurry wall providing groundwater cutoff and temporary excavation support as well as serving as the permanent foundation wall. The treatment system will be designed by the Contractor. Prior to discharge, collected water will likely be routed through a sedimentation tank with baffles and bag filters, at a minimum, to remove suspended solids and undissolved chemical constituents. A pretreatment system consisting of granular activated carbon (GAC) will be incorporated into the system. Total flow will be measured with a flow meter/totalizer. Supplemental pretreatment may be required to meet NPDES RGP Effluent Limitations and may include pH control, ion exchange, oil/water separators and/or other components as required; refer to the Proposed Treatment System Schematic included as Figure 3 of the NOI. Construction dewatering under this NPDES RGP will include piping and discharge to storm drains located near the site. The proposed discharge point is located in Meadow Lane adjacent to the site; refer to Figure 2 of the NOI. The proposed discharge route travels northeast along Meadow Lane to Longwood Avenue, continues to the northeast along Blackfan Street, and reaches the Muddy River where it will discharge at outfall DO 045. The proposed discharge route is shown on Figures 4A through 4C of the NOI.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted of the treated effluent as required by the RGP. This includes chemical testing required within the first month of discharging, and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter/totalizer to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Monthly monitoring reports will be compiled and maintained at the site.

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) REMEDIATION GENERAL PERMIT (RGP) TEMPORARY CONSTRUCTION DEWATERING BOSTON CHILDREN'S HOSPITAL CLINICAL BUILDING (BCCB) BOSTON, MASSACHUSETTS

System Maintenance

A number of methods will be used to minimize the potential for violations for the term of this permit. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the fractionization tanks, filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Operator.

Management of Treatment System Materials

No potential sources of pollutants are anticipated during construction dewatering activities. Dewatering effluent will be pumped directly to the treatment system from the excavation with the use of hoses and sumps to minimize handling. The Contractor will establish staging areas on the site for any equipment or materials storage which may be possible sources of pollution away from any dewatering activities.

Sediment from the fractionation tank used in the treatment system will be characterized and disposed of as soil at an appropriate receiving facility in accordance with applicable laws and regulations. If used, GAC or other used materials will be recycled and/or manifested to the appropriate receiving facility. Bag filters will be placed in drums and manifested for off-site disposal.

Miscellaneous Items

Due to the nature of the excavation, erosion control and the nature of the site and surrounding infrastructure, it is not anticipated that there will be any run off into the site from other sources, as well as no run off from the site.

Site security for the treatment system can be covered within the overall site security plan.

No adverse effects of designated water uses of surrounding surface water bodies is anticipated. The Muddy River is the nearest surface water body to the site located more than 0.25 miles from the construction activities on site. As mentioned earlier, the discharged effluent will be pumped directly to a storm drain located near the site and into existing below grade infrastructure.

\\haleyaldrich.com\share\bos_common\128868 - BCCB\006 - Engineering Support\NPDES RGP\NOI Application\Appendix C - BMPP\2017-0615-HAI-BCCB-NPDES RGP BMPP.docx

APPENDIX D

Dilution Factor and Effluent Limitation Calculation Documents and Information on the Receiving Water (Muddy River)

Enter number values in green boxes below

Enter values in the units specified

0.6657 Q_R = Enter upstream flow in **MGD** 0.144 $Q_P =$ Enter discharge flow in **MGD** 0.8097 Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\checkmark	
589	C_d = Enter influent hardness in mg/L CaCO ₃
40.9	$C_s = Enter receiving water hardness in mg/L CaCO_3$

Enter receiving water concentrations in the units specified

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
224	Ammonia in mg/L
5.3	Antimony in μg/L
1.83	Arsenic in µg/L
0	Cadmium in µg/L
31.9	Chromium III in µg/L
30	Chromium VI in µg/L
3.55	Copper in µg/L
120	Iron in μg/L
0.55	Lead in µg/L
0	Mercury in µg/L
2.4	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
4.62	Zinc in µg/L
2	Cyanide in µg/L
0	Phenol in µg/L
15	Carbon Tetrachloride in µg/L
55	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0.77	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no enti Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor	5.6					
A. Inorganics	TBEL applies if	bolded	WQBEL applies	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	62	ug/L		μg/L
Total Suspended Solids	30	mg/L		10		10
Antimony	206	ug/L	3599	ug/L		
Arsenic	104	μ <u>g</u> /L	49	μ <u>g</u> /L		
Cadmium	104	μg/L	0 3443	μg/L		
Characteristication III	10.2	µg/L	(22.2	µg/L		
	323	µg/L	623.3	µg/L		
	323	μg/L	64.3	μg/L		
Copper	242	μg/L	12.3	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	4.81	μg/L		
Mercury	0.739	μg/L	5.09	μg/L		
Nickel	1450	μg/L	386.1	μg/L		
Selenium	235.8	μg/L	28.1	ug/L		
Silver	35.1	не/L	37.2	те це/L		
Zinc	420	μg/I	728.6	μg/I		
Cvanide	179	μg/L mg/I	20.2	μg/L ug/I		
B Non-Halogenated VOCs	170	mg/L	29.2	µg/L		μg/L
Total BTEX	100	ug/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	1687	μg/L		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	9.0	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,5 Dichlorobenzene	5.0	μg/L μg/I				
Total dichlorobenzene	5.0	μg/L μg/L				
1 1 Dichloroethane	70	μg/L μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
cis-1.2 Dichloroethylene	5.0 70	μg/L μg/I	18.0	µg/L		
Vinyl Chloride	2.0	μg/L ug/L				
D. Non-Halogenated SVOCs		<i>PB</i> 2				
Total Dhthalatas	100	ше/I		uc/I		
Diethylhexyl phthalate	190	μg/L uσ/I	 12 4	μg/L uσ/I		
Total Group I Polycyclic	101	μg/ L	12.7	μ <u></u> g/L		
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0214	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0214	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0214	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0214	μg/L		μg/L
Chrysene	1.0	μg/L	0.0214	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0214	μg/L		μg/L
---------------------------------	----------	------	--------	------	-----	------
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0214	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	112	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	6.59	square miles
DRFTPERSTR	Area of stratified drift per unit of stream length	0.73	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.012	percent
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.421	percent
FOREST	Percentage of area covered by forest	6.39	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	35.84	percent

Low-Flow Statistics Parameters [100 Percent (6.6 square miles) Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	6.59	square miles	1.61	149	
DRFTPERSTR	Stratified Drift per Stream Length	0.73	square mile per mile	0	1.29	
BSLDEM250	Mean Basin Slope from 250K DEM	3.012	percent	0.32	24.6	
MAREGION	Massachusetts Region	0	dimensionless	0	1	

Low-Flow Statistics Flow Report [100 Percent (6.6 square miles) Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit	Average standard error (of either estimate or prediction)	Lower Prediction Interval	Upper Prediction Interval
7 Day 2 Year Low Flow	1.68	ft^3/s	49.5	0.333	8.12
7 Day 10 Year Low	1.03	ft^3/s	70.8	0.166	5.93

Flow

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

CHARLES RIVER WATERSHED 2002-2006 WATER QUALITY ASSESSMENT REPORT

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENERGY AND ENVIRONMENTAL AFFAIRS IAN BOWLES, SECRETARY MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION LAURIE BURT, COMMISSIONER BUREAU OF RESOURCE PROTECTION GLENN HAAS, ACTING ASSISTANT COMMISSIONER DIVISION OF WATERSHED MANAGEMENT GLENN HAAS, DIRECTOR

NOTICE OF AVAILABILITY

LIMITED COPIES OF THIS REPORT ARE AVAILABLE AT NO COST BY WRITTEN REQUEST TO:

MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATERSHED MANAGEMENT 627 MAIN STREET WORCESTER, MA 01608

This report is also available from the MASSDEP's home page on the World Wide Web at:

http://www.mass.gov/dep/water/resources/wqassess.htm

Furthermore, at the time of first printing, eight copies of each report published by this office are submitted to the State Library at the State House in Boston; these copies are subsequently distributed as follows.

- On shelf; retained at the State Library (two copies);
- Microfilmed retained at the State Library;
- Delivered to the Boston Public Library at Copley Square;
- Delivered to the Worcester Public Library;
- Delivered to the Springfield Public Library;
- Delivered to the University Library at UMass, Amherst;
- Delivered to the Library of Congress in Washington, D.C.

Moreover, this wide circulation is augmented by inter-library loans from the above-listed libraries. For example a resident in Needham can apply at their local library for loan of any MassDEP/DWM report from the Worcester Public Library.

A complete list of reports published since 1963 is updated annually and printed in July. This report, entitled, "Publications of the Massachusetts Division of Watershed Management – Watershed Planning Program, 1963-(current year)", is also available by writing to the Division of Watershed Management (DWM) in Worcester.

DISCLAIMER

References to trade names, commercial products, manufacturers, or distributors in this report constituted neither endorsement nor recommendations by the Division of Watershed Management for use.

CHARLES RIVER WATERSHED

2002-2006 WATER QUALITY ASSESSMENT REPORT

Prepared by:

Massachusetts Department of Environmental Protection Division of Watershed Management

> Report Number: 72-AC-4

DWM Control Number:

CN136.5

Massachusetts Department of Environmental Protection Division of Watershed Management Worcester, Massachusetts

April 2008

MUDDY RIVER (SEGMENT MA72-11)

Location: Headwaters, outlet Ward Pond in Olmstead Park, Boston, to confluence with the Charles River, Boston.

Segment Length: 3.6 miles

Classification: Class B, Warm Water Fishery, Combined Sewer Overflow.

Land-use estimates (top 3, excluding water) for the 6.5 mi² subwatershed.

Residential	55%
Open land	22%
Commercial	9%

The estimated percent impervious area for this subwatershed area is 29.5%.

This segment is on the 2006 Integrated List of Waters in *Category 5 - Waters Requiring a TMDL* because of priority organics, metals, nutrients, siltation, organic enrichment/low DO, oil and grease, pathogens, taste, odor and color, and other habitat alterations (MassDEP 2007).

WITHDRAWALS AND DISCHARGES

WMA (See Appendix H, Table H1)

```
The Country Club (32004601)
```

NPDES (See Appendix H, Tables H2 and H3):

Boston Water and Sewer Commission (MA0101192). This combined sewer overflow (CSO) discharge is through outfall BOS 046 to the Back Bay Fens area of the Muddy River.

[Note: The BWSC completed the Stony Brook Sewer Separation Project (at a cost of \$45 million) in September 2006 (MWRA 2007), which will alleviate some of the discharges to the Muddy River at Outfall BOS 046. MWRA (2007) also states that "The project was intended to reduce CSO discharge at seven CSO regulators along the Stony Brook Conduit from 22 activations and 44.5 million gallons in a typical year (a discharge level that had been attained in 2000 with completion of pumping and treatment improvements at Deer Island) to 2 activations and 0.13 million gallons. While this represents a 99.7 % reduction in annual CSO volume, the CSO regulators must remain open to provide flood control in large storm events. In 2007, BWSC will continue work to repave streets and remove downspouts from the sewer system. Downspout connections in this area are 85% complete."]

Boston Water and Sewer Commission (MAS010001). There are two major stormwater outfalls - 20G161 and 21H201, and seven minor stormwater outfalls - 18G233, 19G199, 19G043, 19G194, 20G163, 21H047, and 21H048 - that discharge to this segment of the Muddy River (BWSC 2007). There are also four major stormwater outfalls that discharge into the Stony Brook subwatershed area – 13D077, 13D078, 13E175, and 15F288 and three minor stormwater outfalls (13E174, 13E176, and 13F095).

[Note: EPA terminated the former Boston Latin Academy NPDES permit (MA0039934) in October 2005 because the facility was dismantled. There were also four NPDES permittees that were identified as discharging to Muddy River as of the last water quality assessment report (Fiorentino *et al.* 2000). EPA has since terminated these permits (MA0034410 and MA0034401 remediation ended, MA0036102 discharge ceased, and MA0030783 EPA determined a permit was not required).]

USE ASSESSMENT

Aquatic Life Use

Habitat and Flow

The USGS maintains a real time water stage recorder and precipitation gage (01104683) on the Muddy River just downstream from Netherlands Road Bridge (near the Brookline Water Department building), Brookline, MA. The period of record for this gage is November 1999 to October 2000 and August 2001 to current year. The USGS remarks that there are daily or more frequent fluctuations related to pool stage fluctuations in the lower Charles River Basin and operation of flood-control gates and pumps at Charles River Dam (Socolow *et al.* 2005). The annual average gage height is approximately 7.8 feet (October 2003 through September 2005) and flood stage at this gage is 15 feet (established by the MBTA) (USGS 2007b and USGS 2007c).

Breault *et al.* (1998) describes the channel morphology and bathymetry of the Muddy River as well as sediment quality conditions. Accumulation of sediment and poor sediment quality, channelization, altered hydrology, and the infestation of *Phragmites australis* degrades habitat quality of the Muddy River. The

U.S. Army Corps of Engineers has developed a plan to increase flood control, improve water quality and enhance aquatic/riparian habitat within the Muddy River by dredging accumulated sediment, providing flood damage reduction through improvements to restrictive drainage culverts, removing nuisance vegetation, improving fisheries/wildlife habitat and water quality, bank stabilization and promoting and enhancing recreational use of Emerald Necklace parklands (ACOE 2003). The design effort for Phase 1 of the project (flood damage reduction component) was initiated in September 2005 and was expected to be complete in October 2007 (Keegan 2007). Work in Phase I includes the installation of two culverts and daylighting of the river (ACOE 2007).

Water Chemistry

USGS personnel conducted water quality monitoring in the upper portion of this segment of the Muddy River just downstream from Netherlands Road Bridge (near the Brookline Water Department building), Brookline, MA. Dry weather total phosphorus concentrations ranged from ≤0.1 to 0.20 mg/L (n=13 including one split sample) for samples collected from July 1999 through July 2000 (Breault *et al.* 2002). Event mean wet weather total phosphorus concentrations ranged from 0.1 to 0.40 mg/L (n=10 including one split sample) for samples collected from January through September 2000 (Breault *et al.* 2002).

The CRWA volunteers sampled the Muddy River at Commonwealth Avenue in Boston (Station 760T and/or 760S) as part of their monthly monitoring program (CRWA 2007 and Kaplan 2007). These data included temperature, pH, and total suspended solids. The total number of samples collected varied by analyte. Data collected as part of this monitoring program since 2000 are summarized below. None of the temperature measurements (n=54) taken between February 2000 and October 2006 exceeded 28.3°C (maximum measurement was 27°C in July 2006). A total of 23 pH measurements were taken between February 2000 and December 2001. One measurement was slightly low (6.4 SU). Between February 2000 and December 2003, total suspended solids concentrations ranged from <2 to 51 mg/L (n=37) and only two samples were >25 mg/L.

EPA deployed a meter near the mouth of the Muddy River from 17 to 21 July 2000 (EPA 2001). The minimum DO measurement recorded was 3.5 mg/L, while the maximum DO recorded was 7.1 mg/L. Over the 72 hour deployment period DO was less than 5.0 mg/L for an estimated total of 8.5 hours. The maximum temperature was 25.5°C (EPA 2001).

Sediment Chemistry

Breault *et al.* (1998) describes the poor sediment quality conditions of sites sampled along the Muddy River. Elevated concentrations of trace metals and organic compounds exceeded S-EL guidelines (Fiorentino *et al.* 2000). These conditions are still considered to be problematic since remediation (e.g. dredging) has not yet occurred.

The Aquatic Life Use for the Muddy River is assessed as impaired. Causes of impairment include habitat quality degradation in the form of culverting and channelization, bottom deposits of sediment and silt, sediment contamination, the infestation of *P. australis*, and high concentrations of total phosphorus. Sources of impairment include urban stormwater runoff, channelization, sediment contamination, the loss of riparian habitat, as well as discharges from both municipal separate storm sewer systems and combined sewer systems.

Fish Consumption Use

DWM conducted fish toxics monitoring in July 1990 (Fiorentino *et al.* 2000). The MA DPH issued the following fish consumption advisory for the Muddy River.

"Children younger than 12 years of age, pregnant women, women of childbearing age who may become pregnant, and nursing mothers should not eat any fish from this water body, the general public should not consume brown bullhead, carp or American eel from this water body, and the general public should limit consumption of non-affected fish from this waterbody to two meals per month."

Elevated concentrations of PCBs in brown bullhead, carp, and American eel resulted in the issuance of a site-specific DPH advisory so the *Fish Consumption Use* for the Muddy River is assessed as impaired. Sediment contamination (Breault *et al.* 1998) is one source of the problem.

Primary and Secondary Contact Recreation and Aesthetics Uses

Dry weather bacteria sampling data for the upper portion of this segment of the Muddy River just downstream from Netherlands Road Bridge (near the Brookline Water Department building), Brookline, MA reported by USGS can be summarized as follows. *Enterococcus* counts ranged from <10 to 1,100 cfu/100 ml (n=12 samples collected between July 1999 and July 2000) (Breault *et al.* 2002). *Enterococcus* bacteria counts for discrete samples collected during storm events ranged from <10 to 44,000 cfu/100 ml (n=29 samples including two replicates collected between December 1999 and September 2000) (Breault *et al.* 2002).] Event mean *Enterococcus* bacteria results for the storm events sampled were reported to range from 1,300 to 20,000 cfu/100 ml (n=8 events between January 2000 and July 2000) (Breault *et al.* 2002).

[Note: Although Massachusetts Surface Water Quality Standards have recently adopted the use of *E. coli* bacteria, fecal coliform bacteria data was the former bacterial criteria. Dry weather bacteria sampling data for the Muddy River reported by USGS can be summarized as follows. fecal coliform counts ranged from <10 to 4,200 cfu/100 ml (n=12 samples collected between July 1999 and July 2000) (Breault *et al.* 2002). Fecal coliform bacteria counts for discrete samples collected during storm events ranged from <10 to 64,000 cfu/100 ml (n=31 samples including two replicates collected between December 1999 and September 2000) (Breault *et al.* 2002).]

Total suspended solids concentrations during dry weather dry sampling conditions were all \leq 11 mg/L (n=14 including one split collected between June 1999 and July 2000) (Breault *et al.* 2002). Similarly, turbidity measurements were also low (\leq 23 NTU n=10 measurements). Event mean concentrations of total suspended solids and turbidity for the storm events sampled were reported to range from 24 to 65 mg/L (n=10 measurements including one split) and 16.0 to 39.0 NTU (n=7), respectively (storm events sampled between January 2000 and September 2000) (Breault *et al.* 2002).

As part of the CRWA monthly monitoring program *E. coli* samples were also collected from one station in the Muddy River at Commonwealth Avenue in Boston (Station 760T and/or 760S) between June 2002 and October 2006 (CRWA 2007 and Kaplan 2007). A total of 36 samples were collected, 23 of which were during the primary contact recreation season. Both the geometric means and number of samples exceeding maximum counts were analyzed for each of the five years and these data are summarized below.

Station Station 760S	(CRWA 2007)			Year			Total
Period	Summary Statistic	2002	2003	2004	2005	2006	
Primary Contact	Samples Assessed	5	6	3	3	6	23
	Maximum cfu/100 ml	430	5,200	520	1,130	13,700	13,700
	Minimum cfu/100 ml	90	100	80	120	15	
126 cfu/100 ml	Geometric Mean	258	354	224	372	260	
Max 235 cfu/100 ml	Number of Exceedances	4	2	2	2	4	
Secondary Contact	Samples Assessed	7	10	5	6	8	36
-	Maximum cfu/100 ml	2,000	5,200	520	1,130	13,700	13,700
	Minimum cfu/100 ml	90	100	60	110	15	
630 cfu/100 ml	Geometric Mean	383	445	163	328	190	
Max 1260 cfu/100 ml	Number of Exceedances	1	3	0	0	1	

The Brookline Open Space 2005 Plan (Town of Brookline 2006) states the following.

"...As mandated by the federal stormwater discharge permit for urbanized communities, the Town's stormwater control and management work includes minimizing polluted stormwater runoff or treating it before it drains to the Charles and Muddy Rivers, identifying and removing illicit connections to the storm drain system, and repairing or replacing faulty, broken sewer pipes...In late 2004, Brookline DPW began a formal illicit discharge detection and elimination program to remove sanitary sewer connections to the storm drain system. This program should be a major focus of the DPW in the upcoming years and will contribute to cleaner water in both the Muddy and the Charles Rivers."

Sampling in the Muddy River has recently been conducted by USGS as part of a study evaluating *Pharmaceuticals and Personal Care Products as Indicators of Sewage Contamination in Urban Streams* (USGS 2007i and Eleria 2008). The results of this study have not yet been published but should be used to help identify sources contributing to elevated bacteria in this river.

Finally, both CRWA and DWM staff describe the Muddy River as very turbid with frequently less than one foot of visibility into the water column (Eleria 2008 and Davis 2008).

The *Primary Contact Recreational Use* is assessed as impaired for the Muddy River because of elevated bacteria (*E. coli*) counts and turbidity. The *Secondary Contact Recreational and Aesthetic Uses* are assessed as impaired because of objectionable turbidity. Occasionally highly elevated *E. coli* counts (notably higher during storm events) are also of concern for the *Secondary Contact Recreational Use*. Urban stormwater runoff, illicit connections/hookups to storm sewers, and discharges from both municipal separate storm sewer systems and combined sewer systems all contribute to elevated bacteria and turbidity in the Muddy River. These sources as well as the loss of riparian habitat, channelization, and altered hydrology also likely contribute to the turbidity problems.

Muddy River (Segment MA72-11) Use Summary Table

Designated	Uses	Status					
Aquatic Life		IMPAIRED Causes: Bottom deposits of sediment and silt, physical substrate habitat alteration, flow regime alterations, elevated total phosphorus, and the dense infestation of <i>Phragmites australis</i> , and other contamination including elevated concentrations of trace metals and organic compounds in sediment Sources: Wet weather discharges (point source and combination of stormwater, sanitary sewer overflow (SSO) or combined sewer overflow (CSO), channelization, sediment contamination, the loss of riparian habitat					
Fish Consumption		IMPAIRED Causes: Elevated levels of polychlorinated biphenyls in fish tissue (carp, bullhead, and American eel) Sources: Unknown and contaminated sediments					
Primary Contact		IMPAIRED Causes: Elevated <i>E. coli</i> , turbidity Sources: Wet weather discharges (point source and combination of stormwater, sanitary sewer overflow (SSO) or combined sewer overflow (CSO), illicit connections/hookups to storm sewers Suspected sources: Channelization, loss of riparian habitat					
Secondary Contact		IMPAIRED Cause: Turbidity					
Aesthetics	WA	Sources: vvet weather discharges (point source and combination of stormwater, sanitary sewer overflow (SSO) or combined sewer overflow (CSO), illicit connections/hookups to storm sewers Suspected sources: Channelization, loss of riparian habitat					

*Alert Status issues identified, see details in use assessment section

RECOMMENDATIONS

Continue to monitor *E. coli* bacteria in the Muddy River to evaluate the status of the *Primary* and *Secondary Contact Recreational Uses* as well as progress made through cleanup/restoration efforts. Review results of recent studies (e.g., USGS 2007i) conducted which may identify bacteria sources to this system.

Support the U.S. Army Corps of Engineers' plan to increase flood control, improve water quality and enhance aquatic/riparian habitat within the Muddy River by dredging accumulated sediment, providing flood damage reduction through improvements to restrictive drainage culverts, removing nuisance vegetation, improving fisheries/wildlife habitat and water quality, bank stabilization and promoting and enhancing recreational use of Emerald Necklace parklands (ACOE 2003).

Brookline and Boston should continue to identify and remediate illicit hookups/connections to storm drains.

Massachusetts Year 2014 Integrated List of Waters

Final Listing of the Condition of Massachusetts' Waters Pursuant to Sections 305(b), 314 and 303(d) of the Clean Water Act

CN 450.1

Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Matthew A. Beaton, Secretary Massachusetts Department of Environmental Protection Martin Suuberg, Commissioner Bureau of Water Resources Douglas E. Fine, Assistant Commissioner

NOTICE OF AVAILABILITY

This report is available via the Massachusetts Department of Environmental Protection's (MassDEP) website: <u>http://www.mass.gov/eea/agencies/massdep/water/watersheds/total-maximum-daily-loads-tmdls.html</u>

DISCLAIMER

References to trade names, commercial products, manufacturers, or distributors in this report constituted neither endorsement nor recommendations by the Division of Watershed Management for use.

Cover photo: West Branch Westfield River, Middlefield, MA by Matt Reardon

Massachusetts Year 2014 Integrated List of Waters

Final Listing of the Condition of Massachusetts' Waters Pursuant to Sections 305(b), 314 and 303(d) of the Clean Water Act

Prepared by:

Massachusetts Division of Watershed Management Watershed Planning Program

CN: 450.1

December, 2015

Massachusetts Department of Environmental Protection Division of Watershed Management Watershed Planning Program 8 New Bond Street Worcester, Massachusetts 01606

Massachusetts Category 5 Waters "Waters requiring a TMDL"

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Muddy River	MA72-11	Headwaters, outlet Ward Pond in Olmstead	3.6	MILES	(Bottom Deposits*)	
		Park, Boston through Leverett Pond,			(Non-Native Aquatic Plants*)	
		Boston/Brookline to confluence with Charles River Boston			(Other flow regime alterations*)	
					(Physical substrate habitat alterations*)	
					DDT	
					Escherichia coli	32383
					Oil and Grease	
					Other	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Phosphorus (Total)	
					Taste and Odor	
					Turbidity	
Populatic Pond	MA72096	Norfolk	41.911	ACRES	Chlordane	
					DDT	
					Dissolved oxygen saturation	40319
					Excess Algal Growth	40319
					Mercury in Fish Tissue	33880
					Nutrient/Eutrophication Biological Indicators	40319
					Oxygen, Dissolved	40319
Powissett Brook	MA72-20	Headwaters, outlet Noannet Pond, Westwood to confluence with Charles River, Dover.	1.849	MILES	Combined Biota/Habitat Bioassessments	
Rock Meadow Brook	MA72-21	Headwaters in Fisher Meadow, Westwood	3.771	MILES	Aquatic Macroinvertebrate Bioassessments	
		through Stevens Pond and Lee Pond, Westwood			Aquatic Plants (Macrophytes)	40317
		to confluence with Charles River, Dednam.			Excess Algal Growth	40317
					Nutrient/Eutrophication Biological Indicators	40317
					Oxygen, Dissolved	40317
					Phosphorus (Total)	40317
Sawmill Brook	MA72-23	Headwaters, Newton to confluence with Charles	2.397	MILES	Chloride	
		River, Boston.			Escherichia coli	32376
					Organic Enrichment (Sewage) Biological Indicators	40317
					Oxygen, Dissolved	40317
					Phosphorus (Total)	40317

* TMDL not required (Non-pollutant)

ANALYTICAL REPORT

Lab Number:	L1717570
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone: Project Name: Project Number:	Lee Vanzler (617) 886-7561 BOSTON CHILDREN'S HOSPITAL 128868-006
Report Date:	06/02/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_I	No:06021715:15
----------	----------------

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1717570-01	MUDDY RIVER_05262017	WATER	BOSTON, MA	05/26/17 08:45	05/26/17

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Case Narrative (continued)

Metals

The WG1007987-1 Method Blank, associated with L1717570-01 (MUDDY RIVER_05262017), has a concentration above the reporting limit for antimony. Since the sample was non-detect to the RL for this target analyte, no further action was taken. The results of the original analysis are reported.

The WG1007987-2 LCS recovery, associated with L1717570-01 (MUDDY RIVER_05262017), is above the acceptance criteria for antimony (116%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 06/02/17

METALS

Serial_No:06021715:15

Project Name:	BOST	BOSTON CHILDREN'S HOSPITAL					Lab Number: L1717			570	
Project Number:	12886	128868-006				Report Date: 06/02/17			17		
				SAMP	LE RES	ULTS					
Lab ID:	L1717	570-01					Date Co	ollected:	05/26/	17 08:45	
Client ID:	MUDE	MUDDY RIVER_05262017				Date Received:		05/26/17			
Sample Location:	BOST	ON, MA					Field Pr	ep:	Not Sp	pecified	
Matrix:	Water										
Paramotor	Posult	Qualifier	Unito	ы	MDI	Dilution Factor	Date Prepared	Date Analvzed	Prep Method	Analytical Method	Analys

Parameter	Result	Quaimer	Units	RL	WDL			/			Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00146		mg/l	0.00100		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Chromium, Total	0.00194		mg/l	0.00100		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Copper, Total	0.01385		mg/l	0.00100		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Iron, Total	1.09		mg/l	0.050		1	05/30/17 10:13	3 06/01/17 17:20	EPA 3005A	19,200.7	AB
Lead, Total	0.01236		mg/l	0.00050		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	05/30/17 11:24	05/30/17 17:55	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00100		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Zinc, Total	0.03430		mg/l	0.01000		1	05/30/17 10:13	3 05/31/17 10:00	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfiel	d Lab								
Hardness	40.9		mg/l	0.660	NA	1	05/30/17 10:13	3 06/01/17 17:20	EPA 3005A	19,200.7	AB

General	Chemistry	/ -	Mansfield	Lab
		/		

Chromium, Trivalent	ND	mg/l	0.010	 1	05/31/17 10:00	NA	107,-
		•					

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batcl	h: WG10	07987-	1				
Antimony, Total	0.00440	mg/l	0.00400		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Lead, Total	ND	mg/l	0.0005		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Silver, Total	ND	mg/l	0.00100		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/30/17 10:13	05/31/17 08:57	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	Lab for sample(s):	01 Batch	n: WG10	08032-	1				
Mercury, Total	ND	mg/l	0.00020		1	05/30/17 11:24	05/30/17 17:05	3,245.1	EA

|--|

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	1 Batch:	: WG10	08775-	1				
Iron, Total	ND	mg/l	0.050		1	05/30/17 10:13	06/01/17 16:50	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Serial_No:06021715:15

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:128868-006

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL I	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 234	40B - Mansfield Lab	for samp	e(s): 01	Batc	h: WG1008	775-1			
Hardness	ND	mg/l	0.660	NA	1	05/30/17 10:13	06/01/17 16:50	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1717570

 Report Date:
 06/02/17

LCSD %Recovery LCS **RPD** Limits %Recovery Qual %Recovery Limits RPD Parameter Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1007987-2 Q Antimony, Total 116 85-115 -Arsenic, Total 103 85-115 --Cadmium, Total 106 85-115 --Chromium, Total 85-115 99 --Copper, Total 102 85-115 --Lead. Total 108 85-115 --Nickel, Total 101 85-115 --Selenium, Total 85-115 105 -Silver, Total 85-115 100 --Zinc, Total 101 85-115 --Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1008032-2 85-115 Mercury, Total 105 --Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1008775-2 Iron, Total 85-115 100 -Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1008775-2 85-115 Hardness 98

Matrix Spike Analysis Batch Quality Control

Project Name:	BOSTON CHILDREN'S HOSPITAL
i i ojoot i tainio.	

ND

0.1525

0.05

0.5

0.04822

0.6630

Project Number: 128868-006

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qu	MSD al Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch	ID: WG100798	7-3	QC Sample	: L1717349-01	Client	ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.5537	111		-	-		70-130	-		20
Arsenic, Total	0.0016	0.12	0.1238	102		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05542	109		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.2049	102		-	-		70-130	-		20
Copper, Total	0.00118	0.25	0.2625	104		-	-		70-130	-		20
Lead, Total	0.0007	0.51	0.5384	105		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.5218	104		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1199	100		-	-		70-130	-		20
Silver, Total	ND	0.05	0.04981	100		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.5075	102		-	-		70-130	-		20
Total Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch	ID: WG100798	57-5	QC Sample	: L1717374-01	Client	ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.5601	112		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1218	102		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05348	105		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.1995	100		-	-		70-130	-		20
Copper, Total	0.0339	0.25	0.2849	100		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5287	104		-	-		70-130	-		20
Nickel, Total	0.0022	0.5	0.4997	99		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1294	108		-	-		70-130	-		20

96

102

20

20

70-130

70-130

-

-

-

-

-

Silver, Total

Zinc, Total

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL	Batch Quality Control	Lab Number:	L1717570
Project Number:	128868-006		Report Date:	06/02/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lat	o Associated sam	nple(s): 01	QC Batch I	D: WG1008032-3	QC Sample:	L1717138-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00501	100	-	-	70-130	-	20
Total Metals - Mansfield Lab	o Associated sam	nple(s): 01	QC Batch I	D: WG1008032-5	QC Sample:	L1717557-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00513	103	-	-	70-130	-	20
Total Metals - Mansfield Lat	o Associated sam	nple(s): 01	QC Batch I	D: WG1008775-3	QC Sample:	L1700006-06	Client ID: MS S	ample	
Iron, Total	0.356	1	1.48	112	-	-	75-125	-	20
Total Hardness by SM 2340	B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batch ID	: WG1008775	-3 QC Samp	le: L1700006-06	Client ID:	MS Sample
Hardness	138	66.2	209	107	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:128868-006

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Parameter	Native Sample Dup	licate Sample Units	RPD Q	ual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1007987-4	QC Sample: L1717349-01	Client ID: DUP S	Sample
Cadmium, Total	ND	ND mg/l	NC	20
Copper, Total	0.00118	0.00135 mg/l	14	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1007987-6	QC Sample: L1717374-01	Client ID: DUP S	Sample
Lead, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008032-4	QC Sample: L1717138-01	Client ID: DUP	Sample
Mercury, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008032-6	QC Sample: L1717557-01	Client ID: DUP	Sample
Mercury, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1008775-4	QC Sample: L1700006-06	Client ID: DUP S	Sample
Iron, Total	0.356	0.369 mg/l	4	20
Total Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 01 QC Batch ID:	WG1008775-4 QC Samp	le: L1700006-06	Client ID: DUP Sample
Hardness	138	142 mg/l	3	20

INORGANICS & MISCELLANEOUS

Serial_No:06021715:15

Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1717570				
Project Number:	128868-006	Report Date:	06/02/17				
SAMPLE RESULTS							

Lab ID:	L1717570-01	Date Collected:	05/26/17 08:45
Client ID:	MUDDY RIVER_05262017	Date Received:	05/26/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
рН (Н)	7.4		SU	-	NA	1	-	05/27/17 02:02	121,4500H+-B	KA
Nitrogen, Ammonia	0.161		mg/l	0.075		1	05/30/17 15:38	05/31/17 01:27	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND		mg/l	0.010		1	05/27/17 00:21	05/27/17 00:58	1,7196A	KA

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	07622-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	05/27/17 00:21	05/27/17 00:54	1,7196A	KA
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	07997-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/30/17 15:38	05/31/17 01:01	121,4500NH3-I	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1717570

 Report Date:
 06/02/17

Parameter	LCS %Recovery Qu	LCSD al %Recovery Qual	%Recovery Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1007622-2				
Chromium, Hexavalent	94	-	85-115	-	20	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1007630-1				
рН	100	-	99-101	-	5	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1007997-2				
Nitrogen, Ammonia	98	-	80-120	-	20	

20

20

	Matrix Spike Analysis Batch Quality Control											
Project Name: Project Number:	BOSTON CH 128868-006	ILDREN'S HOS	PITAL					L F	ab Number Report Date	:	L171 06/02	7570 2/17
Parameter	Nativ Samr	e MS ble Added	MS Found	MS %Recoverv	Qual	MSD Found	MSD %Recovery	Qual	Recovery	PPD	Qual	RPD Limits
General Chemistry - We	estborough Lab	Associated sam	nple(s): 01	QC Batch ID: '	WG1007	7622-4	QC Sample: L17	717570	-01 Client	ID: MI	JDDY	

98

90

General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1007997-4 QC Sample: L1717378-01 Client ID: MS Sample

-

-

-

-

85-115

80-120

-

-

0.1

4

0.098

3.87

ND

0.273

100	
A.	
	CHA

RIVER_05262017

Chromium, Hexavalent

Nitrogen, Ammonia

Project Name: Project Number:	BOSTON CH 128868-006	ILDREN'S HOSPITA	AL	Lab	Duplicate A Batch Quality C	Analysis ontrol		Lab Numb Report Da	ber: hte: (_1717570 06/02/17
Parameter		Ν	Native S	ample	Duplicate Sam	ple Units	s RPD	Qual	RPD L	imits
General Chemistry - We RIVER_05262017	stborough Lab	Associated sample((s): 01	QC Batch ID:	WG1007622-3	QC Sample:	L1717570-01	Client ID:	MUDDY	
Chromium, Hexavalent			ND)	ND	mg/l	NC		2	0
General Chemistry - We	stborough Lab	Associated sample((s): 01	QC Batch ID:	WG1007630-2	QC Sample:	L1717409-01	Client ID:	DUP Samp	le
рН			7.2		7.4	SU	3		!	5
General Chemistry - We	stborough Lab	Associated sample((s): 01	QC Batch ID:	WG1007997-3	QC Sample:	L1717378-01	Client ID:	DUP Samp	le
Nitrogen, Ammonia			0.27	3	0.148	mg/l	59	Q	2	0

Serial_No:06021715:15

Project Name: BOSTON CHILDREN'S HOSPITAL Project Number: 128868-006 Lab Number: L1717570 Report Date: 06/02/17

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

Cooler Information Custody Seal

Cooler

A

Container Info		Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1717570-01A	Plastic 250ml unpreserved	А	7	5.4	Y	Absent	HEXCR-7196(1),PH-4500(.01)
L1717570-01B	Plastic 250ml HNO3 preserved	A	<2	5.4	Y	Absent	CD-2008T(180),NI- 2008T(180),ZN-2008T(180),CU- 2008T(180),FE- UI(180),HARDU(180),AG- 2008T(180),AS-2008T(180),HG- U(28),SE-2008T(180),TRICR- CALC(1),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L1717570-01C	Plastic 500ml H2SO4 preserved	А	<2	5.4	Y	Absent	NH3-4500(28)

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1717570

Report Date: 06/02/17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
ma	

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the rep

Report Format: Data Usability Report

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1717570

Report Date: 06/02/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1717570

 Report Date:
 06/02/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.
Serial_No:06021715:15

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Brewer, ME 04412 Portson Albany, NY 12205 Tonawanda, NY 14150 Holm Project Information Project Name: Project Location:	Pag c	je (of (Date Rec'd in Lab 5/26/17 Deliverables ✓ Email ☐ Fax ☐ EQuIS (1 File) ✓ EQUIS (4 File)							ALPHA Job # L17/17570 Billing Information Same as Client Info PO #			
H&A Information		Project #	128868-006] Othe	er:						
H&A Client: Jonathan	Thibault	(Use Project name as Project #)								uireme	ents (Pr	ogram/	Criteria)	Disposal Site Information	
H&A Address: 465 Medfo	ord Street	Project Manager:								Please identify below location of					
Suite 2200, Boston, MA 02	129	ALPHAQuote #:					1				1			applicable disposal facilities.	
H&A Phone: 617.680.22	293	Turn-Around Time	No. of Concession, Name		-	A DECEMBER OF								Disposal Facility:	
H&A Fax:		Standar	d 🗸	Due Date:			1								
H&A Email: jthibault@h	haleyaldrich.com	Rush (only if pre approved	d) 🗌 (t	# of Days:			Note:	Select	State f	from m	I enu & id	lentify cri	teria.	Other:	
These samples have been	previously analyzed by	Alpha					ANA	LYSIS	3					Sample Filtration	T
Other project specific req	uirements/comments	:		5-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			1	T	T	1					0
Sample submitted for 2017 levels as required by EPA. Please specify Metals or T	NPDES RGP permit a COC edits b TAL.	pplication; please follow y Gina Hall 6/1/17	appropriate tes	ting methods a	1. pH	Temperature	3. Hardness	4. Ammonia	DES RGP Metals			Done Lab to do Preservation Lab to do (Please Specify below)	t a I B o t		
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Colle	Collection Date Time		Sampler's Initials	1	3			5. NPI			Sample Specific Comments	le
17570- 01	MUDDY RIVER 0526	2017	512.6/17	DARC	11	ANTO	X	2	X	×	×			Sample Specific Comments	5
		2011	110011	001	1120	1.90	/~	1		r	$ \vdash$			5. NPDES RGP Metals:	3
							<u> </u>	<u> </u>	<u> </u>	-	$\left \right $	-	_	Sb, As, Cd, Cr, Hex Cr, Cu,	
								<u> </u>	-		$\left \right $			Fe, Hg, Pb, Ni, Se, Ag, Zn	
								-		-	+		_	Tri Cr	\square
							-			-					
													_		
					14-1-1								_		
												-	_		
Preservative Code:	Container Code												_	3 TOTAL	
A = None B = HCI C = HNO ₂	P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N	lo: MA935 lo: MA015		Con	tainer Type	P	P	9	Ρ	P			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time c	clock
$D = H_2 SO_4$ E = NaOH	G = Glass B = Bacteria Cup				Р	Preservative	A	A	A	D	С			will not start until any ambiguitie are resolved. Alpha Analytical's services under this Chain of Custo	es ody
G = NaHSO₄	O = Other	An Belinguished	By:	, Date/T	ime	F	Receiv	ed By	:			Date/Ti	me	shall be performed in accordance	with
$H = Na_2S_2O_3$	E = Encore	1 Allen	_	5/26/17	K	Millet	/	. ,			5/20	1716	130	Service Agreement# 2015-18-Alor	et ha
K/E = Zn Ac/NaOH D = Other	D = BOD Bottle C	Minuth	1	S/26/17/6/32			Mand AAL				5/26	117	655	Analytical by and between Haley & Aldrich, Inc., its subsidiaries and	
Document ID: 20455 Rev 1 (1/28	9/2016)	1.00	3 (0011)	10 10	200	man				5/28/	////	848	affiliates and Alpha Analytical.		

Serial_No:06021715:15

	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Po Albany, NY 12205 Tonawanda, NY 14150 F	Pag c	e of	Date Rec'd in Lab 5/26/17							ALPHA JOB # 					
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	Boston Child Boston, MA	dren's Hospita	I (BCCB)		Deliv	verable Ema EQu	es ill IS (1 I	File)		Fax EQul	S (4 File)	Billing Information Same as Client Info P0 #			
H&A Information		Project #	128868-006					Othe	er:								
H&A Client: Jonathan T	Thibault	(Use Project name a	as Project #)				Regu	ulatory	Requ	ireme	nts (Pr	rogram	/Criteria)	Disposal Site Information			
H&A Address: 465 Medfo	rd Street	Project Manager:	L. Vanzler											Please identify below location of			
Suite 2200, Boston, MA 02	129	ALPHAQuote #:					1							applicable disposal facilities.			
H&A Phone: 617.680.22	293	Turn-Around Time			And in case of the local division of the loc									Disposal Facility:			
H&A Fax:		Star	ndard 🗸	Due Date:			1										
H&A Email: jthibault@h	naleyaldrich.com	Rush (only if pre appr	roved)	# of Days:	5 5		Note:	Select	State f	from me	I enu & io	dentify o	riteria.				
These samples have been	previously analyzed by	Alpha		" or buyo.			ANA	I YSIS						Sample Filtration	т		
Other project specific req	uirements/comments							T	T T	1					o		
Sample submitted for 2017 levels as required by EPA. Please specify Metals or 1	NPDES RGP permit a	pplication; please follo	low appropriate tes	ting methods	1. pH	Temperature	. Hardness	Ammonia	ES RGP Metals			Done Lab to do Preservation Lab to do	t a I B o t				
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	Collection Sample Sample Date Time Matrix Initia			1	2.1	ις.	4	5. NPD			Sample Specify Science	t I e		
17570- 01		2017	E12(12	Dalle	11	Ant D	N	00	X	20	X			Sample Specific Comments	s		
10 01	WODDT RIVER_0520	2017	716611	004>	H20	MUD	r	X		r	\vdash			5. NPDES RGP Metals:	3		
						-	-	<u> </u>	-			_	Sb, As, Cd, Cr, Hex Cr, Cu,				
								-	-	-				Fe, Hg, Pb, Ni, Se, Ag, Zn			
								-		-							
										-							
								-	-	-					-		
														+			
										-				372542	-		
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification	ion No: MA935 on No: MA015		Con	tainer Type	P	P	p	P	P			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time of	lock		
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup				P	Preservative	A	A	A	D	С			will not start until any ambiguiti are resolved. Alpha Analytical's services under this Chain of Custo	es ody		
F = MeOH G = NaHSO	C = Cube O = Other	1/10 / Belinguist	hed By:	, Date/	Time	F	Receiv	ed By	:			Date/	Time	shall be performed in accordance with			
$H = Na_2S_2O_3$	E = Encore	1 Aller	\sim	5/26/17	+ //	Millet	/	- ,			5/2	6/171	1630	Service Agreement# 2015-18-Alpl	na		
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle C	Miauth	11	5/26/17/6/2			lim	1-	XA	AL	5/26	117	1655	Analytical by and between Haley 8 Aldrich, Inc., its subsidiaries and			
Document ID: 20455 Rev 1 (1/28	3/2016)	-1710	mm	3/JUIN 1848 /M				un	n	-	5/20	///	1848	amilates and Alpha Analytical.			

Environmental Pollution 159 (2011) 1996-2002

Contents lists available at ScienceDirect

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Anatomy of an urban waterbody: A case study of Boston's Muddy River

Miriam Mathew, Yifu Yao, Yixing Cao, Khyati Shodhan¹, Indrani Ghosh, Vanni Bucci, Christopher Leitao², Danson Njoka, Irvine Wei, Ferdi L. Hellweger^{3,*}

Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, USA

ARTICLE INFO

Article history: Received 8 August 2010 Received in revised form 7 January 2011 Accepted 11 February 2011

Keywords: Urban River Water quality Model

ABSTRACT

The objective of this study was to characterize and understand the water quality of Boston's Muddy River prior to restoration, to help guide those activities and evaluate their success. We use a combination of monitoring, data analysis and mathematical modeling. The seasonal pattern of temperature, pollutant signatures (identified using a principal component analysis), correlations with precipitation and spatial patterns all point to a significant wastewater input at one of the outfalls and suggest significant receiving water impact. However, a quantitative analysis using a mathematical model (QUAL2K) suggests this source is not significant. Rather, internal loading from algae, sediment bed and waterfowl dominate the spatial pattern of water quality. These results suggest significant improvement can be expected from planned sediment dredging. The paper provides a case study of water quality assessment in the context of urban river restoration, and it illustrates the utility of combining monitoring and data analysis with modeling.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Urban rivers are one of the most intensely used environmental resources. They are subjected to inputs of treated and untreated wastewater, stormwater and combined sewage discharges; flood control channelization, culverting, shoreline encroachment, erosion and sedimentation; and invasive species. The degradation of urban streams is well documented, and has been referred to as "urban stream syndrome" (Walsh et al., 2005; Paul and Meyer, 2008).

Urban rivers evolve along with their host cities and changing water management strategies. The historical approach was to increase conveyance by straightening and concrete lining (channeling), and improve public perception and health risk by covering (culverting). Today, there is a trend to restore rivers to their natural state or function (Novotny et al., 2010). A recent review of river restoration efforts in the U.S. found that most are motivated by improving water quality (followed closely by riparian zone management), yet only 10% included assessment or monitoring (Bernhardt et al., 2005). This can be justified by the low median cost for water quality improvement projects (\$19,000; Bernhardt et al., 2005), which may not allow for a full-scale water quality study. However, it also highlights the need for case studies. A number of water quality studies associated with urban river restoration projects have been documented (e.g. Charbonneau and Resh, 1992; Davis et al., 2003), but more are needed to learn from successes and failures, and predict outcomes of various restoration activities.

Not unlike human bodies, urban rivers are complex systems, where the water quality emerges as a result of numerous interacting processes. For example, a precipitation event may lead to more input of pollutant via runoff, but there is also more instream flow to dilute the incoming load. It is therefore often difficult to understand urban rivers by looking at one parameter using one analysis method. The approach to understanding the water quality should be multi-tiered, looking at a number of parameters using multiple analysis methods, and establishing multiple lines of evidence. Monitoring and associated data analysis (e.g. graphs of pollutant concentrations along the river, comparison to standards and criteria) can allow for an assessment of the water quality. Mathematical modeling can be used to develop a quantitative understanding of the inputs and processes affecting the water quality.

The objective of this project was to characterize and understand the water quality of an urban river prior to restoration activities. We use a combination of monitoring, data analysis and mathematical modeling. The paper provides a case study of water quality

^{*} Corresponding author.

E-mail address: ferdi@coe.neu.edu (F.L. Hellweger).

¹ Presently at Camp Dresser & McKee Inc.

² Presently at Mabbett & Associates.

³ 400 Shell Engineering Center, 360 Huntington Avenue, Boston, MA, USA.

^{0269-7491/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.envpol.2011.02.018

assessment in the context of urban river restoration. It also illustrates the utility of combining monitoring and data analysis with mathematical modeling to gain a deeper understanding of the system than can be gained by either method alone.

2. Methods

2.1. Study site: The Muddy River

The Muddy River is located in Brookline and Boston, Massachusetts (MA) and is tributary to the lower Charles River (Fig. 1). The watershed has a drainage area of 16 km^2 (6.3 mi²), an average slope of 7.2% and mixed land use (46% single family 14% multi-family, 10% commercial, 16% urban open, 7% forest, 7% other, Breault et al., 2002; Zarriello and Barlow, 2002). A typical mean annual flow rate is 0.13 m³ s⁻¹ (4.51 ft³ s⁻¹) with a range of <0.01–18 m³ s⁻¹ (<0.5–639 ft³ s⁻¹) (Breault et al., 2002). The Muddy River has a rich history of use and alterations (MA DEM, 2001; Seasholes, 2003; Haglund, 2003). It was originally a tidal estuary that was filled to address the problem of sewage-contaminated mud flats, which made it "the filthiest marsh and mud flats to be found anywhere in Massachusetts...; a body of water so foul that even clams and eels cannot live in it, and that no one will go within half a mile of in summer unless from necessity, so great is the stench arising therefrom" (Seasholes, 2003). One of the main functions of the initial construction was to serve as a holding basin for sewer overflow from its "sister river", Stony Brook. These modifications grew into the Muddy River being the first public park in Boston (approved by the City Council in 1877), and an integral part of the Emerald Necklace park system designed by renowned landscape architect Frederick Law Olmsted. Subsequently, the river has suffered from neglect and misuse. Significant portions were filled, including culverting a section to make a parking lot ("Sears Lot", Fig. 1, now grass covered). Other problems include shoreline erosion, sedimentation/ siltation, invasive plants (Phragmites australis), flooding, and combined sewer and illegal sanitary sewer inflow. The Muddy River Conduit diverts a significant fraction of the total flow, and "fast tracks" it to the Charles River. The now culverted Stony Brook overflows into the Muddy River during heavy rainfall events. The Muddy River is designated by the MA DEP as Class B (fishable, swimmable). Water quality deterioration and recent flooding, that caused significant property damage, have provided impetus for the Muddy River Restoration Project. This project includes sediment removal (dredging), infrastructure improvements, daylighting several

Fig. 1. Muddy River. Stations include: Receiving Water: 1 = Commonwealth Ave., 2 = Agassiz Rd., 3 = Bridge Upstream of Boston Gate Houses, 4 = Fens Bridge, 5 = Longwood Avenue Bridge, 6 = Outlet of Leverett Pond, 7 = Outlet of Willow Pond, 8 = Outlet of Wards Pond, Outfalls: A = Longwood Ave. Drain, B = Tannery Brook Drain, C = Pearl St. Drain, D = Village Brook Drain, E = Daisy Field Drain. "X" indicates culverted portion. "USGS" indicates gaging station (no flow rate data are available; Breault et al., 2002).

2.2. Sampling and analysis

Details of the sampling and analysis protocol are documented elsewhere (Hellweger et al., 2007) and only an overview is presented here. Samples were collected from 8 receiving water stations (1-8) and 5 outfall stations (A-E) as shown in Fig. 1 and listed in Table 1. The outfalls carry predominantly stormwater, although illicit sanitary wastewater connections are an ongoing problem. In addition, samples were collected from one floating/roaming station. Sampling was conducted from September 2006 through August 2009 on a quarterly basis with three sampling events per quarter, including dry (no precipitation on the two days preceding the sampling day), wet (>0.1 in on the sampling day) and post-wet (>0.1 in on the day preceding the sampling day). Sampling was generally started at 9 AM, proceeded in the upstream direction and took about 2 h to complete. Samples were kept on ice and analyzed immediately upon arrival at the laboratory at Northeastern (~10 min). Parameters and analytical methods are listed in Table 2. Nutrient and metal samples were not filtered. To ensure data quality, each sampling event included a field blank and a field duplicate at a randomly selected station, and field checks (e.g. check pH meter on pH 7.0 solution). Data quality objectives and corrective action process are available in Hellweger et al. (2007).

2.3. Mathematical modeling

QUAL2K (Chapra et al., 2008) was used to develop a quantitative understanding of the inputs and processes affecting the water quality of the Muddy River. QUAL2K is a one-dimensional model that can be applied at various levels of mechanistic detail and complexity. For example, the model includes photosynthesis, but this process can be "turned off" by specifying zero initial and boundary phytoplankton concentrations. The model applications presented here are relatively simple. For DO, we used relatively simple Streeter—Phelps level kinetics. That is, DO is consumed by first-order oxidation of BOD and specified sediment oxygen demand (SOD), and replenished by reaeration from the atmosphere. TP (unfiltered) was modeled as a conservative substance that settles out of the water column. *E. coli* density was modeled using a constant first-order loss process.

Geometry (width and depth) was based on Breault et al. (1998). Flows were developed from Breault et al. (2002) and include the outfalls studied here, the Stony Brook overflow, and a nonpoint source contribution. Outfall concentrations were assigned the mean value from our measurements. Stony Brook overflow concentrations were assigned based on stormwater means measured by Breault et al. (2002). Nonpoint concentrations were assigned as the average of the outfalls. In addition, to these measured inputs, loadings from waterfowl, sediment bed and algae were needed to match the observations (discussed in Section 3.4). The measured and calibrated inputs and their contributions are summarized in Table 3.

Kinetic parameters for the DO model include the BOD oxidation, the sediment oxygen demand (SOD), and the reaeration rate. The organic material originates mostly from runoff and algae and the BOD oxidation rate was therefore assigned a relatively low value of 0.08 d⁻¹, which corresponds to secondary-treated waster (Chapra, 1997). The SOD was assigned spatially variable in the range 0.070–1.9 g m⁻² d⁻¹, based on measurements of Blanc and Gregory (1995).

Table 1 Sampling Stations.

No.	Description
	Receiving Water
1	Commonwealth Avenue
2	Agassiz Road
3	Bridge Upstr. of Boston Gate Houses
4	Fens Bridge
5	Longwood Avenue Bridge
6	Outlet of Leverett Pond
7	Outlet of Willow Pond
8	Outlet of Wards Pond
	Outfalls
А	Longwood Avenue Drain
В	Tannery Brook Drain
С	Pearl St. Drain
D	Village Brook Drain
E	Daisy Field Drain

Ia	Die	2

Analytical Methods.

Parameter	Method ^a
Temperature, Dissolved Oxygen (DO)	SM 4500-0 G,
concentration and saturation,	4500-Н+ В, 2510-В
pH, specific conductivity (SpC)	
Acidity, alkalinity	SM 2310 B,2320 B
Total Dissolved Solids (TDS)	SM 2540 C
Chloride	SM 4110 B
Total suspended solids (TSS)	SM 2540 D
Color	SM 2120 C
Turbidity	SM 2130 B
Biochemical oxygen demand (BOD)	SM 5210 B
Chemical oxygen demand (COD)	SM 5220 D
Total Organic Carbon (TOC)	SM 5310 C
Escherichia coli (E. coli) and fecal coliform	Coliscan MF ^b
Enterococci	EPA 1600
Total nitrogen (TN)	SM 4500-N C, 4110 B
Total phosphorus (TP)	SM 4500-P B 5, 4500-P D
Ammonia (NH3)	SM 4500-NH3 D
Nitrate (NO3), Nitrite (NO2),	SM 4110 B
Orthophosphate (PO4)	
Metals (Zn, Cr, Pb, Cu, Cd, As)	SM 3030 E, 3111 B
Total petroleum hydrocarbons (TPH), oil and grease (O&G)	EPA 1664
0	

^a "SM" refers to Standard Method (Greenberg et al., 2005).

^b Micrology Laboratories, Goshen, Indiana.

Geometry and hydraulics information is available to help specify the reaeration rate. However, the river's depth and velocity are generally outside of those for empirical river formulas (e.g. O'Connor-Dobbins; Chapra, 1997). The river's bank vegetation varies significantly, ranging from open grass fields to dense brush and trees, which makes application of an empirical lake formulations difficult. We therefore assigned a spatially variable reaeration rate to match our data, which ranges from 0.0 (culverted reaches) to 2.0 m d⁻¹. The TP settling velocity was assigned 0.1 m d⁻¹ (Chapra, 1997). The *E. coli* loss rate was assigned 1.0 d⁻¹ (Thomann and Mueller, 1987).

3. Results and discussion

3.1. Seasonal patterns

Among the parameters analyzed, temperature, specific conductivity (SpC), total dissolved solids (TDS), chloride and dissolved oxygen (DO) show obvious seasonal patterns (Fig. 2).

3.1.1. Temperature

The temperature at Station E fluctuates less compared to the other outfalls (Fig. 2A). This may reflect the contribution of groundwater, wastewater (i.e., illicit releases of untreated sewage) and/or another component with a relatively constant temperature. A simple mixing model considering runoff (*RO*), groundwater (*GW*) and wastewater (*WW*) components is:

$$T_{Outfall} = f_{RO} T_{RO} + f_{GW} T_{GW} + f_{WW} T_{WW}$$
(1)

Table 3			
D 11 / /		34 11	D '

	BODu (kg/day)	TP (kg/day)	E. coli (CFU/day)
Measured			
Upstream	7.3	0.061	1.1×10^{10}
Point	74	1.2	3.1×10^{11}
(Station E)	(2.2)	(0.047)	(7.4×10^{9})
Nonpoint	60	0.89	2.8×10^{11}
SOD	100	-	-
Calibrated			
Waterfowl	1.3	0.15	3.5×10^{12}
Sediment bed	-	1.8	-
Algae	82	-	-
Total	320	4.1	4.1×10^{12}

Fig. 2. Time series analysis. (A) Temperature at outfalls. Model corresponds to 49% runoff, 49% groundwater and 2% wastewater (see text). (B) Total dissolved solids (TDS) at Station E and other stations. (C) Dissolved oxygen (DO) concentration and saturation.

where $T_{Outfall}$ is the outfall temperature, and f_{RO} , f_{GW} and f_{WW} are the flow fractions and T_{RO} , T_{GW} and T_{WW} are the temperatures of the three components. Eq. (1) is a weighted average that states the temperature of the outfall is equal to those of the three components weighted by their respective flow fraction. The runoff temperature (T_{RO}) is assigned the time-variable average temperature at Stations A–D (Fig. 2A, gray line), the groundwater temperature (T_{GW}) is assigned the mean annual air temperature in Boston (11 °C), and the wastewater temperature (T_{WW}) is assigned the mean annual influent temperature at the Deer Island Treatment Plant (17 °C). Then, the optimal values for the three flow fractions $(f_{RO}, f_{GW} \text{ and } f_{WW})$ are found by minimizing the sum of the error squares between the observed and predicted outfall temperatures $(T_{Outfall})$, constrained by $f_{RO} + f_{GW} + f_{WW} = 1$, using the MS Excel SOLVER optimization routine (Fig. 2A, red line). The resulting groundwater and wastewater fractions are 49% and 2%, respectively. Of course, this is only a rough ballpark estimate based on a simple model. Using estimates of flow rates based on a sewer model and drainage areas (Breault et al., 2002; Zarriello and Barlow, 2002), this suggests a wastewater flow rate of 3.3 m³ d⁻¹ (860 gpd) at Station E.

3.1.2. Specific conductivity, TDS and chloride

Specific conductivity, TDS and chloride show relatively high values during the winters, which may reflect the use of road salt (Fig. 2B, specific conductivity and chloride show similar patterns and are not presented). Chloride is a component of TDS, which correlates with conductivity (Fig. 3). The correlation for TDS $(R^2 = 0.68)$ is stronger than that for chloride $(R^2 = 0.35)$. TDS can be predicted from specific conductivity using the relationships of Langlier and Russell (Snoeyink and Jenkins, 1980) (TDS/S.C. = 0.64, blue line in Fig. 3). The Muddy River data suggest a lower ratio (TDS/S.C. = 0.49). Going back to the time series, Station E has the highest values (Fig. 2C, thin dashed lines), which is qualitatively consistent with a significant groundwater and/or wastewater flow component, which generally have higher TDS concentrations than surface waters (Snoeyink and Jenkins, 1980; Metcalf and Eddy Inc, 1991). The average TDS at Station E is 720 mg L^{-1} , which is on the high side, but within the range of groundwater concentrations observed in the Boston Metropolitan Area (median = 166, range = $52-1460 \text{ mg L}^{-1}$, Flanagan et al., 2001).

3.1.3. Dissolved oxygen

The DO concentrations of the receiving water stations also show a seasonal pattern (Fig. 2C1). For the upstream stations (6-8), the seasonality can be explained by the effect of temperature on the solubility. That is, the DO concentration (Fig. 2C1, red symbols) is typically close to saturation (Fig. 2C1, gray line), and the percent saturation (Fig. 2C2, red symbols) does not show a strong seasonal pattern. The downstream stations (1-5) show a more pronounced seasonality in DO concentration (Fig. 2C1, blue symbols) and this is also evident in the saturation (Fig. 2C2, blue symbols). The difference between the seasonality of the upstream and downstream stations can be quantified by fitting a sine curve to the data and comparing the relative amplitudes (amplitude/mean). The upstream stations DO concentration and saturation relative amplitudes are 24% and 7.6%, respectively. For the DO saturation, the optimization routine predicts a small amplitude, but a straight line also fits the data relatively well (RMSE: sine = 19.1, straight line = 19.7). The downstream stations DO concentration and saturation relative amplitudes are 51% and 24%, respectively. This suggests that for the downstream stations there is another seasonal factor (in addition to the effect of temperature on solubility). This could be the effect of temperature on the heterotrophic bacteria growth rate, which would be visible for the downstream stations, because DO consumption by bacteria is a significant term, as suggested by the lower DO concentration in general. It could also be another factor that is not directly related to temperature, like

Fig. 3. Total dissolved solids (TDS) and chloride vs. specific conductivity. L&R Function is the relationships of Langlier and Russell (Snoeyink and Jenkins, 1980).

streamflow and/or wind velocity, which would affect the reaeration rate (O'Connor and Dobbins, 1958; Banks and Herrera, 1977).

3.2. Pollutant signatures

To understand differences in water quality among the stations, pollutant concentrations are compared (Fig. 4). The pollutants have different units (e.g. mg L⁻¹ vs. CFU 100 mL⁻¹) and concentration magnitudes (e.g. TSS vs. Chromium). To facilitate visual comparison, the values are normalized by dividing by the mean for each parameter across all stations. Parameters are arranged into physical (gray), organic (red), bacteria (green), nutrient (blue) and metal (orange) pollutants. For the receiving water stations, the analysis confirms the generally better water quality of the upstream Stations 8 and 7 compared to those downstream (Fig. 4A). For the outfall stations, Station E has the highest bacteria and nutrient pollutant concentrations, whereas Station A has the highest physical and organic pollutant concentrations (Fig. 4B). Interestingly, there appear to be two different patterns - or pollutant signatures among the outfall stations. Higher bacteria and nutrient pollutants are seen for Stations E and B (Fig. 4B, green and blue bars). Higher physical and organic pollutants are seen for Stations A and C (Fig. 4B, gray and red bars). These patterns generally apply to the pollutant categories, but individual pollutants may differ (e.g. Station A has slightly higher fecal coliform than Station B).

We explore this further using principal component analysis (PCA) (Jolliffe, 2002), which uses orthogonal linear transformation to remove correlation between variables. That is, the method converts correlated variables (e.g. pollutant concentrations shown

Fig. 4. Comparison of pollutants by station. Groupings: Physical (gray): TSS, Color, Turb., Organic (red): BOD, COD, TOC, Bacteria (green): F.C., E.C., Ent., Nutrients (blue): TN, NH4, NO2+3, TP, PO4, Metals (orange): Zn, Cr, Pb, Cu, Cd, As.

in Fig. 4) into a set of uncorrelated variables called principal components. PCA readily identifies the two different pollutant signatures (Fig. 5). That is, Component 1 corresponds to bacteria and nutrient pollutants and zinc, and Component 2 corresponds to physical and organic pollutants. Different source types (e.g. runoff vs. wastewater) have different contributions of pollutants, and the different signatures identified here suggest the pollutant sources for Stations E and B are different than those for Stations A and C.

3.3. Precipitation patterns

To understand how the water quality changes with precipitation, linear regression analyses were performed on all parameters and stations. Metals were excluded because only one year of data was available and data were frequently below the detection limit. Various timeframes for precipitation were evaluated, including precipitation on the sampling day, the sampling plus preceding day, the sampling plus preceding two days, etc.

The correlations are generally poor with average R^2 (across all stations, parameters and precipitation length periods) of 0.10. This is not surprising since our analysis does not consider several factors known to affect urban runoff pollutant concentrations, like variability within the event (first flush, event mean-concentration) and storm characteristics (intensity, antecedent dry period) (USEPA, 1983; Breault et al., 2002; Lee et al., 2002). However, there is one point worth mentioning. Station E has the lowest average R^2 for the pollutants (0.057). This suggests pollutant concentrations are least affected by precipitation at this station, which is consistent with a groundwater or wastewater component.

3.4. Spatial patterns

3.4.1. DO and BOD Data

The dissolved oxygen (DO) concentration and saturation (not shown) exhibit a clear spatial pattern (Fig. 6A). The DO is higher in the upstream reaches and decreases in the reach from Station 6 to Station 5. This is also evident in the seasonal analysis presented above. Our sampling occurred in the morning and proceeded in the upstream direction, so the DO observations are expected to increase in the upstream direction due to the diel variation. However, the sampling was completed in a relatively short time (2 h). Blanc and Gregory (1995) accounted for diel variation and

Fig. 5. Principal component analysis (PCA) of pollutants by station. See caption Fig. 4.

Fig. 6. Spatial profiles of (A1) Dissolved oxygen (DO), (A2) Biochemical oxygen demand (BOD), (B) total phosphorus (TP) and (C) *E. coli.* Symbols are mean +/-1 standard deviation. See text for description of model simulations.

also found that DO increases in the upstream direction. The spatial pattern can therefore not be attributed to diel fluctuation. The decrease with distance downstream reflects oxidation of organic material by heterotrophic microorganisms in the water column and sediment bed. Station 4 has the lowest DO, which may be due to lower reaeration in the culverted reach immediately upstream (see Fig. 1). The biochemical oxygen demand (BOD) is lowest for the upstream stations (7 and 8), and higher and relatively constant downstream of that. The spatial patterns of COD and TOC are similar to that of BOD (not shown).

3.4.2. DO and BOD Model

Three different model runs were performed to understand the spatial pattern of DO in the Muddy River. The first simulation (Model 1) is the base case scenario with inputs based on measurements as described in Section 2.3. This model matches the DO reasonably well (Fig. 6A1). However, it does not capture the increase of BOD in Leverett pond and underestimates the concentration downstream of that point (Fig. 6A2). The increase in Leverett Pond cannot be attributed to the two outfalls entering it (Stations D and *E*). Station E has a high BOD, but constitutes only a small fraction (3.0%) of flow at that location. Station D has a high flow (71%), but low BOD. This points to an internal source, like autochthonous organic matter (i.e. dead algae) or "direct input" of fecal matter by waterfowl. The second model (Model 2) includes an additional input term to account for this source, which was adjusted (calibrated) to match the data (Table 3). The magnitude

2001

and origin of this input will be discussed further below. The second model captures the BOD pattern in the Muddy River (Fig. 6A2), but the DO concentration did not change significantly. This suggests the water column BOD is not the dominant driver of the DO pattern and points to the sediment bed. To investigate the relative contribution of SOD to the DO decrease, the third simulation (Model 3) includes no SOD. This simulation predicts a significant increase in DO, suggesting SOD is an important sink for water column DO (Fig. 6A). The sediment dredging planned as part of the restoration project should reduce the SOD, so a significant improvement in DO can be expected. However, input of organic material (from allochthonous and autochthonous sources) to the sediment bed will continue, so the SOD will increase again. An important question, which has not been answered, is how fast and to what extent this will occur. A number of modeling methods are available to investigate this question (Chapra, 1997; Di Toro, 2001). Monitoring the temporal progression of SOD and water column DO following the dredging would constitute a useful dataset to compliment such a modeling analysis.

3.4.3. Total phosphorus data and model

The total phosphorus and phosphate (not shown) data are highest at outfall Station E (Fig. 6B). The highest receiving water concentrations are at Station 6, suggesting this may be due to the influence of the outfall. The model quantitatively relates the source and receiving water concentrations, and it suggests that the high TP at Station 6 cannot be attributed to input from Station E (Fig. 6B, Model 1). As with BOD, we added an internal input to match the data (Table 3, Fig. 6B, Model 2). This input is discussed further below. The model-estimated total load of TP from the Muddy River to the Charles River is 1.1 kg d⁻¹, which is lower than the 5.0 kg d⁻¹ estimated by Breault et al. (2002). The discrepancy is likely due to the steady-state analysis used here. These loads can be put into context of the downstream Charles River. The current and Total Maximum Daily Load (TMDL) input of TP to the Lower Charles River are 110 and 54 kg d⁻¹, respectively (Tetra Tech, 2006).

3.4.4. E. coli data and model

E. coli, as well as fecal coliforms and Enterococcus, are generally low at Stations 8 and 7 and increase at Leverett Pond (Fig. 6C). The average *E. coli* density at the most downstream station is 4.0×10^3 CFU 100 mL⁻¹, confirming that the Muddy River is a significant source of *E. coli* to the Charles River (Hellweger and Masopust, 2008). The model generally underpredicts the *E. coli* density at Leverett Pond and downstream (Fig. 6C, Model 1). However, it predicts a significant increase at the Stony Brook Overflow. As with BOD and TP, an internal input was calibrated to match the data (Table 3). That model matches the data reasonably well, although it underpredicts the *E. coli* density at the downstream end by 67% (Fig. 6C, Model 2).

3.4.5. Calibrated internal input

We now discuss the magnitude and origin of the calibrated input of BOD, TP and *E. coli* (Table 3). Specifically, we consider if the input can reasonably be explained by a combination of three internal sources, including direct input from waterfowl, the sediment bed and autochthonous production (algae). We assume that only waterfowl contribute *E. coli* (although the sediment bed can serve as a temporary reservoir of enteric bacteria; Chapra, 1997). To see if the calibrated *E. coli* loading can be attributed to waterfowl, we estimate the corresponding number of birds. Wither et al. (2005) cite a value of 1.1×10^{10} CFU bird⁻¹ d⁻¹ for ducks. Roll and Fujioka (1997) measured 1.6×10^{6} CFU gGuano⁻¹ for ducks, which correspond to 1.6×10^{8} CFU bird⁻¹ d⁻¹ (using 98 gGuano bird⁻¹ d⁻¹, ave. of Canada Goose and Mallard Ducks, Don and

Donovan, 2002). Using the higher value from Wither et al., the calibrated E. coli input corresponds to 310 birds. This number is within the range of 100-790 observed by the MA Div. of Fisheries and Wildlife (2003, 2008; Fens and Leverett Pond; Mallard Ducks, American Black Duck, Canada Goose; Heusmann, personal communication). However, that number of birds cannot explain the calibrated input of BOD and TP (Table 3, estimated using 41 gBOD kgGuano⁻¹, 4.9 gP kgGuano⁻¹, Don and Donovan, 2002). Among the remaining sources, only the sediment bed contributes TP. For the shallow Muddy River, the predominant release mechanism is likely sediment resuspension (possibly mediated by waterfowl). The areal input to Leverett Pond is 29 mg m⁻² d⁻¹ which is reasonably close to what is being put into the sediment bed by particle settling (21 mg m⁻² d⁻¹, TP = 0.21 mg L⁻¹, $v_s = 0.1 \text{ m d}^{-1}$). The sediment bed does not constitute a source of BOD (SOD is included based on measurements), so the source of the calibrated BOD is in the water column, which could be attributed to dead algae. The areal input of BOD to Leverett Pond corresponds to 180 gC m⁻² y⁻¹ (using 0.036 km², 2.67 gBOD gC⁻¹, Chapra, 1997). This is within the range of autochthonous production rates for lakes (e.g. Lawrence Lake: 130, Lake Wingra: 610, Wetzel, 2001). Therefore, the calibrated input of E. coli, TP and BOD can be reasonably attributed to waterfowl, sediment bed and algae internal sources, respectively. Targeted site-specific studies, like more extensive bird counts and measurement of the E. coli in their droppings, would be useful to further establish this.

4. Summary

This study was conducted to characterize and understand the water quality of the urban Muddy River to support and evaluate restoration. Extensive monitoring of 36 parameters at 14 locations at a monthly frequency over a three year period resulted in a database with 520 observations. A number of different data analysis methods were applied, and taken together they provide an understanding of the water quality of the river. Specifically, the study identified a significant wastewater fraction in one of the outfalls, Station E. The seasonal patterns of temperature and dissolved solids point to groundwater and wastewater components in this outfall. A simple mixing model provides a first-order estimate of the wastewater flow rate of 3.3 m³ d⁻¹. By comparing pollutant signatures at outfalls using a principal component analysis (PCA), this outfall was further identified as having the highest bacteria and nutrient component. Correlations reveal that the pollutant concentrations at this outfall are least affected by precipitation compared to other stations (although correlations are weak for all stations). None of these results are conclusive by themselves, but they are consistent and together they suggest a wastewater component at this outfall. Subsequent inspections by the Boston Water and Sewer Commission have identified a significant illegal sanitary connection to this outfall with a flow rate of 4.3 $m^3 d^{-1}$ (1139 gpd). The biochemical oxygen demand (BOD), total phosphorus (TP) and E. coli increase immediately downstream of this outfall, which suggests it has a significant impact on the water quality of the river. A mathematical model was developed and compared to the data. The model quantitatively relates the input from the outfalls to receiving water concentrations. It suggests the impact of the outfall is not significant. Rather, there is significant internal input, which we attribute to waterfowl, sediment bed and algae. The sediment bed dredging planned as part of the restoration project should lead to significant improvements in DO, BOD and TP.

This study illustrates the utility of combining monitoring and data analysis with mathematical modeling to help understand the water quality of a river. Monitoring and data analysis helped identify an illegal wastewater connection, yet it suggested that inflow has a significant impact on the river. Mathematical modeling allowed for a quantitative analysis of this input and showed that it is not a significant driver of water quality in the river. Internal inputs from waterfowl, sediment bed and algae are more important in this case.

Acknowledgements

This research was sponsored by the Town of Brookline, City of Boston and Massachusetts Department of Conservation and Recreation (DCR) under subcontract to Camp Dresser & McKee Inc. (CDM). We appreciate the useful discussions we had with various members of the Boston-area water quality community, especially Roger Frymire. Three anonymous reviewers provided constructive criticism. This paper is dedicated to the memory of Robert Kachinsky.

References

- Banks, R.B., Herrera, F.F., 1977. Effect of wind and rain on surface reaeration. Journal of the Environmental Engineering Division 103, 489–504.
- Bernhardt, E.S., Palmer, M.A., Allan, J.D., Alexander, G., Barnas, K., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad-Shah, J., Galat, D., Gloss, S., Goodwin, P., Hart, D., Hassett, B., Jenkinson, R., Katz, S., Kondolf, G.M., Lake, P.S., Lave, R., Meyer, J.L., O'Donnell, T.K., Pagano, L., Powell, B., Sudduth, E., 2005. Synthesizing U.S. river restoration efforts. Science 308, 636–637.
- Blanc, F.C., Gregory, C.J., 1995. Modeling and Data Acquisition Project on the Muddy River Back Bay Fens System. Report to U.S. Army Corps of Engineers. Department of Civil & Environmental Engineering, Northeastern University, Boston, Massachusetts.
- Breault, R.F., Weiskel, P.K., McCobb, T.D., 1998. Channel Morphology and Streambed-Sediment Quality in the Muddy River, Boston and Brookline, Massachusetts, October 1998. USGS Water-Resources Investigations Report 98–4027.
- Breault, R.F., Sorenson, J.R., Weiskel, P.K., 2002. Streamflow, Water Quality and Contaminant Loads in the Lower Charles River Watershed, Massachusetts, 1999–2000. USGS Water-Resources Investigations Report 02–4137.
- Chapra, S.C., Pelletier, G.J., Tao, H., 2008. QUAL2K: a Modeling Framework for Simulating River and Stream Water Quality, Version 2.11: Documentation and Users Manual. Civil and Environmental Engineering Dept., Tufts University, Medford, MA.

Chapra, S.C., 1997. Surface Water-Quality Modeling. McGraw-Hill, Boston, Massachusetts.

- Charbonneau, R., Resh, V.H., 1992. Strawberry creek on the university of California, Berkeley campus: a case history of urban stream restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 2, 293–307.
- Davis, N.M., Weaver, V., Parks, K., Lydy, M.J., 2003. An assessment of water quality, physical habitat, and biological integrity of an urban stream in Wichita, Kansas, prior to restoration improvements (phase I). Archives of Environmental Contamination and Toxicology 44, 351–359.

Di Toro, D.M., 2001. Sediment Flux Modeling. Wiley-Interscience, New York.

Don, G.L., Donovan, W.F., 2002. First Order Estimation of the Nutrient and Bacterial Input from Aquatic Birds to Twelve Rotorua Lakes. Bioresearches, Auckland, New Zealand. http://www.envbop.net/TechReports/TechReports-021001-NutrientInputAquaticBirds.pdf.

- Flanagan, S.M., Montgomery, D.L., Ayotte, J.D., 2001. Shallow Ground-water Quality in the Boston, Massachusetts Metropolitan Area. USGS Water-Resources Investigations Report 01–4042.
- Greenberg, A., Eaton, A., Clesceri, L., 2005. Standard Methods for the Examination of Water and Wastewater, first ed. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF).
- Haglund, K., 2003. Inventing the Charles River. MIT Press, Cambridge, Massachusetts.
- Hellweger, F.L., Masopust, P., 2008. Investigating the fate and transport of *E. coli* in the Charles River, Boston using high-resolution observation and modeling. Journal of the American Water Resources Association 44, 509–522.
- Hellweger, F.L., Wei, I., Mathew, M., Jain, K., 2007. Muddy River Water Quality Monitoring Sampling and Analysis Plan. Civil & Environmental Engineering Department, Northeastern University, Boston.
- Jolliffe, I.T., 2002. Principal Component Analysis, Series: Springer Series in Statistics, second ed. Springer, New York, 487 pp.
- Lee, J.H., Bang, K.W., Ketchum Jr., L.H., Choe, J.S., Yu, M.J., 2002. First flush analysis of urban storm runoff. Science of the Total Environment 293, 163–175.
- MA DEM, 2001. The Emerald Necklace Master Plan. Massachusetts Department of Environmental Management (MA DEM).
- Metcalf & Eddy Inc, 1991. Wastewater Engineering: Treatment, Disposal and Reuse. McGraw-Hill, New York.
- Novotny, V., Ahern, J., Brown, P., 2010. Water Centric Sustainable Communities: Planning, Retrofitting and Building the Next Urban Environment. Wiley, New York.
- O'Connor, D.J., Dobbins, W.E., 1985. Mechanism of reaeration in natural streams. Transactions of the American Society of Civil Engineers 123, 655.
- Paul, M.J., Meyer, J.L., 2008. Streams in the urban landscape. Urban Ecology III, 207–231.
- Roll, B.M., Fujioka, R.S., 1997. Sources of fecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality. Water Science and Technology 35, 179–186.
- Seasholes, N.S., 2003. Gaining Ground a History of Landmaking in Boston. MIT Press, Cambridge, Massachusetts.
- Snoeyink, V.L., Jenkins, D., 1980. Water Chemistry. Wiley, New York.
- Tetra Tech, IncNumeric environmental Services, 2006. Draft A Hydrodynamic and
- Water Quality Model for The Lower Charles River, Massachusetts. Thomann, R.V., Mueller, J.A., 1987. Principles of Surface Water Quality Modeling and Control. HarperCollins, New York.
- US Environmental Protection Agency (USEPA), 1983. Final Report of the Nationwide Urban Runoff Program. Water Planning Division, US EPA, Washington, DC.
- Walsh, C.J., Roy, A.J., Feminella, J.W., Cottingham, P.D., Groffman, P.M., Morgan II, R.P., 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24, 706–723.
- Wetzel, R.G., 2001. Limnology Lake and River Ecosystems, third ed. Academic, San Diego.
- Wither, A., Rehfisch, M., Austin, G., 2005. The impact of bird populations on the microbiological quality of bathing waters. Water Science and Technology 51, 199–207.
- Zarriello, P.J., Barlow, L.K., 2002. Measured and Simulated Runoff to the Lower Charles River, Massachusetts, October 1999–September 2000. USGS Water-Resources Investigations Report 02–4129.

Table D: N Sampling S Obtained fr	ble D: Muddy River Analytical Data Impling Station No. 4: Fens Bridge Islander from: Mathew, M. et al. "Anatomy of an urban waterbody: a case study of Boston's Muddy RiveEnvironmental Pollution, vol. 159, pp. 1996 to 2002, Feb. 2011.																																						
ROUND	WEATHER	CP4	CP3	CP2	CP1	CP0	DATE	STATION	TYPE	TIME	TEMP	SPCOND	DO	DOSAT	PH	FCOLOR	SURFACE	ODOR	FLOW	CHL	ALK	ACID	BOD	COD	тос	TSS	TDS	FC	EC	ENT	OG	TPH	TN	NH4	NO2	NO3	TP	PO4	COLOR
1	0	0.16	0.09	0.09	0.09	0.05	9/24/2006	4		9.37am	18.6	NA(c)	4.0	43	6.78	Clear	Clear	None	Downstream	NA(d)	71	NA(e)	NA(f)	NA(g)	NA(h)	12.8	ND	NA(k)	NA(k)	NA(k)	NA(h)	NA(h)	NA(I)	NA(m)	NA(d)	NA(d)	NA(n)	NA(d)	90
2	w	1.56	1.05	0 69 0	0 64	0 49	11/17/2006	3 4		9.54am	0./ 17.3	140	3.8	33	6.35	Light Tea	Clear	None	Downstream	5.1 ND	18	0.0	>9 (g)	34.1	6.7	5.5 17.8	450 TR	440 (LC) NA(k)	200 (LC) NA(k)	120(LC)	NA(n)	NA(n)	1 17	TR	ND NA(i)	1.82	0.14	ND	90
4	PW	0.15	0.15	0.1	0.1	0	12/14/2006	3 4	i	9.55am	9.4	1164	6.2	54	6.50	Clear	Clear	None	None	349	61	8.0	>45(n)	31.8	6.3	7.9	500	2638	1038	>600	NA(o)	ND	2.72	0.43	0.14	2.02	0.11	ND	30
5	DW	0.1	0.05	0.05	0.05	0.05	1/27/2007	4	1	9.50am	-0.3	41.2	11.5	78	6.98	Clear	Ice	None	None	398	73	10.0	NA(e)	TR	4.3	3.0	550	1550	1200	90 (LC)	ND	ND	11.18	0.28	0.12	2.69	0.05	ND	75
6	PW	1.48	1.48	1.48	1.48	0	3/3/2007	4	1	9.41am	4.5	1052	11.6	89	6.54	Light tea	Clear	None	Downstream	510	24	6.0	NA(e)	27.0	5.6	21.0	250	460 (LC)	310 (MC)	1020	ND	ND	1.95	0.91	0.25	0.25	0.14	ND	180
7	D	0.04	0	0	0	0	3/31/2007	4		9.45am	7.1	1126	10.4	86	6.75	Clear	Clear	None	Downstream	207	68	13.0	NA(e)	16.2	4.1	6.8	550	3250 (MC)	2100	7 (LC)	ND	ND	3.77	0.28	0.17	2.52	0.08	0.111	35
8	w	1.6	1.6	1.43	1.43	0.37	4/28/2007	4		10.14am	11.6	667	8.0	78	6.59	Clear	Clear	None	Downstream	252	44	8.8	3.5	23.0	3.5	13.6	350	2050	1350 (MC)	207	ND	ND	2.09	0.54	0.04	1.41	0.09	ND	80
10	D	0.05	0.05	0.05	0.05	0	6/18/2007	4		9.59am 9.53am	21.9	845	2.1	23	6.29	Light tea	Clear	Musky	Downstream	290	69	8.8	2.0 ND	ND	3.4	3.3	550	4425	425	20 (LC) NC	ND	ND	1 77	1 13	0.04 TR	1.37	0.07	ND	40
11	W+PW	0.33	0.28	0.28	0.28	0.11	7/19/2007	4	i	10.02am	22.1	723	2.3	26	6.38	Milky	Clear	None	Downstream	802	64	15.0	7.6	44.6	8.7	4.2	300	>4533	2533	>1200	ND	ND	2.20	1.47	0.12	0.44	0.13	ND	100
12	D	1.72	0	0	0	0	8/3/2007	4	1	9.59am	26.5	695	1.8	23	6.85	Muddy	Clear	None	Downstream	186	60	11.5	5.0	24.8	5.4	9.2	400	>900	300	220	ND	ND	2.19	1.98	0.12	0.30	0.22	TR	100
13	D	0.09	0.09	0.09	0.04	0.01	9/10/2007	4		9.48am	20.6	997	6.1	68	7.01	Clear	Clear	None	None	275	76	13.0	TR	20.8	3.9	6.7	350	NA(K)	220	200	ND	ND	6.18	0.63	TR	0.40	0.14	ND	70
14	W+PW	0.38	0.37	0.33	0.04	0.03	10/13/2007	4		9.48am	13.1	516	3.0	29	5.92	Clear	Clear	None	Downstream	250	44 68	11.8	0.8	25.4 TD	0.0	8.9 TD	300	NA(h)	1933 59 (LC)	240	ND	ND	23.53	1.31	0.25	0.75	0.07	ND	110
16	PW	0.84	0.66	0.00	0.03	0.03	12/30/2007	4	i i	9 58am	4.3	1481	9.9	76	7.36	Clear	Clear	Musky	Downstream	353	54	7.5	2.0	TR	1.5	TR	650	NA(h)	1300	900	NA(i)	TR	3.03	1.07	0.39	1 24	0.02	ND	150
17	D	0.03	0	0	0	0	1/26/2008	4	i	11.29am	2.0	1695	9.8	71	7.30	Clear	Clear	None	Downstream	506	67	9.3	TR	TR	2.2	3.9	950	NA	1133	240	NA(j)	TR	2.67	ND	0.15	1.18	0.02	ND	50
18	w	2.69	2.33	2.05	2.05	1.88	3/8/2008	4	1	9.52am	5.8	657	12.7	102	7.19	Light Tea	Clear	None	Downstream	208	28	2.9	3.5	19.2	2.1	14.8	550	NA	600	>1200	NA(j)	ND	1.05	1.74	0.10	0.48	1.16	ND	70
19	PW	0.48	0.43	0.38	0.33	0.05	3/29/2008	4	1	9.45am	4.4	791	9.8	76	6.77	Clear	Clear	None	Downstream	238	50	5.9	4.8	TR	2.3	4.75	550	NA	560	2300 (HC)	NA(j)	ND	1.29	ND	0.10	0.86	0.03	ND	70
20	w	0.25	0.25	0.25	0.25	0.21	5/9/2008	4		9.53am	15.4	1081	4.4	44	6.99	Tea	Clear	Musky	Downstream	285	67	8.5	5.0	25.2	3.6	8.5	550	NA	1500	113	NA(c)	TR	4.41	0.70	0.21	0.70	0.09	ND	100
21	PW	0.02	0.02	0.8	0 49	0.05	6/17/2008	4		9.35am 10.09am	21.2	380	2.8	49	6.99	LGT Tea	Clear	Musky	Downstream	229	32	77	7.2	20.0	4.3	9.5	600 TR	NA NA	>2000	>1200	NA(C)	TR	0.46	0.74	0.43	0.19	0.22	ND	110
23	D	0.05	0.05	0.05	0.05	0.00	7/10/2008	4	i	9.47	23.2	777	2.1	24	6.98	LGT Tea	Clear	Musky	None	182	64	5.0	7.6	16.6	4.8	4.5	250	NA	>6000	620	NA(d)	TR	1.68	0.79	0.30	0.17	0.22	ND	45
24	D	0.23	0.04	0.04	0.04	0.04	7/31/2008	4	1	9.25	24.4	844	2.6	32	6.94	Clear	Clear	None	Downstream	123	74	3.0	5.7	21.9	4.6	3.6	300	NA	1400	213	NA(d)	TR	1.10	1.00	0.13	0.19	0.23	ND	105
25	w	3.08	3.08	3.08	1.43	0.53	9/28/2008	4	1	9.32	18.5	222	6.4	69	7.09	Clear	Clear	None	Downstream	48	54	7.4	8.0	16.6	4.0	7.4	TR	NA	>6000	>1200	NA(d)	ND	1.67	1.26	0.03	0.84	0.15	TR	175
26	D	0.05	0.05	0	0	0	10/8/2008	4		9.31am	12.4	861	5.8	54	7.04	Clear	Skim	None	Upstream	210	60	5.0	TR	75.2	2.7	33.6	500	NA	2700	320	NA(e)	ND	2.22	1.38	0.09	1.38	0.13	ND	70
27	PW	0.49	0.49	0.49	0.33	0 06	10/27/2008	s 4 1		8.34	13.5	538	3.0	29	6.76	Clear	Clear	None	Downstream	129	42	9.2	7.8	34.6 50.6	6.0	12.0	250	NA	>6000	>1200	NA(e)		1.52	TP	0.128	0.72	0.25	0.021 TP	150
29	w	0.42	0.42	0.42	0.42	0.37	1/18/2009	4	i	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NA	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)
30	D	0.17	0.16	0	0	0	3/14/2009	4	1	9.45	4.5	1658	7.7	60	7.34	Clear	Clear	None	Downstream	245	40	7.0	4.1	55.9	2.8	4.25	800	NA	>6000	960	NA(i)	ND	2.75	ND	0.02	1.83	0.11	ND	35
31	0	0.42	0.42	0.42	0.42	0.37	3/28/2009	4	1	9.19	9.5	1254	8.0	70	6.96	Clear	Clear	None	Downstream	233	70	3.0	TR	22.6	3.1	8.7	600	NA	>6000	>1200	NA(i)	ND	2.22	0.46	0.02	1.33	0.19	ND	35
32	w	0.69	0.64	0.64	0.64	0.49	4/11/2009	4	1	9.25	9.6	606	9.2	81	7.10	Clear	Clear	None	Downstream	164	74	3.5	2.5	65	4.6	18.1	TR	NA	>6000	>1200	NA(d)	ND	5.79	0.96	0.39	TR	0.06	ND	150
33	D	0.16	0.07	0	0	0	4/26/2009	4	1	9.19	18.0	1085	5.9	62	6.90	Clear	Clear	Musky	Downstream	15	62	3.5	TR	TR	2.1	17.1	650	NA	>6000	660	NA(d)	ND	4.83	NA	0.03	1.19	TR	ND	145
34	W	0.69	0.68	0.63	0.58	0.57	5/9/2009	4	1	9.42	17.0	945	3.4	35	6.58	Clear	Clear	None	Downstream	98	66	3.5	TR	TR	4.9	10.55	TR	NA	80(LC)	8(LC)	NA(d)	ND	1.36	0.38	0.04	0.67	0.08	ND	55
35	PW	0.71	0.71	0.71	0.71	0.02	7/8/2009	4		9.39	18.4	1000.0	3.25	36.0	7	LGT TEA	Clear	None	Downstream	155	40	4.5	4.72	ND 25	5.7	13	250.0	NA	>6000	>1200	NA(k)	ND	1	0.873	ND	0.57	0.11	ND	100
37	D	0.09	0.76	0.52	0.52	0.52	8/17/2009	4	i	9.4	25.75	1024.0	2.81	34.4	7	LGT TEA	Clear	MUSKY	None	179	54	3.5	2.31	4	4.7	3	450.0 TR	NA	300	38(LC)	NA(k)	TR	1	1.01	0	0.47	0.05	ND	100
MIN MAX AVERAGI	E	0.02 3.08 0.60	0 3.08 0.50	0 3.08 0.44	0 2.05 0.35	0 1.88 0.17					-0.26 26.48 14.09	30 1695 828.63	1.69 12.72 5.69	22.8 101.7 51.86	6.29 7.36 6.84					5.1 801.70 233.13	17.51 81.63 56.74	2.88 15.00 7.60	2.14 7.98 4.97	3.9 75.23 30.20	1.54 8.70 4.40	2.55 33.65 9.60	250 950 472.41	780 4425 2288.60	220 2700 1081.68	113 1200 506.06	ND ND ND	ND ND ND	0.46 23.53 3.17	0.28 1.98 0.88	0.02 0.48 0.16	0.17 2.69 0.99	0.02 1.16 0.16	0.021 0.11 0.07	25 260 96.94

TURB	ZN	CR	PB	cu	CD	AS
2.4	NA(o)	NA(o)	NA(o)	NA(o)	NA(o)	NA(o)
3.8	NA	NA	NA	NA	NA	NA
14.5	NA	NA	NA	NA	NA	NA
5.8	NA	NA	NA	NA	NA	NA
5.1	NA	NA	NA	NA	NA	NA
15.5	NA	NA	NA	NA	NA	NA
5.0	NA	NA	NA	NA	NA	NA
6.9	NA	NA	NA	NA	NA	NA
5.3	NA	NA	NA	NA	NA	NA
4.8	NA	NA	NA	NA	NA	NA
6.0	NA	NA	NA	NA	NA	NA
6.5	NA	NA	NA	NA	NA	NA
5.1	TR	ND	ND	ND	ND	ND
5.1	TR	ND	ND	ND	ND	ND
1.7	TR	ND	ND	ND	ND	ND
6.0	TR	ND	ND	ND	ND	ND
5.8	TR	ND	ND	ND	ND	ND
6.1	TR	ND	ND	ND	ND	ND
4.1	TR	ND	ND	ND	ND	ND
10.0	TR	ND	ND	ND	ND	ND
9.59	TR	ND	ND	ND	ND	ND
10.9	TR	ND	ND	ND	ND	ND
13.2	TR	ND	ND	ND	ND	ND
8.24	TR	ND	ND	ND	ND	ND
19	TR	ND	ND	ND	ND	ND
11.90	ND	ND	ND	ND	ND	ND
8.7	ND	ND	ND	ND	ND	ND
6.83	ND	ND	ND	ND	ND	ND
NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)	NS(c)
4.58	NA(f)	ND	74	61	ND	252
14.10	NA(f)	ND	ND	39	ND	ND
16.8	TR	ND	181	57	ND	65
8.7	ND	ND	59	30	ND	TR
4.46	ND	ND	ND	TR	ND	ND
8.06	ND	ND	ND	ND	ND	59 74
9.05	ND	ND	ND	ND	ND	ND
7.12	0.00	ND	ND	17	ND	ND
1.7 19 7.96	ND ND ND	ND ND ND	59.07 180.66 104.65	16.69 60.6 40.66	ND ND ND	59.74 252.19 125.76

APPENDIX E

Endangered Species Act Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

In Reply Refer To: Consultation Code: 05E1NE00-2017-SLI-1418 Event Code: 05E1NE00-2017-E-02797 Project Name: Boston Children's Hospital Clinical Building (BCCB) Discharge Location

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

April 26, 2017

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code:	05E1NE00-2017-SLI-1418
Event Code:	05E1NE00-2017-E-02797
Project Name:	Boston Children's Hospital Clinical Building (BCCB) Discharge Location
Project Type:	DEVELOPMENT
Project Description:	Current site development plans include a new Clinical Building with a below-grade footprint area of approximately 34,500 square feet (sf) and four below-grade levels. Excavation to construct the below-grade space will proceed to depths of about 65 to 75 ft below existing site grades, corresponding to approximately 35 to 45 ft below site groundwater levels. Dewatering is necessary to control groundwater, seepage, precipitation, and surface water runoff and construction-generated water to enable below-grade construction activities in-the-dry. Construction activities are underway; dewatering is anticipated to begin around May 2017 and will likely continue through approximately May 2019. Temporary construction dewatering will be conducted a NPDES RGP; this request for an official species list is to support the NPDES RGP NOI application.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34023351897317N71.0996369137462W

Counties:

Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Critical habitats

There are no critical habitats within your project area.

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

April 26, 2017

In Reply Refer To: Consultation Code: 05E1NE00-2017-SLI-1417 Event Code: 05E1NE00-2017-E-02795 Project Name: Boston Children's Hospital Clinical Building (BCCB)

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the

human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan

(http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code:	05E1NE00-2017-SLI-1417
Event Code:	05E1NE00-2017-E-02795
Project Name:	Boston Children's Hospital Clinical Building (BCCB)
Project Type:	DEVELOPMENT
Project Description:	Current site development plans include a new Clinical Building with a below-grade footprint area of approximately 34,500 square feet (sf) and four below-grade levels. Excavation to construct the below-grade space will proceed to depths of about 65 to 75 ft below existing site grades, corresponding to approximately 35 to 45 ft below site groundwater levels. Dewatering is necessary to control groundwater, seepage, precipitation, and surface water runoff and construction-generated water to enable below-grade construction activities in-the-dry. Construction activities are underway; dewatering is anticipated to begin around May 2017 and will likely continue through approximately May 2019. Temporary construction dewatering will be conducted a NPDES RGP; this request for an official species list is to support the NPDES RGP NOI application.

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/place/42.33634754593064N71.10535227631351W</u>

Counties:

Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on your species list. Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area. Please contact the designated FWS office if you have questions.

Critical habitats

There are no critical habitats within your project area.

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS				
	Piping Plover	Threatened	Coastal Beaches	All Towns				
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns				
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham				
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.				
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)				
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield				
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport				
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport				
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton				
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide				
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns				
	Piping Plover	Threatened	Coastal Beaches	All Towns				
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark				
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury				
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns				
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Statewide					

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
D eces	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
200011	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
Hampshire	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
Nantucket	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

APPENDIX F

National Register of Historic Places and Massachusetts Historical Commission Documentation

Phys. File

May 22, 2015 The Commonwealth of Massachusetts William Francis Galvin, Secretary of the Commonwealt

William Francis Galvin, Secretary of the Commonwealth Massachusetts Historical Commission

Douglas Kelleher Epsilon Associates 3 Clock Tower Pl., #250

Maynard, MA 01754

RE: Children's Hospital 2012 IMP, Children's Clinical Building (CCB), Combined Heat & Power (CHP) Plant (300 Longwood Ave), Parking Garage Addition, & New Construction at 819 Beacon Street, Boston (Fenway), MA; MHC# RC.53231; EEA# 14964

Dear Mr. Kelleher:

Thank you for your letter dated April 22, 2015 and received at this office on April 24, 2015, concerning the proposed project referenced above. Staff of the Massachusetts Historical Commission (MHC) have reviewed the draft Memorandum of Agreement (MOA) and have the following comments.

In Stipulation I Photographic Documentation, please delete the words "the MHC" in the first sentence. The MHC does not wish to receive a copy of the photodocumentation.

In Stipulation II, Preservation Plan, please include "A copy of the final Preservation Plan shall be submitted to the MHC for MHC's files."

In Stipulation V, Longwood Medical and Academic Area Architectural Survey, please include "Completed new MHC Inventory Forms shall be submitted to the MHC in draft form for MHC's review and comment. Final original MHC Inventory forms shall be submitted to the MHC in archivally stable and digital format, consistent with the MHC's Survey Guidelines."

The MHC has not received any comments from the consulting parties regarding the draft MOA.

Please circulate the revised final MOA with the requested changes described above to the signatories for their signature and submit the original to the MHC for final signature.

These comments are offered to assist in compliance with M.G.L. Chapter 9, sections 26-27C (950 CMR 71.00) and MEPA (301 CMR 11).

Sincerely,

Brona Simon State Historic Preservation Officer Executive Director Massachusetts Historical Commission

 xc: Charles Weinstein, Boston Children's Hospital Steve Chilton, MassDevelopment Rosanne Foley, Boston Landmarks Commission Greg Galer, Boston Preservation Alliance Marilyn Sticklor, Goulston & Storrs

> 220 Morrissey Boulevard, Boston, Massachusetts 02125 (617) 727-8470 • Fax: (617) 727-5128 www.sec.state.ma.us/mhc

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway - Longwood; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.JE	Emerald Necklace Parks		Boston	
BOS.JG	Massachusetts Mental Health Center		Boston	
BOS.JH	Massachusetts State Hospitals and State Schools		Boston	
BOS.TC	Emmanuel College Campus		Boston	
BOS.ACA	Francis Street - Fenwood Road District		Boston	
BOS.7517	Boston Public Latin High School	78 Ave Louis Pasteur	Boston	1922
BOS.9293	Riverway - Brookline Avenue Bridge	Brookline Ave	Boston	1894
BOS.7358	Simmons College - South Hall	321 Brookline Ave	Boston	1905
BOS.7357	Massachusetts School of Art	364 Brookline Ave	Boston	1929
BOS.7359	Boston Fire Engine House #3	411 Brookline Ave	Boston	1873
BOS.7414	Lyons, John B. Three-Family House	7 Fenwood Rd	Boston	1910
BOS.7410	Farragut Primary School	10 Fenwood Rd	Boston	1903
BOS.7415	Spillane, Jeremiah C. Two-Family House	11 Fenwood Rd	Boston	1903
BOS.7416	Spillane, Jeremiah C. Two-Family House	15 Fenwood Rd	Boston	1903
BOS.16666	Sheean, Benjamin Two-Family House	17 Fenwood Rd	Boston	c 1899
BOS.16667	Dunn, F. and J. L. Two-Family House	19 Fenwood Rd	Boston	c 1899
BOS.16668	Whelan, M. J. and A. J. Two-Family House	21 Fenwood Rd	Boston	c 1899
BOS.16669	Mahan, E. J. Two-Family House	24 Fenwood Rd	Boston	c 1899
BOS.16670	Barry, Anna M. Two-Family House	30 Fenwood Rd	Boston	1909
BOS.16671	Stroud, F. W. Two-Family House	31 Fenwood Rd	Boston	c 1899
BOS.16672	Lowney, J. F. Two-Family House	32 Fenwood Rd	Boston	c 1899
BOS.16673	Kilduff, M. Two-Family House	33 Fenwood Rd	Boston	c 1899
BOS.16674	Holland, J. F. Two-Family House	35 Fenwood Rd	Boston	1901
BOS.7411	Olsson, H. C. Two-Family House	36 Fenwood Rd	Boston	c 1900
BOS.16675	Bailey, N. Two-Family House	39 Fenwood Rd	Boston	1899
BOS.7412	Mead, C. E. Two-Family House	40 Fenwood Rd	Boston	1900

Wednesday, April 26, 2017

Page 1 of 4

Inv. No.	Property Name	Street	Town	Year
BOS.7417	Freiman, Max Two-Family House	43 Fenwood Rd	Boston	c 1899
BOS.16676	Hosmer, Ida A. Two-Family House	44 Fenwood Rd	Boston	c 1899
BOS.16677	Ewing, E. F. Two-Family House	47 Fenwood Rd	Boston	c 1899
BOS.7418	Spillane, Jeremiah C. Two-Family House	49 Fenwood Rd	Boston	c 1899
BOS.16678	Callahan, J. M. Two-Family House	50 Fenwood Rd	Boston	c 1899
BOS.7422	Dooley, Rose H. Three Decker	51 Fenwood Rd	Boston	c 1899
BOS.16679	Sampson, W. W. Two-Family House	52 Fenwood Rd	Boston	1899
BOS.16680	Leather, Annie Three-Decker	53 Fenwood Rd	Boston	1900
BOS.16681	Connor, Genevieve Three-Decker	54 Fenwood Rd	Boston	1904
BOS.16682	Spillane, J. C. Two-Family House	55 Fenwood Rd	Boston	c 1899
BOS.16683	Gregory, Gustina M. Two-Family House	56 Fenwood Rd	Boston	1905
BOS.16684	Moon, Patrick W. Two-Family House	57 Fenwood Rd	Boston	1902
BOS.16685	Connelly, C. J. Two-Family House	58 Fenwood Rd	Boston	c 1899
BOS.7711	Massachusetts Mental Health Center Main Building	74 Fenwood Rd	Boston	1912
BOS.7712	Massachusetts Mental Health Center Power House	74 Fenwood Rd	Boston	1912
BOS.7713	Massachusetts Mental Health Center Research Bldg.	74 Fenwood Rd	Boston	1954
BOS.7714	Massachusetts Mental Health Center Therapeutic Blg	74 Fenwood Rd	Boston	1957
BOS.9295	Massachusetts Mental Health Center Fence	74 Fenwood Rd	Boston	1912
BOS.16686	Santander Bank	2-6 Francis St	Boston	c 1999
BOS.16687	Donlan, D. Three-Decker	12 Francis St	Boston	1900
BOS.16688	Lindauer, Louisa Three-Decker	16 Francis St	Boston	1899
BOS.16689	Lindauer, Louisa Three-Decker	18 Francis St	Boston	c 1899
BOS.16690	Breen, Jane Three-Decker	20 Francis St	Boston	1899
BOS.16691	Cannon, P. and J. Three-Decker	22 Francis St	Boston	1900
BOS.7419	Crowley, Daniel Apartment Building	30 Francis St	Boston	c 1900
BOS.16692	Donovan, C. J. Three-Decker	32 Francis St	Boston	1898
BOS.16693	Donovan, C. J. Three-Decker	34 Francis St	Boston	1898
BOS.16694	Hourihan, J. Three-Decker	36 Francis St	Boston	1898
BOS.16695	Cole, William S. Three-Decker	38 Francis St	Boston	1900
BOS.16696	McGovern, O. Three-Decker	40 Francis St	Boston	1901
BOS.9773	Francis Street Garden	42 Francis St	Boston	r 2000
BOS.16698	Hannan, R. and M. Three-Decker	44 Francis St	Boston	1898
BOS.16699	O'Neil, M. Three-Decker	46 Francis St	Boston	1901
BOS.16700	Cole, Mary A. Three-Decker	48 Francis St	Boston	1899
BOS.7421	Ilse, Fredericka Three-Decker	50 Francis St	Boston	1900

Wednesday, April 26, 2017

Inv. No.	Property Name	Street	Town	Year
BOS.16701	Sullivan, Mary Three-Decker	52 Francis St	Boston	1900
BOS.7423	Donovan, Jereh Three Decker	58 Francis St	Boston	1901
BOS.7494	Bangs, Edward A Bangs, Outram Double House	553-555 Huntington Ave	Boston	c 1900
BOS.7495	Stanley, Martha Apartment Building	641 Huntington Ave	Boston	1888
BOS.7496	Holmes, William Apartment Building	643-645 Huntington Ave	Boston	1888
BOS.7497	Brigham, Peter Bent Hospital	721 Huntington Ave	Boston	1911
BOS.9772	Hanlon Square	725 Huntington Ave	Boston	r 2000
BOS.7498	Harmon, James Apartment House and Commercial Block	733-739 Huntington Ave	Boston	1899
BOS.7499	Lyons, L. J. Apartment House	741-747 Huntington Ave	Boston	1899
BOS.16702	Avondale Chambers - Avondale Apartments	777-779 Huntington Ave	Boston	1916
BOS.9291	Longwood Avenue Bridge	Longwood Ave	Boston	c 1897
BOS.7504	Carlton Apartment Building	160 Longwood Ave	Boston	1892
BOS.7505	Westcourt Apartment Building	164 Longwood Ave	Boston	1900
BOS.7514	Massachusetts College of Pharmacy	179 Longwood Ave	Boston	1917
BOS.7506	Angell Memorial Animal Hospital	180 Longwood Ave	Boston	1915
BOS.7507	Harvard University Dental School and Hospital	188 Longwood Ave	Boston	1908
BOS.7515	Boston Lying-in Hospital	221 Longwood Ave	Boston	1922
BOS.7508	Harvard Medical School - Administrative Building	230-240 Longwood Ave	Boston	1906
BOS.7509	Harvard Medical School - Anatomy & Histology Bldg	230-240 Longwood Ave	Boston	1906
BOS.7510	Harvard Medical School - Physiological Chemistry	230-240 Longwood Ave	Boston	1906
BOS.7511	Harvard Medical School - Bacteriology & Pathology	230-240 Longwood Ave	Boston	1906
BOS.7512	Harvard Medical School - Pharmacology & Hygiene	230-240 Longwood Ave	Boston	1906
BOS.7516	Harvard Medical School - Vanderbilt Hall	245 Longwood Ave	Boston	1926
BOS.7513	Children's Hospital	300 Longwood Ave	Boston	1912
BOS.9292	Netherlands Road Bridge	Netherlands Rd	Boston	1894
BOS.7533	Girls Latin School	Palace Rd	Boston	1907
BOS.7534	Collins, Patrick A. Model School	Palace Rd	Boston	1907
BOS.7535	Boston Normal School	Palace Rd	Boston	1907
BOS.9288	Riverway Shelter and Toolhouse	Park Dr	Boston	1893
BOS.9289	Riverway - Chapel Street Bridge	Park Dr	Boston	1890
BOS.9290	Riverway - Bridle Path Bridge	Park Dr	Boston	1892
BOS.9617	Riverway Pathway	Park Dr	Boston	
BOS.7536	Riverway Administration Building	440 Park Dr	Boston	1898
BOS.7580	Simmons College - North Hall	86 Pilgrim Rd	Boston	1906
Wednesday, A	pril 26, 2017			Page 3 of 4

Inv. No.	Property Name	Street	Town	Year
BOS.7581	Simmons College - Refectory	86R Pilgrim Rd	Boston	1905
BOS.7582	Winsor School	103 Pilgrim Rd	Boston	1909
BOS.7583	New England Deaconess Hospital	175 Pilgrim Rd	Boston	1903
BOS.7584	Palmer Memorial Hospital	195 Pilgrim Rd	Boston	1927
BOS.9294	Route 9 Overpass and Retaining Wall	Rt 9	Boston	1936
BOS.7420	Crowley, Daniel Apartment Building	5 Saint Albans Rd	Boston	1900
BOS.16703	Kelley, Frank C. Two-Family House	24 Saint Albans Rd	Boston	1926
BOS.16697	McInerney, Elizabeth C. Two-Family House	26-28 Saint Albans Rd	Boston	c 1906
BOS.7683	Rotch, Thomas M. Jr. Memorial Hospital for Infants	55 Shattuck St	Boston	1910
BOS.7684	Hastings, Mary C. Hews House	2 Short St	Boston	c 1875
BOS.7685	Pope - Hastings, Bulkley A. House	4 Short St	Boston	c 1855
BOS.7408	Gardner, Isabella Stewart Museum	280 The Fenway	Boston	1900
BOS.7409	Simmons Female College	300 The Fenway	Boston	1901
BOS.7413	Boston Academy of Notre Dame	400 The Fenway	Boston	1916
BOS.13247	Emmanuel College - Saint Ann Dormitory	400 The Fenway	Boston	1961
BOS.13248	Emmanuel College - Campus Shop	400 The Fenway	Boston	1962
BOS.13249	Emmanuel College - Loretto Hall	400 The Fenway	Boston	1963
BOS.13250	Emmanuel College - Marian Hall	400 The Fenway	Boston	1954
BOS.13251	Emmanuel College - Saint Joseph Hall	400 The Fenway	Boston	1966
BOS.7706	Green, Joseph Three-Family House	7 Vancouver St	Boston	1900

APPENDIX G

Groundwater Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L1514957
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone: Proiect Name:	Jessica Lefkowitz (617) 886-7400 BOSTON CHILDREN'S HOSPITAL CLI
Project Number: Report Date:	35520-977 07/08/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial	No:07	08152	1:24
--------	-------	-------	------

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1514957-01	HA15-B5	WATER	Not Specified	06/30/15 11:55	06/30/15

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BOSTON CHILDREN'S HOSPITAL CLI Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Case Narrative (continued)

Sample Receipt

Sample "HA15-B5" was received without the container for Total Metals analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

Semivolatile Organics

The WG799242-2/-3 LCS/LCSD recoveries, associated with L1514957-01 (HA15-B5), are below the acceptance criteria for benzoic acid (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

Metals

The WG799321-2 LCS recovery, associated with L1514957-01 (HA15-B5), is above the acceptance criteria for selenium (132%); however, the associated sample is non-detect for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

ure: Michelle M. Morris

Title: Technical Director/Representative

Date: 07/08/15

ORGANICS

VOLATILES

	Serial_No:07081521:24				
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Numb	ber:	L1514957	
Project Number:	35520-977	Report Da	ite:	07/08/15	
	SAMPLE R	ESULTS			
Lab ID:	L1514957-01	Date Collect	ted:	06/30/15 11:55	
Client ID:	HA15-B5	Date Receiv	/ed:	06/30/15	
Sample Location:	Not Specified	Field Prep:		Field Filtered (Metals)	
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	07/06/15 10:13				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	1.1		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	3.1		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.5		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	
1,2-Dichloroethene, Total	8.0		ug/l	0.50		1	
Trichloroethene	2.0		ug/l	0.50		1	

						Serial_No:07081521:24			
Project Name: BOSTON CHILDREN'S HOSPITAL CLI					Lab Number:		L1514957		
Project Number:	35520-977				Report	Date:	07/08/15		
	00020 011	SAMP		s			01/00/10		
Lab ID:	L1514957-01				Date Col	lected:	06/30/15 11:55		
Client ID:	HA15-B5				Date Rec	ceived:	06/30/15		
Sample Location:	Not Specified				Field Pre	p:	Field Filtered (Metals)		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	oy GC/MS - Westborou	gh Lab							
1.2-Dichlorobenzene		ND			2.5		1		
1.3-Dichlorobenzene		ND		ug/l	2.5		1		
1,3-Dichlorobenzene		ND		ug/l	2.5		1		
Methyl tert butyl ether		ND		ug/l	1.0		1		
n/m-Xylene		ND		ug/l	1.0		1		
o-Xvlene		ND		ug/l	1.0		1		
Xylenes Total		ND		ug/l	1.0		1		
cis-1 2-Dichloroethene		8.0		ug/l	0.50		1		
Dibromomethane		ND		ug/l	5.0		1		
1.4-Dichlorobutane		ND		ug/l	5.0		1		
1,2,3-Trichloropropane		ND		ug/l	5.0		1		
Styrene		ND		ug/l	1.0		1		
Dichlorodifluoromethane		ND		ug/l	5.0		1		
Acetone		10		ug/l	5.0		1		
Carbon disulfide		ND		ug/l	5.0		1		
2-Butanone		ND		ug/l	5.0		1		
Vinyl acetate		ND		ug/l	5.0		1		
4-Methyl-2-pentanone		ND		ug/l	5.0		1		
2-Hexanone		ND		ug/l	5.0		1		
Ethyl methacrylate		ND		ug/l	5.0		1		
Acrylonitrile		ND		ug/l	5.0		1		
Bromochloromethane		ND		ug/l	2.5		1		
Tetrahydrofuran		ND		ug/l	5.0		1		
2,2-Dichloropropane		ND		ug/l	2.5		1		
1,2-Dibromoethane		ND		ug/l	2.0		1		
1,3-Dichloropropane		ND		ug/l	2.5		1		
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50		1		
Bromobenzene		ND		ug/l	2.5		1		
n-Butylbenzene		ND		ug/l	0.50		1		
sec-Butylbenzene		ND		ug/l	0.50		1		
tert-Butylbenzene		ND		ug/l	2.5		1		
o-Chlorotoluene		ND		ug/l	2.5		1		
p-Chlorotoluene		ND		ug/l	2.5		1		
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5		1		
Hexachlorobutadiene		ND		ug/l	0.50		1		
Isopropylbenzene		ND		ug/l	0.50		1		
p-Isopropyltoluene		ND		ug/l	0.50		1		
Naphthalene		ND		ug/l	2.5		1		
n-Propylbenzene		ND		ug/l	0.50		1		

		Serial_No:07081521:24					
Project Name:	Project Name: BOSTON CHILDREN'S HOSPITAL CLI			Lab Nu	umber:	L1514957	
Project Number:	35520-977				Report	Date:	07/08/15
		SAMP	LE RESULTS	5			
Lab ID: Client ID: Sample Location:	L1514957-01 HA15-B5 Not Specified				Date Co Date Re Field Pre	llected: ceived:	06/30/15 11:55 06/30/15 Field Filtered (Metals)
Parameter		Result	Result Qualifier Units RL MDL		Dilution Factor		
Volatile Organics b	oy GC/MS - Westborou	igh Lab					
1,2,3-Trichlorobenzene		ND		ug/l	2.5		1
1,2,4-Trichlorobenzene		ND		ug/l	2.5		1
1,3,5-Trimethylbenzene		ND		ug/l	2.5		1
1,2,4-Trimethylbenzene	nzene ND ug/I 2.5		1				
trans-1,4-Dichloro-2-bute	ne	ND		ug/l	2.5 1		1
Ethyl ether		ND		ug/l	2.5		1
Tert-Butyl Alcohol		ND		ug/l	10		1
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	111		70-130	

	Serial_No:07081521:24				
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957		
Project Number:	35520-977	Report Date:	07/08/15		
	SAMPLE RESULT	ſS			
Lab ID:	L1514957-01	Date Collected:	06/30/15 11:55		
Client ID:	HA15-B5	Date Received:	06/30/15		
Sample Location:	Not Specified	Field Prep:	Field Filtered (Metals)		
Matrix:	Water				
Analytical Method:	1,8260C-SIM(M)				
Analytical Date:	07/06/15 10:13				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - West	borough Lab						
1,4-Dioxane	ND		ug/l	3.0		1	

		Serial_No:07081521:24				
Project Name:	BOSTON CHILDREN'S HO	OSPITAL CLI	Lab Number:	L1514957		
Project Number:	35520-977		Report Date:	07/08/15		
		SAMPLE RESULTS				
Lab ID:	L1514957-01		Date Collected:	06/30/15 11:55		
Client ID:	HA15-B5		Date Received:	06/30/15		
Sample Location:	Not Specified		Field Prep:	Field Filtered (Metals)		
Matrix:	Water		Extraction Method	J:EPA 8011		
Analytical Method:	14,504.1		Extraction Date:	07/01/15 15:33		
Analytical Date:	07/01/15 17:23					
Analyst:	NS					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	A

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis Batch Quality Control		

Analytical Method:	14,504.1	Extraction Method:	EPA 8011
Analytical Date:	07/01/15 16:31	Extraction Date:	07/01/15 15:33
Analyst:	NS		

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - West	orough Lab f	or sample(s)	: 01	Batch: WG799	114-1	
1,2-Dibromoethane	ND		ug/l	0.010		А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		А

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	07/06/15 07:30
Analyst:	MM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	mple(s):	01	Batch:	WG800052-3	
1,4-Dioxane	ND		ug/l		3.0		

L1514957

07/08/15

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:07/06/15 07:30Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS -	· Westborough La	b for sample	e(s): 0	1 Batch:	WG800054-3
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.8	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
2-Chloroethylvinyl ether	ND		ug/l	10	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	2.5	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.5	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.5	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI
Project Number:	35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Method Blank Analysis Batch Quality Control

Analytical Method:1,Analytical Date:07Analyst:M

1,8260C 07/06/15 07:30 MM

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	o for sample(s): 01	Batch:	WG800054-3
1,2-Dichloroethene (total)	ND	ug/l	0.50	
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	2.5	
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylene (Total)	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,3-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI
Project Number:	35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Method Blank Analysis Batch Quality Control

Analytical Method:1,826Analytical Date:07/06Analyst:MM

1,8260C 07/06/15 07:30 MM

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	for sample(s): 01	Batch:	WG800054-3
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-lsopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Methyl Acetate	ND	ug/l	10	
Ethyl Acetate	ND	ug/l	10	
Isopropyl Ether	ND	ug/l	2.0	
Cyclohexane	ND	ug/l	10	
tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne ND	ug/l	10	
Methyl cyclohexane	ND	ug/l	10	
1,4-Diethylbenzene	ND	ug/l	2.0	-

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Mathead Diaula Awahasia		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/06/15 07:30
Analyst:	MM

Parameter	Result	Qualifier Un	ts	RL	MDL
Volatile Organics by GC/MS -	Westborough Lab f	for sample(s)	01	Batch:	WG800054-3
4-Ethyltoluene	ND	u	g/l	2.0	
1,2,4,5-Tetramethylbenzene	ND	u	g/I	2.0	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	108		70-130	

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Batch Quality Control	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG7991	14-2					
1,2-Dibromoethane	107		-		70-130	-		20	A
1,2-Dibromo-3-chloropropane	100		-		70-130	-		20	А

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Batch Quality Control	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS-SIM - Westborou	igh Lab Associat	ed sample(s):	01 Batch:	WG800052-1	WG800052-2				
1,4-Dioxane	109		111		70-130	2		25	

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG800054-1 WG800054-2 Methylene chloride 101 102 70-130 20 1 1,1-Dichloroethane 101 100 70-130 20 1 Chloroform 97 70-130 20 98 1 Carbon tetrachloride 20 93 95 63-132 2 1,2-Dichloropropane 94 70-130 2 20 96 Dibromochloromethane 63-130 20 88 94 7 1,1,2-Trichloroethane 91 97 70-130 6 20 2-Chloroethylvinyl ether 89 70-130 3 20 86 Tetrachloroethene 70-130 20 92 93 1 Chlorobenzene 75-130 25 93 94 1 122 122 62-150 20 Trichlorofluoromethane 0 1,2-Dichloroethane 98 101 70-130 3 20 1,1,1-Trichloroethane 67-130 20 93 93 0 Bromodichloromethane 67-130 20 89 91 2 trans-1,3-Dichloropropene 70-130 20 81 86 6 cis-1,3-Dichloropropene 70-130 20 84 90 7 1,1-Dichloropropene 95 93 70-130 2 20 Bromoform 84 91 54-136 8 20 1.1.2.2-Tetrachloroethane 67-130 20 92 100 8 70-130 25 Benzene 95 94 1 Toluene 93 70-130 2 25 95

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG800054-1 WG800054-2 Ethylbenzene 96 70-130 2 20 94 Chloromethane 96 92 64-130 20 4 Bromomethane 67 39-139 20 70 4 Vinyl chloride 20 99 99 55-140 0 Chloroethane 112 55-138 20 117 4 61-145 25 1.1-Dichloroethene 105 108 3 trans-1,2-Dichloroethene 94 92 70-130 2 20 Trichloroethene 95 94 70-130 25 1 1.2-Dichlorobenzene 70-130 20 92 93 1 1,3-Dichlorobenzene 70-130 20 94 96 2 95 70-130 20 1.4-Dichlorobenzene 91 4 Methyl tert butyl ether 85 90 63-130 6 20 p/m-Xylene 96 70-130 20 96 0 o-Xylene 95 70-130 20 94 1 cis-1,2-Dichloroethene 92 70-130 20 92 0 Dibromomethane Q Q 70-130 20 63 67 6 1,4-Dichlorobutane 95 99 70-130 4 20 1,2,3-Trichloropropane 90 98 64-130 9 20 96 70-130 20 Styrene 95 1 Dichlorodifluoromethane 36-147 20 108 106 2 Acetone 97 116 58-148 18 20

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG800054-1 WG800054-2 Carbon disulfide 92 99 51-130 20 7 2-Butanone 100 107 63-138 20 7 Vinyl acetate 88 70-130 20 83 6 4-Methyl-2-pentanone 20 80 91 59-130 13 2-Hexanone 97 57-130 18 20 81 Ethyl methacrylate 70-130 20 78 85 9 Acrylonitrile 103 110 70-130 7 20 Bromochloromethane 88 93 70-130 20 6 Tetrahydrofuran 58-130 20 102 103 1 85 63-133 20 2,2-Dichloropropane 88 3 1.2-Dibromoethane 92 70-130 20 86 7 1,3-Dichloropropane 93 99 70-130 6 20 1,1,1,2-Tetrachloroethane 91 64-130 20 90 1 Bromobenzene 90 70-130 20 90 0 n-Butylbenzene 53-136 20 92 95 3 sec-Butylbenzene 96 70-130 20 93 3 tert-Butylbenzene 89 94 70-130 5 20 o-Chlorotoluene 96 95 70-130 1 20 p-Chlorotoluene 70-130 20 92 93 1 1,2-Dibromo-3-chloropropane 98 41-144 Q 20 71 32 Hexachlorobutadiene 80 81 63-130 20 1

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG800054-1 WG800054-2 Isopropylbenzene 93 93 70-130 0 20 p-Isopropyltoluene 90 92 70-130 2 20 Naphthalene Q 71 70-130 20 7 66 95 69-130 20 n-Propylbenzene 95 0 1,2,3-Trichlorobenzene 75 70-130 20 74 1 1,2,4-Trichlorobenzene 70-130 20 72 75 4 1,3,5-Trimethylbenzene 93 92 64-130 1 20 1,3,5-Trichlorobenzene 82 83 70-130 20 1 1,2,4-Trimethylbenzene 94 70-130 20 92 2 trans-1.4-Dichloro-2-butene 70-130 20 85 94 10 Ethyl ether 99 104 59-134 20 5 Methyl Acetate 92 103 70-130 11 20 Ethyl Acetate 92 102 70-130 10 20 Isopropyl Ether 96 70-130 20 95 1 Cyclohexane 102 70-130 20 101 1 Tert-Butyl Alcohol 89 70-130 20 89 0 Ethyl-Tert-Butyl-Ether 83 88 70-130 6 20 Tertiary-Amyl Methyl Ether 77 80 66-130 4 20 1,1,2-Trichloro-1,2,2-Trifluoroethane 70-130 20 112 117 4 Methyl cyclohexane 98 70-130 20 94 4 p-Diethylbenzene 87 90 70-130 3 20

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	800054-1	WG800054-2				
4-Ethyltoluene	93		93		70-130	0		20	
1,2,4,5-Tetramethylbenzene	81		83		70-130	2		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	106		108		70-130	
Toluene-d8	105		104		70-130	
4-Bromofluorobenzene	100		96		70-130	
Dibromofluoromethane	105		107		70-130	

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Batch Quality Control	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Microextractables by GC - W	/estborough La	b Associated	l sample(s): 01	QC Batch II	D: WG799	114-3	QC Sample: L1	514957	-01 Client	ID: HA	15-B5		
1,2-Dibromoethane	ND	0.287	0.279	97		-	-		70-130	-		20	А
1,2-Dibromo-3-chloropropane	ND	0.287	0.291	101		-	-		70-130	-		20	А

SEMIVOLATILES

			Serial_No	p:07081521:24
Project Name:	BOSTON CHILDREN'S HOSPI	TAL CLI	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15
	SA	MPLE RESULTS		
Lab ID:	L1514957-01		Date Collected:	06/30/15 11:55
Client ID:	HA15-B5		Date Received:	06/30/15
Sample Location:	Not Specified		Field Prep:	Field Filtered (Metals)
Matrix:	Water		Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	07/02/15 00:38
Analytical Date:	07/04/15 21:38			
Analyst:	AL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	

						Serial_N	o:07081521:24
Project Name:	BOSTON CHILDRE	N'S HOSPITAL	L CLI		Lab Nı	mber:	L1514957
Project Number:	35520-977				Report	Date:	07/08/15
		SAMP		S			
Lab ID: Client ID: Sample Location:	L1514957-01 HA15-B5 Not Specified			Date Collecte Date Receive Field Prep:		llected: ceived: ep:	06/30/15 11:55 06/30/15 Field Filtered (Metals)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westb	orough Lab					
n-Nitrosodimethylamine		ND		ug/l	2.0		1
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
p-Chloro-m-cresol		ND		ug/l	2.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
4,6-Dinitro-o-cresol		ND		ug/l	10		1
Phenol		ND		ug/l	5.0		1
2-Methylphenol		ND		ug/l	5.0		1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol		ND		ug/l	5.0		1
Benzoic Acid		ND		ug/l	50		1
Benzyl Alcohol		ND		ug/l	2.0		1
Carbazole		ND		ug/l	2.0		1
Pyridine		ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	33		21-120	
Phenol-d6	20		10-120	
Nitrobenzene-d5	75		23-120	
2-Fluorobiphenyl	77		15-120	
2,4,6-Tribromophenol	83		10-120	
4-Terphenyl-d14	79		41-149	

			Serial_No:07081521:24	
Project Name:	BOSTON CHILDREN'S HO	DSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15
		SAMPLE RESULTS		
Lab ID:	L1514957-01		Date Collected:	06/30/15 11:55
Client ID:	HA15-B5		Date Received:	06/30/15
Sample Location:	Not Specified		Field Prep:	Field Filtered (Metals)
Matrix:	Water		Extraction Method	d:EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	07/02/15 00:40
Analytical Date:	07/02/15 12:25			
Analyst:	MW			

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	_
0.20		ug/l	0.20		1	
ND		ug/l	0.50		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
0.40		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.20		1	
ND		ug/l	0.80		1	
ND		ug/l	0.80		1	
ND		ug/l	0.80		1	
	Result ND ND ND 0.20 ND 0.20 ND 0.20 ND ND <t< td=""><td>ResultQualifierND</td><td>ResultQualifierUnitsNDug/lNDug/lNDug/l0.20ug/lNDug/l</td><td>ResultQualifierUnitsRLNDug/l0.20NDug/l0.200.20ug/l0.200.20ug/l0.20NDug/l0.2</td><td>Result Qualifier Units RL MDL ND ug/l 0.20 ND ug/l 0.20 ND ug/l 0.20 0.20 ug/l 0.20 ND ug/l</td><td>ResultQualifierUnitsRLMDLDilution FactorNDug/l0.201NDug/l0.2010.20ug/l0.2010.20ug/l0.201NDug/l0.20<td< td=""></td<></td></t<>	ResultQualifierND	ResultQualifierUnitsNDug/lNDug/lNDug/l0.20ug/lNDug/l	ResultQualifierUnitsRLNDug/l0.20NDug/l0.200.20ug/l0.200.20ug/l0.20NDug/l0.2	Result Qualifier Units RL MDL ND ug/l 0.20 ND ug/l 0.20 ND ug/l 0.20 0.20 ug/l 0.20 ND ug/l	ResultQualifierUnitsRLMDLDilution FactorNDug/l0.201NDug/l0.2010.20ug/l0.2010.20ug/l0.201NDug/l0.20 <td< td=""></td<>

Somivolatila Organ	Nice by CC/MS SIM M	Voetborough L	ab	01110		MDE		-
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Location:	Not Specified				Field Pre	ep:	Field Filtered (Metals)	
Client ID:	HA15-B5				Date Re	ceived:	06/30/15	
Lab ID:	L1514957-01				Date Co	llected:	06/30/15 11:55	
		SAMP	LE RESULT	5				
Project Number:	35520-977				Report	t Date:	07/08/15	
Project Name:	BOSTON CHILDREI	N'S HOSPITAL	_ CLI		Lab Ni	umber:	L1514957	
					Serial_N	0:07081521:24		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	33		21-120	
Phenol-d6	22		10-120	
Nitrobenzene-d5	91		23-120	
2-Fluorobiphenyl	83		15-120	
2,4,6-Tribromophenol	91		10-120	
4-Terphenyl-d14	75		41-149	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957	
Project Number:	35520-977	Report Date:	07/08/15	
Method Blank Analysis				

Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	07/02/15 09:14	Extraction Date:	07/02/15 00:40
Analyst:	MW		

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/I	NS-SIM - Westbo	prough Lab for sample	e(s): 01	Batch: WG799241-1
Acenaphthene	ND	ug/l	0.20	
2-Chloronaphthalene	ND	ug/l	0.20	
Fluoranthene	ND	ug/l	0.20	
Hexachlorobutadiene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	0.20	
Benzo(a)anthracene	ND	ug/l	0.20	
Benzo(a)pyrene	ND	ug/l	0.20	
Benzo(b)fluoranthene	ND	ug/l	0.20	
Benzo(k)fluoranthene	ND	ug/l	0.20	
Chrysene	ND	ug/l	0.20	
Acenaphthylene	ND	ug/l	0.20	
Anthracene	ND	ug/l	0.20	
Benzo(ghi)perylene	ND	ug/l	0.20	
Fluorene	ND	ug/l	0.20	
Phenanthrene	ND	ug/l	0.20	
Dibenzo(a,h)anthracene	ND	ug/l	0.20	
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20	
Pyrene	ND	ug/l	0.20	
2-Methylnaphthalene	ND	ug/l	0.20	
Pentachlorophenol	ND	ug/l	0.80	
Hexachlorobenzene	ND	ug/l	0.80	
Hexachloroethane	ND	ug/l	0.80	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	07/02/15 09:14	Extraction Date:	07/02/15 00:40
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SII	M - Westbor	ough Lab f	for sample(s):	01	Batch: WG799241-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	31	21-120
Phenol-d6	20	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	64	41-149

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	07/04/15 16:28	Extraction Date:	07/02/15 00:38
Analyst:	AL		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for	sample(s):	01	Batch:	WG799242-1
Acenaphthene	ND		ua/l		2.0	
Benzidine	ND		ug/l		20	
1.2.4-Trichlorobenzene	ND		ug/l		5.0	
Hexachlorobenzene	ND		ug/l		2.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
1.2-Dichlorobenzene	ND		ug/l		2.0	
1,3-Dichlorobenzene	ND		ug/l		2.0	
1,4-Dichlorobenzene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l		5.0	
Azobenzene	ND		ug/l		2.0	
Fluoranthene	ND		ug/l		2.0	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l		2.0	
Hexachlorocyclopentadiene	ND		ug/l		20	
Hexachloroethane	ND		ug/l		2.0	
Isophorone	ND		ug/l		5.0	
Naphthalene	ND		ug/l		2.0	
Nitrobenzene	ND		ug/l		2.0	
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l		2.0	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	
Bis(2-Ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	07/04/15 16:28	Extraction Date:	07/02/15 00:38
Analyst:	AL		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG799242-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)Pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
P-Chloro-M-Cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
Project Number:	35520-977	Report Date:	07/08/15
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	07/04/15 16:28	Extraction Date:	07/02/15 00:38
Analyst:	AL		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01	Batch:	WG799242-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		5.0	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	29	21-120
Phenol-d6	17	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	64	41-149

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sam	ole(s): 01 Bato	h: WG79924	1-2 WG799241	-3			
Acenaphthene	68		67		37-111	1		40	
2-Chloronaphthalene	73		71		40-140	3		40	
Fluoranthene	73		73		40-140	0		40	
Hexachlorobutadiene	64		62		40-140	3		40	
Naphthalene	70		68		40-140	3		40	
Benzo(a)anthracene	78		77		40-140	1		40	
Benzo(a)pyrene	67		66		40-140	2		40	
Benzo(b)fluoranthene	78		77		40-140	1		40	
Benzo(k)fluoranthene	70		68		40-140	3		40	
Chrysene	68		67		40-140	1		40	
Acenaphthylene	81		80		40-140	1		40	
Anthracene	72		71		40-140	1		40	
Benzo(ghi)perylene	71		70		40-140	1		40	
Fluorene	73		73		40-140	0		40	
Phenanthrene	66		65		40-140	2		40	
Dibenzo(a,h)anthracene	72		71		40-140	1		40	
Indeno(1,2,3-cd)Pyrene	77		75		40-140	3		40	
Pyrene	72		71		26-127	1		40	
2-Methylnaphthalene	75		73		40-140	3		40	
Pentachlorophenol	59		60		9-103	2		40	
Hexachlorobenzene	66		65		40-140	2		40	

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

	LCS		LCSD	%Recove	ery	RPD
Parameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual Limits
Semivolatile Organics by GC/MS-SIM - West	oorough Lab Asso	ciated sampl	le(s): 01 Batch	: WG799241-2 WG	6799241-3	
Hexachloroethane	67		66	40-140	2	40

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	34		33		21-120	
Phenol-d6	23		23		10-120	
Nitrobenzene-d5	77		75		23-120	
2-Fluorobiphenyl	71		69		15-120	
2,4,6-Tribromophenol	79		77		10-120	
4-Terphenyl-d14	63		63		41-149	

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG799242-2 WG799242-3 78 37-111 30 Acenaphthene 64 20 Benzidine 17 24 10-75 34 Q 30 1.2.4-Trichlorobenzene 66 39-98 22 30 53 Hexachlorobenzene 70 88 40-140 23 30 Bis(2-chloroethyl)ether 83 40-140 17 30 70 2-Chloronaphthalene 40-140 30 61 76 22 1,2-Dichlorobenzene 53 63 40-140 17 30 1.3-Dichlorobenzene 52 61 40-140 16 30 30 1.4-Dichlorobenzene 52 60 36-97 14 3,3'-Dichlorobenzidine 40-140 30 58 67 14 2.4-Dinitrotoluene 24-96 30 76 93 20 2,6-Dinitrotoluene 74 92 40-140 22 30 Azobenzene 86 40-140 19 30 71 92 40-140 30 Fluoranthene 73 23 4-Chlorophenyl phenyl ether 82 40-140 30 66 22 4-Bromophenyl phenyl ether 40-140 23 30 69 87 Bis(2-chloroisopropyl)ether 69 82 40-140 17 30 Bis(2-chloroethoxy)methane 72 86 40-140 18 30 Hexachlorobutadiene 30 51 63 40-140 21 Hexachlorocyclopentadiene Q 40-140 30 36 47 27 Hexachloroethane 56 40-140 17 30 47

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG799242-2 WG799242-3 70 84 40-140 18 30 Isophorone Naphthalene 58 73 40-140 23 30 Nitrobenzene 86 40-140 21 30 70 NDPA/DPA 87 30 73 40-140 18 n-Nitrosodi-n-propylamine 86 29-132 16 30 73 Bis(2-ethylhexyl)phthalate 40-140 30 74 90 20 Butyl benzyl phthalate 74 93 40-140 23 30 Di-n-butylphthalate 91 40-140 19 30 75 Di-n-octylphthalate 40-140 30 75 91 19 Diethyl phthalate 40-140 21 30 72 89 Dimethyl phthalate 72 90 40-140 22 30 Benzo(a)anthracene 72 88 40-140 20 30 Benzo(a)pyrene 90 40-140 21 30 73 Benzo(b)fluoranthene 90 40-140 30 74 20 Benzo(k)fluoranthene 40-140 30 76 97 24 Chrysene 89 40-140 30 73 20 Acenaphthylene 66 82 45-123 22 30 Anthracene 71 88 40-140 21 30 Benzo(ghi)perylene 40-140 22 30 73 91 40-140 30 Fluorene 68 84 21 Phenanthrene 87 40-140 22 30 70

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG799242-2 WG799242-3 Dibenzo(a,h)anthracene 92 40-140 22 30 74 Indeno(1,2,3-cd)pyrene 74 90 40-140 20 30 90 26-127 21 30 Pyrene 73 21 30 Biphenyl 63 78 40-140 Aniline Q 40 40-140 25 30 31 4-Chloroaniline 40-140 30 65 77 17 1-Methylnaphthalene 61 74 41-103 19 30 2-Nitroaniline 95 52-143 25 30 74 3-Nitroaniline 25-145 30 53 64 19 4-Nitroaniline 51-143 30 66 83 23 Dibenzofuran 83 40-140 21 30 67 2-Methylnaphthalene 59 74 40-140 23 30 n-Nitrosodimethylamine 32 38 22-74 30 17 2,4,6-Trichlorophenol 90 30-130 22 30 72 p-Chloro-m-cresol 23-97 30 64 81 23 2-Chlorophenol 69 27-123 30 57 19 2,4-Dichlorophenol 72 88 30-130 20 30 2,4-Dimethylphenol 62 75 30-130 19 30 2-Nitrophenol 30-130 30 72 84 15 4-Nitrophenol 10-80 30 27 36 29 2,4-Dinitrophenol 57 20-130 26 30 44

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - We	estborough Lab Associa	ated sample(s):	01 Batch:	WG799242-2	2 WG799242-3				
4,6-Dinitro-o-cresol	63		81		20-164	25		30	
Pentachlorophenol	56		72		9-103	25		30	
Phenol	24		29		12-110	19		30	
2-Methylphenol	48		59		30-130	21		30	
3-Methylphenol/4-Methylphenol	47		58		30-130	21		30	
2,4,5-Trichlorophenol	74		95		30-130	25		30	
Benzoic Acid	0	Q	0	Q	10-164	NC		30	
Benzyl Alcohol	52		62		26-116	18		30	
Carbazole	72		89		55-144	21		30	
Pyridine	26		29		10-66	11		30	

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recover	y Qual	Criteria	
2-Fluorophenol	33	40		21-120	
Phenol-d6	21	25		10-120	
Nitrobenzene-d5	72	83		23-120	
2-Fluorobiphenyl	73	87		15-120	
2,4,6-Tribromophenol	74	94		10-120	
4-Terphenyl-d14	70	88		41-149	

PCBS

	Serial_No	07081521:24
BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957
35520-977	Report Date:	07/08/15
SAMPLE RESU	ILTS	
L1514957-01	Date Collected:	06/30/15 11:55
HA15-B5	Date Received:	06/30/15
Not Specified	Field Prep:	Field Filtered (Metals)
Water	Extraction Method	I:EPA 608
5,608	Extraction Date:	07/02/15 13:06
07/03/15 18:21	Cleanup Method:	EPA 3665A
КВ	Cleanup Date:	07/03/15
	Cleanup Method:	EPA 3660B
	Cleanup Date:	07/03/15
	BOSTON CHILDREN'S HOSPITAL CLI 35520-977 L1514957-01 HA15-B5 Not Specified Water 5,608 07/03/15 18:21 KB	BOSTON CHILDREN'S HOSPITAL CLI 35520-977 SAMPLE RESULTS L1514957-01 HA15-B5 Not Specified Water 5,608 Citeration Method: 5,608 Citeration Method: Citeration Metho

Parameter	Result Quali		Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	А
Decachlorobiphenyl	76		30-150	А

07/03/15

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1514957									
Project Number:	35520-977	Report Date:	07/08/15									
Method Blank Analysis												

Method Blank Analysis Batch Quality Control

Analytical Method:	5,608
Analytical Date:	07/03/15 19:11
Analyst:	KB
Analyst.	ND

EPA 608
07/02/15 13:06
EPA 3665A
07/03/15
EPA 3660B
07/03/15

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by (GC - Westborough	Lab for sar	mple(s):	01	Batch:	WG799468-1	
Aroclor 1016	ND		ug/l	0.2	50		А
Aroclor 1221	ND		ug/l	0.2	50		А
Aroclor 1232	ND		ug/l	0.2	50		А
Aroclor 1242	ND		ug/l	0.2	50		А
Aroclor 1248	ND		ug/l	0.2	50		А
Aroclor 1254	ND		ug/l	0.2	50		А
Aroclor 1260	ND		ug/l	0.2	00		А

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	68		30-150	A			
Decachlorobiphenyl	87		30-150	А			

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Batch Quality Control	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	' Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab As	sociated samp	ole(s): 01 Q	C Batch ID:	WG79946	68-3 QC Sar	nple: L1	1514957-01	Client	ID: HA	15-B5	
Aroclor 1016	ND	1	0.732	73		-	-		40-140	-		50	А
Aroclor 1260	ND	1	0.672	67		-	-		40-140	-		50	А

	MS		MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73				30-150	А
Decachlorobiphenyl	76				30-150	А

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column	
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associa	ted sample(s)	: 01 Batch:	WG799468-2	2					
Aroclor 1016	74		-		40-140	-		50	A	
Aroclor 1260	76		-		40-140	-		50	А	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68				30-150	А
Decachlorobiphenyl	87				30-150	А

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL CLI Lab Number: L1514957 Report Date:

Project Number: 35520-977

Parameter	Native Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s):	01 QC Batch ID:	WG799468-4	QC Sample:	L1515065-01	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		50	А
Aroclor 1221	ND	ND	ug/l	NC		50	А
Aroclor 1232	ND	ND	ug/l	NC		50	А
Aroclor 1242	ND	ND	ug/l	NC		50	А
Aroclor 1248	ND	ND	ug/l	NC		50	А
Aroclor 1254	ND	ND	ug/l	NC		50	А
Aroclor 1260	ND	ND	ug/l	NC		50	А

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85		75		30-150	А
Decachlorobiphenyl	69		74		30-150	А

METALS

								_			
Project Name:	BOST	ON CHILD	REN'S I	HOSPITA	L CLI		Lab Nu	mber:	L15149	57	
Project Number:	35520)-977					Report	Date:	07/08/1	5	
				SAMPL	E RES	ULTS					
Lab ID:	L1514	957-01					Date Co	llected:	06/30/1	5 11:55	
Client ID:	HA15	-B5					Date Re	eceived:	06/30/1	5	
Sample Location:	Not S	pecified					Field Pr	ep:	Field Fil	tered	
Matrix:	Water								(Metals))	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - West	oorough l	Lab									
Antimony, Total	0.0053		mg/l	0.0005		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM
Arsenic, Total	0.0014		mg/l	0.0005		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM
Cadmium, Total	ND		mg/l	0.0002		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM
Chromium, Total	0.0319		mg/l	0.0010		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM
Copper, Total	0.0025		mg/l	0.0010		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM
Iron, Total	0.12		mg/l	0.05		1	07/02/15 13:15	5 07/07/15 00:27	EPA 3005A	19,200.7	тт
Lead, Total	ND		mg/l	0.0005		1	07/02/15 13:22	2 07/06/15 20:22	EPA 3005A	1,6020A	BM

3,245.1

1,6020A

1,6020A

1,6020A

1,6020A

ΕA

ΒM

ΒM

ВM

BМ

Mercury, Total

Nickel, Total

Silver, Total

Zinc, Total

Selenium, Total

ND

ND

ND

ND

0.0024

mg/l

mg/l

mg/l

mg/l

mg/l

0.00020

0.0005

0.005

0.00040

0.0100

--

--

--

1

1

1

1

1

07/02/15 15:58 07/02/15 18:48 EPA 245.1

07/02/15 13:22 07/06/15 20:22 EPA 3005A

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westborou	igh Lab 1	for sample(s	s): 01	Batch: W	VG79932	0-1				
Iron, Total	ND		mg/l	0.05		1	07/02/15 13:15	07/06/15 23:06	19,200.7	TT

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westborou	gh Lab	for sample(s	s): 01	Batch: W	G79932	21-1				
Antimony, Total	ND		mg/l	0.0005		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Arsenic, Total	ND		mg/l	0.0005		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Cadmium, Total	ND		mg/l	0.0002		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Chromium, Total	ND		mg/l	0.0010		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Copper, Total	ND		mg/l	0.0010		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Lead, Total	ND		mg/l	0.0005		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Nickel, Total	ND		mg/l	0.0005		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Selenium, Total	ND		mg/l	0.005		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Silver, Total	ND		mg/l	0.0004		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM
Zinc, Total	ND		mg/l	0.0100		1	07/02/15 13:22	07/06/15 19:39	1,6020A	BM

Prep	Inform	nation
1 ICP		auon

Digestion Method: EPA 3005A

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbor	ough Lab fo	or sample(s	s): 01	Batch: V	VG79944	15-1				
Mercury, Total	ND		mg/l	0.00020)	1	07/02/15 15:58	07/02/15 18:37	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sam	nple(s): 01 Bat	tch: WG79	9320-2					
Iron, Total	110		-		85-115	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01 Bat	tch: WG799	9321-2					
Antimony, Total	98		-		80-120	-		
Arsenic, Total	102		-		80-120	-		
Cadmium, Total	115		-		80-120	-		
Chromium, Total	98		-		80-120	-		
Copper, Total	96		-		80-120	-		
Lead, Total	102		-		80-120	-		
Nickel, Total	96		-		80-120	-		
Selenium, Total	132	Q	-		80-120	-		
Silver, Total	99		-		80-120	-		
Zinc, Total	105		-		80-120	-		
Total Metals - Westborough Lab Associated sam	nple(s): 01 Bat	tch: WG799	9445-2					
Mercury, Total	113		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Westborou	ugh Lab Associated	sample(s): 01	QC Bat	ch ID: WG799	320-4	QC Sam	ole: L1514892-02	Client ID: MS	Sample	
Iron, Total	ND	1	1.1	110		-	-	75-125	-	20
Total Metals - Westborou	ugh Lab Associated	sample(s): 01	QC Bat	ch ID: WG799	321-4	QC Sam	ole: L1514892-02	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.5277	106		-	-	75-125	-	20
Arsenic, Total	0.0010	0.12	0.1284	106		-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.0579	114		-	-	75-125	-	20
Chromium, Total	0.0020	0.2	0.1933	96		-	-	75-125	-	20
Copper, Total	ND	0.25	0.2506	100		-	-	75-125	-	20
Lead, Total	ND	0.51	0.5438	107		-	-	75-125	-	20
Nickel, Total	0.0041	0.5	0.4884	97		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.128	107		-	-	75-125	-	20
Silver, Total	ND	0.05	0.0508	102		-	-	75-125	-	20
Zinc, Total	0.0231	0.5	0.5319	102		-	-	75-125	-	20
Total Metals - Westborou	ugh Lab Associated	sample(s): 01	QC Bat	ch ID: WG799	445-4	QC Sam	ole: L1514974-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00525	105		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual F	RPD Limits
Total Metals - Westborough Lab Associated sample(s):	01 QC Batch ID:	WG799320-3 QC Sample:	L1514892-01	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20
Total Metals - Westborough Lab Associated sample(s):	01 QC Batch ID:	WG799321-3 QC Sample:	L1514892-01	Client ID:	DUP Sample	
Copper, Total	0.0129	0.0129	mg/l	0		20
Nickel, Total	0.0019	0.0020	mg/l	4		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0390	0.0397	mg/l	2		20
Total Metals - Westborough Lab Associated sample(s):	01 QC Batch ID:	WG799445-3 QC Sample:	L1514974-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

L1514957

07/08/15

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI

L1514957-01

HA15-B5

Water

Project Number: 35520-977

Sample Location: Not Specified

Lab ID:

Matrix:

Client ID:

SAMPLE RESULTS

Date Collected:06/30/15 11:55Date Received:06/30/15Field Prep:Field Filtered (Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total Suspended	27.		mg/l	5.0	NA	1	-	07/05/15 19:40	30,2540D	RP
Cyanide, Total	ND		mg/l	0.005		1	07/01/15 13:55	07/02/15 13:10	30,4500CN-CE	JO
Cyanide, Free	ND		ug/l	2.00		1	07/06/15 17:25	07/07/15 00:40	109,9016	AT
Cyanide, Amenable	ND		mg/l	0.010		2	07/02/15 10:52	07/02/15 15:43	30,4500CN-G	SP
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/30/15 23:00	30,4500CL-D	AS
ТРН	ND		mg/l	4.00		1	07/01/15 14:00	07/01/15 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/06/15 12:15	07/06/15 14:38	4,420.1	MP
Chromium, Hexavalent	0.030		mg/l	0.010		1	07/01/15 02:05	07/01/15 02:26	119,3500CR-B	LH
Anions by Ion Chromatog	graphy - West	borough	Lab							
Chloride	436.		mg/l	12.5		25	-	07/01/15 18:18	44,300.0	AU

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

 Lab Number:
 L1514957

 Report Date:
 07/08/15

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	98824-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/30/15 23:00	30,4500CL-D	AS
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	98844-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	07/01/15 02:05	07/01/15 02:26	119,3500CR-B	LH
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	9088-1				
ТРН	ND		mg/l	4.00		1	07/01/15 14:00	07/01/15 22:00	74,1664A	ML
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	9093-1				
Cyanide, Total	ND		mg/l	0.005		1	07/01/15 13:55	07/02/15 13:03	30,4500CN-CE	JO
Anions by Ion Chromatogra	phy - West	orough	Lab for sar	mple(s):	01 B	atch: WG7	/99221-1			
Chloride	ND		mg/l	0.500		1	-	07/01/15 17:42	44,300.0	AU
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	9402-1				
Cyanide, Amenable	ND		mg/l	0.010		2	07/02/15 10:52	07/02/15 15:43	30,4500CN-G	SP
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG79	99976-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/05/15 19:40	30,2540D	RP
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG80	0063-1				
Phenolics, Total	ND		mg/l	0.030		1	07/06/15 09:00	07/06/15 11:28	4,420.1	MP
General Chemistry - Westb	orough Lab	for sam	ple(s): 01	Batch:	WG80	0282-1				
Cyanide, Free	ND		ug/l	2.00		1	07/06/15 17:25	07/07/15 00:39	109,9016	AT

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

Parameter	LCS %Recovery	Qua	LCSD I %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG798824-2						
Chlorine, Total Residual	93		-		90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG798844-2						
Chromium, Hexavalent	99		-		85-115	-		20	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG799088-2						
ТРН	85		-		64-132	-		34	
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG799093-2						
Cyanide, Total	100		-		90-110	-			
Anions by Ion Chromatography - Westborough	n Lab Associate	ed san	nple(s): 01 Batch: W	G799221	-2				
Chloride	99		-		90-110	-			
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG799402-2						
Cyanide, Amenable	95		-			-			
General Chemistry - Westborough Lab Assoc	iated sample(s)	: 01	Batch: WG800063-2						
Phenolics, Total	89		-		70-130	-			

Lab Control Sample Analysis

		LCS	LCSD	%Recovery			
Project Number:	35520-977				Report Date:	07/08/15	
Project Name:	BOSTON CHILDREN'S	HOSPITAL CLI	Batch Quality Co	ontrol	Lab Number:	L1514957	

Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG800282-2			
Cyanide, Free	84	-	75-125	-	

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Batch Quality Control	Lab Number:	L1514957
Project Number:	35520-977		Report Date:	07/08/15

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD d %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westbore	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG798844-4	QC Sample: L151	4957-01 Client IE	D: HA15-B5	
Chromium, Hexavalent	0.030	0.1	0.132	102	-	-	85-115	-	20
General Chemistry - Westborg	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG799088-4	QC Sample: L151	4988-02 Client IE	D: MS Sample	Э
ТРН	ND	22.7	18.0	79	-	-	64-132	-	34
General Chemistry - Westbore	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG799093-4	QC Sample: L151	4988-02 Client IE	D: MS Sample	9
Cyanide, Total	0.022	0.2	0.201	89	Q -	-	90-110	-	30
Anions by Ion Chromatograph ID: MS Sample	ny - Westborou	gh Lab Asso	ociated sar	mple(s): 01 Q0	C Batch ID: WG	799221-3 WG799	9221-4 QC Sample	e: L1514708-0	05 Client
Chloride	10.5	4	14.3	94	14.	2 46	40-151	1	18
General Chemistry - Westborg	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG800063-4	QC Sample: L151	4957-01 Client IE	D: HA15-B5	
Phenolics, Total	ND	0.4	0.40	101	-	-	70-130	-	20
General Chemistry - Westbore	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG800282-3	QC Sample: L151	4957-01 Client IE	D: HA15-B5	
Cyanide, Free	ND	50	39.7	79	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-977

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG798824-3	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG798844-3	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
Chromium, Hexavalent	0.030	0.030	mg/l	0	20
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG799088-3	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
TPH	ND	ND	mg/l	NC	34
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG799093-3	QC Sample: L151498	38-01 Clier	nt ID: DUP Sample
Cyanide, Total	0.009	0.009	mg/l	5	30
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG799402-3	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
Cyanide, Amenable	ND	ND	mg/l	NC	
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG799976-2	QC Sample: L151477	76-01 Clier	nt ID: DUP Sample
Solids, Total Suspended	160	210	mg/l	27	29
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG800063-3	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
Phenolics, Total	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated s	ample(s): 01 QC Batch ID:	WG800282-4	QC Sample: L151495	57-01 Clier	nt ID: HA15-B5
Cyanide, Free	ND	ND	ug/l	NC	20

Project Name: BOSTON CHILDREN'S HOSPITAL CLI Project Number: 35520-977 Lab Number: L1514957 Report Date: 07/08/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1514957-01A	Vial HCI preserved	А	N/A	4.1	Y	Absent	8260-SIM(14),8260(14)
L1514957-01B	Vial HCI preserved	А	N/A	4.1	Y	Absent	8260-SIM(14),8260(14)
L1514957-01C	Vial HCI preserved	А	N/A	4.1	Y	Absent	8260-SIM(14),8260(14)
L1514957-01D	Vial Na2S2O3 preserved	А	N/A	4.1	Y	Absent	504(14)
L1514957-01E	Vial Na2S2O3 preserved	А	N/A	4.1	Y	Absent	504(14)
L1514957-01F	Plastic 250ml HNO3 preserved spl	A	<2	4.1	Y	Absent	SE-6020T(180),CR- 6020T(180),NI-6020T(180),CU- 6020T(180),ZN-6020T(180),FE- UI(180),PB-6020T(180),HG- U(28),AS-6020T(180),SB- 6020T(180),AG-6020T(180),CD- 6020T(180)
L1514957-01G	Plastic 250ml NaOH preserved	А	>12	4.1	Y	Absent	TCN-4500(14),ACN-4500(14)
L1514957-01H	Brown Plastic 120ml NaOH preserv	А	N/A	4.1	Y	Absent	FCN-9016(14)
L1514957-01I	Plastic 120ml HNO3 preserved	А	<2	4.1	Y	Absent	HOLD-METAL(180)
L1514957-01J	Amber 1000ml HCl preserved	А	N/A	4.1	Y	Absent	TPH-1664(28)
L1514957-01K	Plastic 950ml unpreserved	A	7	4.1	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1),TSS- 2540(7)
L1514957-01L	Plastic 950ml unpreserved	A	7	4.1	Y	Absent	CL-300(28),HEXCR- 3500(1),TRC-4500(1),TSS- 2540(7)
L1514957-01M	Amber 1000ml HCl preserved	А	N/A	4.1	Y	Absent	TPH-1664(28)
L1514957-01N	Amber 950ml H2SO4 preserved	А	<2	4.1	Y	Absent	TPHENOL-420(28)
L1514957-01O	Amber 1000ml Na2S2O3	А	7	4.1	Y	Absent	PCB-608(7)
L1514957-01P	Amber 1000ml Na2S2O3	А	7	4.1	Y	Absent	PCB-608(7)
L1514957-01Q	Amber 1000ml unpreserved	А	7	4.1	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1514957-01R	Amber 1000ml unpreserved	А	7	4.1	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1514957-01S	Plastic 120ml HNO3 preserved	А	<2	4.1	Y	Absent	HOLD-METAL(180)

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

Lab Number: L1514957

Report Date: 07/08/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

Report Format: Data Usability Report

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-977

Lab Number: L1514957

Report Date: 07/08/15

Data Qualifiers

- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1514957

 Report Date:
 07/08/15

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 109 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Revision 0, June 2010.
- 119 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 21st Edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

HALEY	Haley 465 N Suite Bosto	y & Aldri Iedford S 2200, on, MA 0	ich, Inc. St.,)2129-1402				(CH	[AI	N	OF	CU	JS'	ТО	D	Y F	REC	CO	RI	L 15	14957	Phone Fax Page	(617) 886-7400 (617) 886-7600 / 1 of 1
H&A FILE NO.	35520-97	7					LABO	RAT	CALPH	A ANA	ALYTIC	CAL								DELIV	VERY DATE	61301	2015
PROJECT NAME	Boston Ch	hildren's H	lospital Clin	ical Building	1		ADDI	RESS	WEST	BORC	DUGH,	MA								TURN	AROUND TIME 5	-DAY STAN	DARD
H&A CONTACT	Teresa Co	oper					CONT	TACT	GINA	HALL								_		PROJ	ECT MANAGER J	LEFKOWIT	Z
				Analysis Requested									1										
Sample No.		Date	Time	Depth	Туре	1. VOCs 8260/8260-SIM	2. SVOCs 8270/8270-SIM	3. PCBs 608	4. TSS 160.2	5. EDB 504.1	6. TPH 1664	7. Total Phenol 420.1	8. Total Metals	 Dissolved Metals 	10. TRC 330.1, C1	11. TCN 335.2	12. Amenable Cyanide	13. Free Cyanide 9016	14. Hex Cr SM 3500	Number of Containers	Comments (special instructions, precautions, additional numbers, etc.)		
HE APPSTOLD	35 6	30/15	1155	/	Aq.	~	/	/	1	V	1	V	/	1	/		~	~	1	18	Laboratory to us unle	e applicable D ss otherwise di	EP CAM methods, rected.
						1															8. NPDES RGP list of	f metals: Cd, C	r, Cu, Pb, Ni,
																					Ag, Zn, As, Se, Sb 9. Dissolved NPDES	Hg and Fe RGP list of me	tals (Field Filtered)
																					**HOLD ANALY	SIS OF DISSO	VED METALS
																					FOR FIELD FIL	TERED SAME	LE
																		5		-			
															1	-	800	22		\mathcal{A}			
															C		-						
Sampled and Relinquish	hed by	Rec	eived by										LIQ	UID							Sampling Comment	s	
Sign Shaw	1	Sign	- Tot		~	х				х										VOA Vial	*Sample submitted for	r NPDES RGP	permit application.
Prints Stady		Prin	CASE	Tres	+		х	х			х	х						х		Amber Glass	Please follow appro	oriate testng me	thods and minimum
Hallen SAL	ducit	ER Firm	AAI	N 1	5				х				х	х	х	х	х		х	Plastic Bottle	detection levels as n	equired by the F	PA for the RGP
Date - Balas Tin	me 1630	Date	6301	STime /	6:36	AF	A	AH	A	AH	AF	AE	AD	AD	А	AC	AC	AC	А	Preservative		iquired by the t	a A for the Ror.
Relinquished by	in IPN	Rec	eived by	S Time T	0.00	40	1000	1000	1000	40	1000	500	250	250	500	250	250	250	500	Volume (mL)			
Sign Color	-	Sign	Bul		7ta-	-				-			SOL	JD	-		-						
Print The Tra	>	Prin	p.c.	676	att					_										VOA Vial			
Fine Add		Eirm	A Upa	12 20	0))															Amber Glass			
Data (30.11 Tin	10.4		TAK	Atring	I'UO															Clear Glass			
Balinquished by	ne / a . /	Rece	eived by	15mme l	0.10															Proservative	F. 11		
Reiniquisited by		0:	circu by																	Volume	Levidence samples w	ere tampered v	with: YES NO
oign D-i-t		Sign				—		-				PRESI	RVA	FION N	EV	_					IT TES, please expla	in in section be	10%.
Fint		Print	ь: 						NEOU		r	1.00	a ra								1		
rim)		Firm	1	T:		A San	iple chil	ied C	HNO		E	H2504			G	Wethar	101	100					
Date I in	ne	Date		Time	T	p San	tive Cer	rtaintr	Data P	ackage	(Labor	nory to	1150 0.5	nlicable	e DEP	CAM -	nethode	S (Circle	5)				
If Presumptive Certainty	y Data Packa	ige is need	led, initial all	sections:		. count		summery	Jara I	achage	(1.4001)		aoc ap	Phicaol	, per	STATE I					Required Reporting	Limits and Da	ta Quality
The required	d minimum fie	eld QC sam	nples, as desig	nated in BWS	C CAM-VII	have be	en or wil	l be col	lected, a	is appro	priate, to	o meet th	e requi	irements	s of Pres	sumptiv	e Certai	nty.			Objectives		
Matrix Spike	e (MS) sample	es for MCF	P Metals and/o	or Cyanide are	included and	d identif	ied herei	n.													RC-S1		GW1
This Chain o	of Custody Re	cord (spec	ify)	includes	X_doe	s not inc	lude san	nples de	efined as	Drinki	ng Wate	r Sample	s.								RC-S2		GW2
If this Chain Laboratory s	of Custody R should (specify	Record iden y if applica	ntifies samples able)	defined as D analyze	rinking Wate	r Sample	es, Trip I	Blanks	and Field	d Duplic	cates are	included	l and ic	lentified	l and an	alysis o	of TICs a	re requi	ired, as a	appropriate.	RC-GW1	⊔ _{S3}	GW3
	100.1		WINTE LA		CINIDA	D			DINIZ	11.1	0	Laborat		-	OI DEN	DOD 1		LL-A C					

ANALYTICAL REPORT

Lab Number:	L1615398
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone: Project Name: Project Number:	Jessica Lefkowitz (617) 886-7400 BOSTON CHILDREN'S HOSPITAL 35520-410
Report Date:	05/25/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05251617:01

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:35520-410

 Lab Number:
 L1615398

 Report Date:
 05/25/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1615398-01	B114(S)	WATER	Not Specified	05/20/16 09:07	05/20/16
L1615398-02	B114(D)	WATER	Not Specified	05/20/16 09:10	05/20/16
L1615398-03	B115(S)	WATER	Not Specified	05/20/16 11:10	05/20/16
L1615398-04	B5(OW)	WATER	Not Specified	05/20/16 11:15	05/20/16

L1615398

Project Name: BOSTON CHILDREN'S HOSPITAL Project Number: 35520-410

Report Date: 05/25/16

Lab Number:

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A ros	nonse to questions G. H and Lis required for "Presumptive Cortainty" status	
Ales	ponse to questions 0, it and its required for Presumptive Certainty Status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:35520-410

 Lab Number:
 L1615398

 Report Date:
 05/25/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:35520-410

 Lab Number:
 L1615398

 Report Date:
 05/25/16

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1615398-01 through -04 (all samples), did not meet the method required minimum response factor on the lowest calibration standard for), 4-methyl-2-pentanone (0.094), and 1,4-dioxane (0.001), as well as the average response factor for 1,4-dioxane. The initial calibration verification is outside acceptance criteria for bromoform (135%), but within overall method criteria The continuing calibration standard, associated with L1615398-01 through -04 (all samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 05/25/16

ORGANICS

VOLATILES

			Serial_No	0:05251617:01
Project Name:	BOSTON CHILDREN'S HO	OSPITAL	Lab Number:	L1615398
Project Number:	35520-410		Report Date:	05/25/16
		SAMPLE RESULTS		
Lab ID:	L1615398-01		Date Collected:	05/20/16 09:07
Client ID:	B114(S)		Date Received:	05/20/16
Sample Location:	Not Specified		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	97,8260C			
Analytical Date:	05/24/16 13:02			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics - Westborough Lab								
Methylene chloride	ND		ug/l	2.0		1		
1,1-Dichloroethane	ND		ug/l	1.0		1		
Chloroform	1.8		ug/l	1.0		1		
Carbon tetrachloride	1.3		ug/l	1.0		1		
1,2-Dichloropropane	ND		ug/l	1.0		1		
Dibromochloromethane	ND		ug/l	1.0		1		
1,1,2-Trichloroethane	ND		ug/l	1.0		1		
Tetrachloroethene	28		ug/l	1.0		1		
Chlorobenzene	ND		ug/l	1.0		1		
Trichlorofluoromethane	3.0		ug/l	2.0		1		
1,2-Dichloroethane	ND		ug/l	1.0		1		
1,1,1-Trichloroethane	ND		ug/l	1.0		1		
Bromodichloromethane	ND		ug/l	1.0		1		
trans-1,3-Dichloropropene	ND		ug/l	0.50		1		
cis-1,3-Dichloropropene	ND		ug/l	0.50		1		
1,3-Dichloropropene, Total	ND		ug/l	0.50		1		
1,1-Dichloropropene	ND		ug/l	2.0		1		
Bromoform	ND		ug/l	2.0		1		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1		
Benzene	ND		ug/l	0.50		1		
Toluene	ND		ug/l	1.0		1		
Ethylbenzene	ND		ug/l	1.0		1		
Chloromethane	ND		ug/l	2.0		1		
Bromomethane	ND		ug/l	2.0		1		
Vinyl chloride	ND		ug/l	1.0		1		
Chloroethane	ND		ug/l	2.0		1		
1,1-Dichloroethene	ND		ug/l	1.0		1		
trans-1,2-Dichloroethene	ND		ug/l	1.0		1		
Trichloroethene	3.3		ug/l	1.0		1		
1,2-Dichlorobenzene	ND		ua/l	1.0		1		

					Serial_No:05251617:01			
Project Name:	BOSTON CHILDREN	N'S HOSPITAL	_		Lab Nu	mber:	L1615398	
Project Number:	35520-410				Report	Date:	05/25/16	
•		SAMP		S	•		00,20,10	
Lab ID:	L1615398-01				Date Co	llected:	05/20/16 09:07	
Client ID:	B114(S)				Date Re	ceived:	05/20/16	
Sample Location:	Not Specified				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	b						
1,3-Dichlorobenzene		ND		ua/l	1.0		1	
1,4-Dichlorobenzene		ND		ua/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		4.3		ug/l	1.0		1	
1,2-Dichloroethene (total	I)	4.3		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethan	ne	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1	

					Serial_No:05251617:01			
Project Name:	BOSTON CHILDREI	N'S HOSPITAL	-		Lab Nu	umber:	L1615398	
Project Number:	35520-410				Report	Date:	05/25/16	
		SAMP		5				
Lab ID:	L1615398-01				Date Co	llected:	05/20/16 09:07	
Client ID: B114(S)					Date Re	ceived:	05/20/16	
Sample Location:	Not Specified				Field Pre	əp:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	b						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				•	ccontanco			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	100		70-130	

			Serial_No:05251617:01		
Project Name:	BOSTON CHILDREN'S	S HOSPITAL	Lab Number:	L1615398	
Project Number:	35520-410		Report Date:	05/25/16	
		SAMPLE RESULTS			
Lab ID:	L1615398-02		Date Collected:	05/20/16 09:10	
Client ID:	B114(D)		Date Received:	05/20/16	
Sample Location:	Not Specified		Field Prep:	Not Specified	
Matrix:	Water				
Analytical Method:	97,8260C				
Analytical Date:	05/24/16 13:33				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
MCP Volatile Organics - Westborough Lab								
Methylene chloride	ND		ua/l	2.0		1		
1,1-Dichloroethane	ND		ug/l	1.0		1		
Chloroform	1.1		ua/l	1.0		1		
Carbon tetrachloride	ND		ug/l	1.0		1		
1,2-Dichloropropane	ND		ug/l	1.0		1		
Dibromochloromethane	ND		ug/l	1.0		1		
1,1,2-Trichloroethane	ND		ug/l	1.0		1		
Tetrachloroethene	39		ug/l	1.0		1		
Chlorobenzene	ND		ug/l	1.0		1		
Trichlorofluoromethane	ND		ug/l	2.0		1		
1,2-Dichloroethane	ND		ug/l	1.0		1		
1,1,1-Trichloroethane	ND		ug/l	1.0		1		
Bromodichloromethane	ND		ug/l	1.0		1		
trans-1,3-Dichloropropene	ND		ug/l	0.50		1		
cis-1,3-Dichloropropene	ND		ug/l	0.50		1		
1,3-Dichloropropene, Total	ND		ug/l	0.50		1		
1,1-Dichloropropene	ND		ug/l	2.0		1		
Bromoform	ND		ug/l	2.0		1		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1		
Benzene	ND		ug/l	0.50		1		
Toluene	ND		ug/l	1.0		1		
Ethylbenzene	ND		ug/l	1.0		1		
Chloromethane	ND		ug/l	2.0		1		
Bromomethane	ND		ug/l	2.0		1		
Vinyl chloride	ND		ug/l	1.0		1		
Chloroethane	ND		ug/l	2.0		1		
1,1-Dichloroethene	ND		ug/l	1.0		1		
trans-1,2-Dichloroethene	ND		ug/l	1.0		1		
Trichloroethene	9.4		ug/l	1.0		1		
1,2-Dichlorobenzene	ND		ug/l	1.0		1		

							Serial_No:05251617:01			
Project Name:	BOSTON CHILDREI	N'S HOSPITAL	-		Lab Nu	ımber:	L1615398			
Project Number:	35520-410				Report	Date:	05/25/16			
-		SAMP		S	-					
Lab ID:	L1615398-02				Date Col	llected:	05/20/16 09:10			
Client ID:	B114(D)				Date Re	ceived:	05/20/16			
Sample Location:	Not Specified				Field Pre	ep:	Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Orga	anics - Westborough La	ıb								
1,3-Dichlorobenzene		ND		ua/l	1.0		1			
1,4-Dichlorobenzene		ND		ug/l	1.0		1			
Methyl tert butyl ether		ND		ug/l	2.0		1			
p/m-Xylene		ND		ug/l	2.0		1			
o-Xylene		ND		ug/l	1.0		1			
Xylene (Total)		ND		ug/l	1.0		1			
cis-1,2-Dichloroethene		9.7		ug/l	1.0		1			
1,2-Dichloroethene (total	I)	9.7		ug/l	1.0		1			
Dibromomethane		ND		ug/l	2.0		1			
1,2,3-Trichloropropane		ND		ug/l	2.0		1			
Styrene		ND		ug/l	1.0		1			
Dichlorodifluoromethane)	ND		ug/l	2.0		1			
Acetone		ND		ug/l	5.0		1			
Carbon disulfide		ND		ug/l	2.0		1			
2-Butanone		ND		ug/l	5.0		1			
4-Methyl-2-pentanone		ND		ug/l	5.0		1			
2-Hexanone		ND		ug/l	5.0		1			
Bromochloromethane		ND		ug/l	2.0		1			
Tetrahydrofuran		ND		ug/l	2.0		1			
2,2-Dichloropropane		ND		ug/l	2.0		1			
1,2-Dibromoethane		ND		ug/l	2.0		1			
1,3-Dichloropropane		ND		ug/l	2.0		1			
1,1,1,2-Tetrachloroethan	ne	ND		ug/l	1.0		1			
Bromobenzene		ND		ug/l	2.0		1			
n-Butylbenzene		ND		ug/l	2.0		1			
sec-Butylbenzene		ND		ug/l	2.0		1			
tert-Butylbenzene		ND		ug/l	2.0		1			
o-Chlorotoluene		ND		ug/l	2.0		1			
p-Chlorotoluene		ND		ug/l	2.0		1			
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.0		1			
Hexachlorobutadiene		ND		ug/l	0.60		1			
Isopropylbenzene		ND		ug/l	2.0		1			
p-Isopropyltoluene		ND		ug/l	2.0		1			
Naphthalene		ND		ug/l	2.0		1			
n-Propylbenzene		ND		ug/l	2.0		1			
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1			
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1			
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1			
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1			

					Serial_No:05251617:01			
Project Name:	BOSTON CHILDRE	N'S HOSPITAL	-		Lab Nu	umber:	L1615398	
Project Number:	35520-410				Report	Date:	05/25/16	
		SAMP		5				
Lab ID:	L1615398-02				Date Co	llected:	05/20/16 09:10	
Client ID:	B114(D)				Date Re	ceived:	05/20/16	
Sample Location:	Not Specified				Field Pre	əp:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	ıb						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				Δ.	ccontanco			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

			Serial_No:05251617				
Project Name:	BOSTON CHILDREN	S HOSPITAL	Lab Number:	L1615398			
Project Number:	35520-410		Report Date:	05/25/16			
		SAMPLE RESULTS					
Lab ID:	L1615398-03		Date Collected:	05/20/16 11:10			
Client ID:	B115(S)		Date Received:	05/20/16			
Sample Location:	Not Specified		Field Prep:	Not Specified			
Matrix:	Water						
Analytical Method:	97,8260C						
Analytical Date:	05/24/16 14:04						
Analyst:	MM						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	3.9		ug/l	1.0		1
Carbon tetrachloride	15		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	24		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	10		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	2.0		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

							Serial_No:05251617:01			
Project Name:	BOSTON CHILDREN	N'S HOSPITAI	_		Lab Nu	mber:	L1615398			
Project Number:	35520-410				Report	Date:	05/25/16			
•		SAMP		S	•		00,20,10			
Lab ID:	L1615398-03				Date Col	lected:	05/20/16 11:10			
Client ID:	B115(S)				Date Red	ceived:	05/20/16			
Sample Location:	Not Specified				Field Pre	ep:	Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Orga	anics - Westborough La	b								
1,3-Dichlorobenzene		ND		ua/l	1.0		1			
1,4-Dichlorobenzene		ND		ua/l	1.0		1			
Methyl tert butyl ether		ND		ug/l	2.0		1			
p/m-Xylene		ND		ug/l	2.0		1			
o-Xylene		ND		ug/l	1.0		1			
Xylene (Total)		ND		ug/l	1.0		1			
cis-1,2-Dichloroethene		2.2		ug/l	1.0		1			
1,2-Dichloroethene (total	I)	2.2		ug/l	1.0		1			
Dibromomethane		ND		ug/l	2.0		1			
1,2,3-Trichloropropane		ND		ug/l	2.0		1			
Styrene		ND		ug/l	1.0		1			
Dichlorodifluoromethane		ND		ug/l	2.0		1			
Acetone		ND		ug/l	5.0		1			
Carbon disulfide		ND		ug/l	2.0		1			
2-Butanone		ND		ug/l	5.0		1			
4-Methyl-2-pentanone		ND		ug/l	5.0		1			
2-Hexanone		ND		ug/l	5.0		1			
Bromochloromethane		ND		ug/l	2.0		1			
Tetrahydrofuran		ND		ug/l	2.0		1			
2,2-Dichloropropane		ND		ug/l	2.0		1			
1,2-Dibromoethane		ND		ug/l	2.0		1			
1,3-Dichloropropane		ND		ug/l	2.0		1			
1,1,1,2-Tetrachloroethan	ne	ND		ug/l	1.0		1			
Bromobenzene		ND		ug/l	2.0		1			
n-Butylbenzene		ND		ug/l	2.0		1			
sec-Butylbenzene		ND		ug/l	2.0		1			
tert-Butylbenzene		ND		ug/l	2.0		1			
o-Chlorotoluene		ND		ug/l	2.0		1			
p-Chlorotoluene		ND		ug/l	2.0		1			
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.0		1			
Hexachlorobutadiene		ND		ug/l	0.60		1			
Isopropylbenzene		ND		ug/l	2.0		1			
p-Isopropyltoluene		ND		ug/l	2.0		1			
Naphthalene		3.0		ug/l	2.0		1			
n-Propylbenzene		ND		ug/l	2.0		1			
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1			
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1			
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1			
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1			

					Serial_No:05251617:01			
Project Name:	BOSTON CHILDREI	N'S HOSPITAL	-		Lab Nu	umber:	L1615398	
Project Number:	35520-410				Report	Date:	05/25/16	
		SAMP		5				
Lab ID:	L1615398-03				Date Co	llected:	05/20/16 11:10	
Client ID:	B115(S)				Date Re	ceived:	05/20/16	
Sample Location:	Not Specified				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	ıb						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				•	ccontanco			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	90		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	100		70-130	

		Serial_No:05251617:01			
Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1615398		
Project Number:	35520-410	Report Date:	05/25/16		
	SAMPLE F	RESULTS			
Lab ID:	L1615398-04	Date Collected:	05/20/16 11:15		
Client ID:	B5(OW)	Date Received:	05/20/16		
Sample Location:	Not Specified	Field Prep:	Not Specified		
Matrix:	Water				
Analytical Method:	97,8260C				
Analytical Date:	05/24/16 14:35				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough La	ab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	27		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	4.4		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

							Serial_No:05251617:01			
Project Name:	BOSTON CHILDREN	N'S HOSPITAI	_		Lab Nu	mber:	L1615398			
Project Number:	35520-410				Report	Date:	05/25/16			
		SAMP		S			00/20/10			
Lab ID:	L1615398-04				Date Col	lected:	05/20/16 11:15			
Client ID:	B5(OW)				Date Re	ceived:	05/20/16			
Sample Location:	Not Specified				Field Pre	ep:	Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
MCP Volatile Orga	anics - Westborough La	b								
1.3-Dichlorobenzene		ND		ug/l	1.0		1			
1 4-Dichlorobenzene		ND		ug/l	1.0		1			
Methyl tert butyl ether		ND		ug/l	2.0		1			
p/m-Xvlene		ND		ug/l	2.0		1			
o-Xvlene		ND		ug/l	1.0		1			
Xvlene (Total)		ND		ug/l	1.0		1			
cis-1.2-Dichloroethene		8.3		ug/l	1.0		1			
1,2-Dichloroethene (total	l)	8.3		ug/l	1.0		1			
Dibromomethane	/	ND		ua/l	2.0		1			
1.2.3-Trichloropropane		ND		ug/l	2.0		1			
Styrene		ND		ug/l	1.0		1			
Dichlorodifluoromethane		ND		ug/l	2.0		1			
Acetone		ND		ug/l	5.0		1			
Carbon disulfide		ND		ug/l	2.0		1			
2-Butanone		ND		ug/l	5.0		1			
4-Methyl-2-pentanone		ND		ug/l	5.0		1			
2-Hexanone		ND		ug/l	5.0		1			
Bromochloromethane		ND		ug/l	2.0		1			
Tetrahydrofuran		ND		ug/l	2.0		1			
2,2-Dichloropropane		ND		ug/l	2.0		1			
1,2-Dibromoethane		ND		ug/l	2.0		1			
1,3-Dichloropropane		ND		ug/l	2.0		1			
1,1,1,2-Tetrachloroethan	ne	ND		ug/l	1.0		1			
Bromobenzene		ND		ug/l	2.0		1			
n-Butylbenzene		ND		ug/l	2.0		1			
sec-Butylbenzene		ND		ug/l	2.0		1			
tert-Butylbenzene		ND		ug/l	2.0		1			
o-Chlorotoluene		ND		ug/l	2.0		1			
p-Chlorotoluene		ND		ug/l	2.0		1			
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.0		1			
Hexachlorobutadiene		ND		ug/l	0.60		1			
Isopropylbenzene		ND		ug/l	2.0		1			
p-Isopropyltoluene		ND		ug/l	2.0		1			
Naphthalene		ND		ug/l	2.0		1			
n-Propylbenzene		ND		ug/l	2.0		1			
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1			
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1			
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1			
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1			

				Serial_No:05251617:0				
Project Name:	BOSTON CHILDREN	N'S HOSPITAL			Lab Nu	mber:	L1615398	
Project Number:	35520-410				Report	Date:	05/25/16	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1615398-04 B5(OW) Not Specified				Date Co Date Re Field Pre	llected: ceived: ep:	05/20/16 11:15 05/20/16 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	b						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

05/25/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 3

35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:05/24/16 07:25Analyst:MM

Parameter	Result	Qualifier	Units	RL	. MDL
MCP Volatile Organics - Westb	orough Lab for	sample(s):	01-04	Batch:	WG897686-3
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.0)
Carbon tetrachloride	ND		ug/l	1.0)
1,2-Dichloropropane	ND		ug/l	1.0)
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.0)
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.0)
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.5	0
cis-1,3-Dichloropropene	ND		ug/l	0.5	0
1,3-Dichloropropene, Total	ND		ug/l	0.5	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.0)
Ethylbenzene	ND		ug/l	1.0)
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.0)
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.0)
trans-1,2-Dichloroethene	ND		ug/l	1.0)
Trichloroethene	ND		ug/l	1.0)

05/25/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 355

35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	05/24/16 07:25
Analyst:	MM

MCP Volatile Organics - Westborou 1,2-Dichlorobenzene	ugh Lab for s ND ND ND	sample(s):	01-04 ug/l	Batch:	WG897686-3
1,2-Dichlorobenzene	ND ND ND		ug/l	1.(_
1.3-Dichlorobenzene	ND ND)
	ND		ug/l	1.0)
1,4-Dichlorobenzene			ug/l	1.()
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.()
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

05/25/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 3

35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:05/24/16 07:25Analyst:MM

Parameter	Result	Qualifier	Units	RI	_ MDL
MCP Volatile Organics - Westborou	gh Lab for s	sample(s):	01-04	Batch:	WG897686-3
p-Chlorotoluene	ND		ug/l	2.0)
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0)
Hexachlorobutadiene	ND		ug/l	0.6	0
Isopropylbenzene	ND		ug/l	2.0)
p-Isopropyltoluene	ND		ug/l	2.0)
Naphthalene	ND		ug/l	2.0)
n-Propylbenzene	ND		ug/l	2.0)
1,2,3-Trichlorobenzene	ND		ug/l	2.0)
1,2,4-Trichlorobenzene	ND		ug/l	2.0)
1,3,5-Trimethylbenzene	ND		ug/l	2.0)
1,2,4-Trimethylbenzene	ND		ug/l	2.0)
Ethyl ether	ND		ug/l	2.0)
Isopropyl Ether	ND		ug/l	2.0)
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0)
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0)
1,4-Dioxane	ND		ug/l	25	0
Ethyl Acetate	ND		ug/l	10)
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	2.0)
lodomethane	ND		ug/l	10)
tert-Butyl Alcohol	ND		ug/l	10)
Vinyl acetate	ND		ug/l	2.5	5
Acrolein	ND		ug/l	10)
2-Chloroethylvinyl ether	ND		ug/l	10)
Ethyl methacrylate	ND		ug/l	5.0)
Methyl cyclohexane	ND		ug/l	10)
Cyclohexane	ND		ug/l	10)
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	5
1,4-Diethylbenzene	ND		ug/l	2.0)
4-Ethyltoluene	ND		ug/l	2.0)

05/25/16

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL

Project Number: 35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:05/24/16 07:25Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbor	ough Lab for	sample(s):	01-04	Batch: WG89	7686-3	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0		
1,4-Dichlorobutane	ND		ug/l	5.0		
Acrylonitrile	ND		ug/l	5.0		
Halothane	ND		ug/l	2.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	90	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	98	70-130

Project Number: 35520-410

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01-04	Batch: WG897	686-1 WG897686-2		
Methylene chloride	88	89	70-130	1	20
1,1-Dichloroethane	91	93	70-130	2	20
Chloroform	90	91	70-130	1	20
Carbon tetrachloride	94	94	70-130	0	20
1,2-Dichloropropane	96	98	70-130	2	20
Dibromochloromethane	84	87	70-130	4	20
1,1,2-Trichloroethane	85	87	70-130	2	20
Tetrachloroethene	92	90	70-130	2	20
Chlorobenzene	94	92	70-130	2	20
Trichlorofluoromethane	90	92	70-130	2	20
1,2-Dichloroethane	89	91	70-130	2	20
1,1,1-Trichloroethane	93	95	70-130	2	20
Bromodichloromethane	91	91	70-130	0	20
trans-1,3-Dichloropropene	89	90	70-130	1	20
cis-1,3-Dichloropropene	96	99	70-130	3	20
1,1-Dichloropropene	95	97	70-130	2	20
Bromoform	91	95	70-130	4	20
1,1,2,2-Tetrachloroethane	82	82	70-130	0	20
Benzene	93	94	70-130	1	20
Toluene	90	89	70-130	1	20
Ethylbenzene	94	94	70-130	0	20

Project Number: 35520-410

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01-04	Batch: WG897	686-1 WG897686-2		
Chloromethane	86	85	70-130	1	20
Bromomethane	120	108	70-130	11	20
Vinyl chloride	92	90	70-130	2	20
Chloroethane	109	105	70-130	4	20
1,1-Dichloroethene	91	92	70-130	1	20
trans-1,2-Dichloroethene	90	92	70-130	2	20
Trichloroethene	94	94	70-130	0	20
1,2-Dichlorobenzene	91	89	70-130	2	20
1,3-Dichlorobenzene	92	94	70-130	2	20
1,4-Dichlorobenzene	88	90	70-130	2	20
Methyl tert butyl ether	81	82	70-130	1	20
p/m-Xylene	94	92	70-130	2	20
o-Xylene	92	90	70-130	2	20
cis-1,2-Dichloroethene	92	94	70-130	2	20
Dibromomethane	90	90	70-130	0	20
1,2,3-Trichloropropane	81	85	70-130	5	20
Styrene	96	98	70-130	2	20
Dichlorodifluoromethane	87	87	70-130	0	20
Acetone	73	70	70-130	4	20
Carbon disulfide	94	98	70-130	4	20
2-Butanone	87	85	70-130	2	20

Project Number: 35520-410

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01-0	4 Batch: WG897	686-1 WG897686-2		
4-Methyl-2-pentanone	92	96	70-130	4	20
2-Hexanone	87	86	70-130	1	20
Bromochloromethane	93	96	70-130	3	20
Tetrahydrofuran	84	83	70-130	1	20
2,2-Dichloropropane	104	106	70-130	2	20
1,2-Dibromoethane	85	87	70-130	2	20
1,3-Dichloropropane	87	85	70-130	2	20
1,1,1,2-Tetrachloroethane	93	93	70-130	0	20
Bromobenzene	89	91	70-130	2	20
n-Butylbenzene	71	71	70-130	0	20
sec-Butylbenzene	81	81	70-130	0	20
tert-Butylbenzene	83	81	70-130	2	20
o-Chlorotoluene	90	92	70-130	2	20
p-Chlorotoluene	89	90	70-130	1	20
1,2-Dibromo-3-chloropropane	80	81	70-130	1	20
Hexachlorobutadiene	88	88	70-130	0	20
Isopropylbenzene	95	96	70-130	1	20
p-lsopropyltoluene	83	84	70-130	1	20
Naphthalene	95	97	70-130	2	20
n-Propylbenzene	88	89	70-130	1	20
1,2,3-Trichlorobenzene	93	94	70-130	1	20

Project Number: 35520-410

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated sam	ple(s): 01-04	Batch: WG89	97686-1 W	G897686-2				
1,2,4-Trichlorobenzene	87		88		70-130	1		20	
1,3,5-Trimethylbenzene	85		85		70-130	0		20	
1,2,4-Trimethylbenzene	86		86		70-130	0		20	
Ethyl ether	81		82		70-130	1		20	
Isopropyl Ether	83		86		70-130	4		20	
Ethyl-Tert-Butyl-Ether	88		91		70-130	3		20	
Tertiary-Amyl Methyl Ether	90		92		70-130	2		20	
1,4-Dioxane	99		92		70-130	7		20	
Ethyl Acetate	88		90		70-130	2		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	90		91		70-130	1		20	
Iodomethane	30	Q	44	Q	70-130	38	Q	20	
tert-Butyl Alcohol	82		80		70-130	2		20	
Vinyl acetate	89		90		70-130	1		20	
Acrolein	174	Q	187	Q	70-130	7		20	
2-Chloroethylvinyl ether	95		98		70-130	3		20	
Ethyl methacrylate	87		85		70-130	2		20	
Methyl cyclohexane	92		96		70-130	4		20	
Cyclohexane	96		94		70-130	2		20	
trans-1,4-Dichloro-2-butene	77		83		70-130	8		20	
1,4-Diethylbenzene	74		73		70-130	1		20	
4-Ethyltoluene	87		87		70-130	0		20	

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 35520-410

 Lab Number:
 L1615398

 Report Date:
 05/25/16

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG897	7686-1 WC	G897686-2				
1,2,4,5-Tetramethylbenzene	107		108		70-130	1		20	
1,4-Dichlorobutane	96		97		70-130	1		20	
Acrylonitrile	88		90		70-130	2		20	
Halothane	92		93		70-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	92		92		70-130	
Toluene-d8	94		94		70-130	
4-Bromofluorobenzene	95		95		70-130	
Dibromofluoromethane	98		100		70-130	

Serial_No:05251617:01

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:35520-410

Lab Number: L1615398 Report Date: 05/25/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1615398-01A	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-01B	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-01C	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-02A	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-02B	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-02C	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-03A	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-03B	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-03C	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-04A	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-04B	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)
L1615398-04C	Vial HCI preserved	А	N/A	3.5	Y	Absent	MCP-8260-10(14)

Serial_No:05251617:01

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 35520-410

Lab Number: L1615398

Report Date: 05/25/16

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Serial_No:05251617:01

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 35520-410

Lab Number: L1615398

Report Date: 05/25/16

Data Qualifiers

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:35520-410

 Lab Number:
 L1615398

 Report Date:
 05/25/16

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

															Serial_No:05251617:01
HALEY ALERACH Bost	ey & Aldrich, Ind Medford St., e 2200, con, MA 02129-1	. 402			C	H	AIN	OF	C C	US	то	D	Y RI	ECOR	D Phone (617) 886-7400 Fax (617) 886-7600 Page 0 of 1
H&A FILE NO. 35	520-410				LABOI	RATO	RY A	Ipha						DELIV	ERY DATE 05/20/16
PROJECT NAME Bosto	n Children	is Hospita	1 GB	1	ADDRI	ESS	_	w	est	5000	1	MA		TURN	AROUND TIME 3 day Rush
H&A CONTACT J. T.	hibault /	T. COOPE	1		CONT	ACT		G.	14	411				PROJE	CT MANAGER J. Lepkowitz
		1	1	T				A	Analysis	s Reque	sted				
Sample No.	Date Tir	ne Depth	Туре	VOA	ABNs PAH only	MCP Metals	Pesticides PCBs VPH Full Suite	C-ranges only EPH Full Suite	TPH (specify)	TCLP (specify)	Reactivity Ignitability Corrosivity			Number of Containers	Comments (special instructions, precautions, additional method numbers, etc.)
B114 (5) (5/20/15 090	07 -	AQ	×										3	Laboratory to use applicable DEP CAM methods, unless otherwise
BILL(D)	1 1991	10 -	1	X					-	1	1		1	3	directed.
pacies		10 -		1						-	10.00	-			O SACO
5115 (5)			V	X		-		-						3	_
B5 (0w)	7/20/15 111	5 -	AQ	X		_	-	Selection of the	1					3	
			1								-	-			
		k.													
				L					1	-					
••••••••••••••••				-		110	14.10								
	-														-
	/			-		-	-	-	-	-					
<	<u> </u>														
Sampled and Relinquished by	Received b	у							LI	QUID					Sampling Comments
Sign MAHAID	Sim	1		X		1	1			1				VOA Vial	
Print M. H. D.	Print 1A	-	2								-			Amber Glass	· · · · · · · · · · · · · · · · · · ·
- ILI LA SUD	The PVP	h Asme	10			1			-				-	Plactic Rottle	
Maley There	- I'm A	shi	1	AF	1									P astre Dotte	a contract of the second
Date > / / / / I ime () /	Date V (-	· // O Time	Nº.	Ho	-				-					Preservative	
Reinquisned by	Received by	y		70		1			-	-				Volume	
Sign AM	Sign	n mu	/						so	LID					
Print MARE A MITA	PrinUll	onvec	`								1			VOA Vial	
Firm AAC	Firm Hu	shy								1				Amber Glass	
Date Jw/14 Time /7/4	Date 5	2 Mr. Time	(-)4								÷!			Clear Glass	
Relinquished by	Received by	7	,		4			1					1	Preservative	Evidence samples were tampered with? YES NO
Sign	Sign						1							Volume	If VFS plage explain in section below
Print	Print							PRE	SERV	ATION	KEY				i 100, picase explain in section below.
Firm	Firm			A Com	nla ahilla	4	C NHO		P	11.00		0			
Data Tima	Data	Time		D C		4 	D HNO	п \	E	H2504		G	Methanol		
Jate Time	Date	Time		B Sam	ple filtere	a tointo I	D HINC	^{/3}	F	HCL		H	Water/NaH	SO4 (circle)	
f Presumptive Certainty Data Pack	age is needed, initi	al all sections:		Presum	prive Cer	tainty I	Jata Pack	age (Lab	oratory	to use	applicab	le DEP	CAM me	thods)	Required Penarting Limits and Data Quality Objectives
The required minimum f	ield QC samples, as	designated in BWS	SC CAM-VII	have bee	n or will b	be colled	ted, as an	propriate.	to meet	the reat	uirements	s of Pres	sumptive C	ertainty.	requires reporting minus and Data Quanty Objectives
Matrix Spike (MS) samp	les for MCP Metals	and/or Cyanide are	included an	d identifi	ed herein.					-1	2000-000000000	000000000000			□ RC-SI □ SI □ GW1
This Chain of Custody R	ecord (specify)	includes	doe	es not inc	ude samp	les defi	ned as Drin	nking Wat	er Samp	oles.					\square RC-S2 \square S2 \square GW2
If this Chain of Custody appropriate. Laboratory	Record identifies sa should (specify if a	mples defined as D pplicable)	rinking Wate _analyze	er Sample	s, Trip Bl	anks and	l Field Duj	plicates ar	e includ	led and i	identified	l and an	alysis of Tl	Cs are required, as	$\square RC-GW1 \square S3 \square GW3$ $\square RC-GW2$
		W	HITE - Labora	atory	CAN	ARY - P	roject Mana	nger	PIN	K - Haley	y & Aldric	h Labora	itory		FEBRUARY 2016

4A

VOLATILE ORGANICS METHOD BLANK SUMMARY

SAMPLE NO.

WG897686-3BLANK

Lab Name: Alpha Analytical Labs

SDG No.: L1615398

Lab File ID: VJ160524A08 Lab Sample ID: WG897686-3

Date Analyzed: 05/24/16 Time Analyzed: 07:25

Instrument ID: JACK.I

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

	CLIENT SAMPLE NO	LAB SAMDLE TD	LAB ETLE TD	DATE
	SAMPLE NU.	SAMPLE ID		
01	WG897686-1LCS	WG897686-1	VJ160524A05	05/24/16 05:53
02	WG897686-2LCSD	WG897686-2	VJ160524A06	05/24/16 06:24
04	B114(D)	L1615398-02	VJ160524A20	05/24/16 13:33
05	B115(S)	L1615398-03	VJ160524A21	05/24/16 14:04
06	BS(OW)	L1015398-04	VJI6U5Z4AZZ	05/24/10 14.35
		·		
		·		
		<u></u>		. <u> </u>
				<u> </u>
		<u></u>	<u></u>	

COMMENTS: _____

page 1 of 1

FORM IV MCP-8260-10 LOW

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615398

Instrument ID: Jack.i	Calibration Date: 24-MAY-2016 Time: 05	; : 53
Lab File ID: VJ160524A0	Init. Calib. Date(s): 09-MAY-2 09-MAY	2-2
Sample No: 8260 CCAL 1	Init. Calib. Times : 11:55 15:1	.0

	<u></u>		MIN	0.5	MAX	
Compound	RKF.	RRF.	RRF	%D	%D	
====================================			=====	======	====	
alchiorodifiuoromethane	.40999	.35/⊥⊥ .35/⊥⊥	.1	-13		
chioromethane	24/04	.21361	· 1	-14		
vinyi chioride	.3412	1.31342	· 1	-8	20	
promomethane	1.10122	1.19280	· 1	20		
cnioroetnane	1.14//9		· 1	9		
trichlorofluoromethane	1.60766	.54427		-10	20	
etnyl etner	.158/8	.12878	.05	-19	20	
1,1,-dichloroethene	.36744	.33523	.1	-9	20	
carbon disulfide	.89077	.84011		-6	20	
[freon-113	.38161	.34501		-10	20	
10domethane	.40601	.12259	.05	-70	20	F
acrolein	.0153	.02665	.05	74	20	F
methylene chloride	.30396	.26609	.1	-12	20	
acetone	100	72.838	.1	-27	20	F
trans-1,2-dichloroethene	.39316	.35197	.1	-10	20	
methyl acetate	13189	.1065	.1	-19	20	
methyl tert butyl ether	.73409	.59647		-19	20	
tert butyl_alcohol	.01382	.0113	.05	-18	20	F
Diisopropyl Ether	1.2026	1.0006	.01	-17	20	
1,1-dichloroethane	.66827	.60991	.2	-9	20	
acrylonitrile	.07507	.06601	.05	-12	20	
Halothane	.32124	.29534	.05	-8	20	
Ethyl-Tert-Butyl-Ether	.95283	.841	.05	-12	20	
vinyl acetate	.66888	.59402	.05	-11	20	
cis-1,2-dichloroethene	.44516	.40786	.1	-8	20	
2,2-dichloropropane	.5224	.54428	.05	4	20	
cyclohexane	.65214	62527	.01	-4	30	
bromochloromethane	.20365	.18926	.05	-7	20	
chloroform	.67973	.61549	.2	-9	20	
carbontetrachloride	.61351	.57404	.1	-6	20	
tetrahydrofuran	.07634	.06424	.05	-16	20	
ethyl acetate	.22348	.1963	.05	-12	20	
1,1,1-trichloroethane	.66057	.61641	.1	-7	20	
1,1-dichloropropene	.52285	.49587	.05	-5	20	
2-butanone	.0934	.08164	.1	-13	20	F
benzene	1.5651	1.4598	.5	-7	20	
Tertiary-Amyl Methyl Ether	.76264	.68939	.05	-10	20	
1,2-dichloroethane	.40854	.3629	.1	-11	20	
			-			-

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615398

Instrument ID: Jack.i	Calibration Date: 24-MAY-2016 Time	e: 05:53
Lab File ID: VJ160524A0	Init. Calib. Date(s): 09-MAY-2 09	9-MAY-2
Sample No: 8260 CCAL 1	Init. Calib. Times : 11:55	15:10

Compound		RRF	MIN RRF	8D	MAX %D	
	======	======	=====	======	====	
Compound ====================================	RRF ===== .67585 .43659 .19015 .34014 .45577 .00136 .15225 .51596 1.7138 .85577 .06315 .72271 .36607 .46713 .53653 .73232 .43894 .18832 1.4764 2.2312 .5414 .88027 .79529 .45997 1.1777 4.6503 1.1065 .93935	RRF ====== .62375 .4107 .17067 .32601 .41672 .00135 .14405 .49437 1.5484 .78735 .05816 .64209 .31204 .40657 .44855 .63777 .37142 .16359 1.3910 2.0895 .50574 .82336 .72905 .41888 1.1311 4.4156 .98313 .90549	MIN RRF ===== .01 .2 .05 .05 .05 .05 .05 .2 .4 .2 .05 .05 .2 .4 .2 .1 .1 .1 .01 .1 .01 .1 .05 .1 .1 .05 .1 .1 .01 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	*D ====== -8 -6 -10 -4 -9 -1 -5 -4 -10 -8 -11 -13 -13 -13 -13 -13 -13 -13 -13 -13	MAX %D ==== 30 20 20 20 20 20 20 20 20 20 20 20 20 20	F
o xylene	.79529 .45997 1.1777 4.6503 1.1065 .93935 4.7761 .6122 4.0036 3.1145 .48482 3.4156 .17274 2.8623 3.1591 3.1315	.72905 .41888 1.1311 4.4156 .98313 .90549 4.2176 .49883 3.4863 2.8165 .39424 2.9046 .13376 2.5479 2.6248 2.7071	.3 .1 .05 .01 .05 .05 .05 .05 .05 .05 .05 .05	$\begin{array}{c} -8\\ -9\\ -4\\ -5\\ -11\\ -4\\ -12\\ -19\\ -13\\ -10\\ -19\\ -15\\ -23\\ -11\\ -17\\ -14\\ \end{array}$	20 20 20 20 20 20 20 20 20 20 20 20 20 2	F

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615398

Instrument ID: Jack.i	Calibration Date: 24-MAY-2016 Time: 05:	53
Lab File ID: VJ160524A0	Init. Calib. Date(s): 09-MAY-2 09-MAY-	2
Sample No: 8260 CCAL 1	Init. Calib. Times : 11:55 15:10	I

			MIN		MAX	
Compound				∛D	~₹D	
<pre>sec-butylbenzene p-isopropyltoluene</pre>	====== 4.2815 3.4749 2.2006 2.2159 100 2.0756 2.5483 .11424 100 1.0790 .50802 1.8645 .9212 ===== .25353 .22712 1.6444 .82416	===== 3.4529 2.8783 2.0284 1.9397 74.263 70.564 1.8965 2.7243 .0918 71.156 .93888 .44825 1.7763 .85431 ===== .24733 .2082 1.5450 .78549 	===== .01 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	$\begin{array}{c} ======\\ -19\\ -17\\ -8\\ -12\\ -26\\ -29\\ -9\\ 7\\ -20\\ -29\\ -13\\ -12\\ -5\\ -7\\ ===\\ -2\\ -8\\ -6\\ -5\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	==== 20 20 20 20 20 20 20 20 20 20 20 20 20	FF
					-	

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number:	L1615699
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone:	Jessica Lefkowitz (617) 886-7400
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI
Project Number: Report Date:	35520-410 05/27/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05271614:41

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1615699-01	B102 (D)	WATER	Not Specified	05/24/16 09:30	05/24/16
L1615699-02	B115 (D)	WATER	Not Specified	05/24/16 10:45	05/24/16

Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1615699
Project Number:	35520-410	Report Date:	05/27/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A roo	nance to questions C. H and Lie required for "Procumptive Cortainty" status	
Ales	ponse to questions G, H and Its required for Presumptive Certainty status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BOSTON CHILDREN'S HOSPITAL CLI Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1615699-01 and -02 (all samples), did not meet the method required minimum response factor on the lowest calibration standard for 4-methyl-2-pentanone (0.06449), and 1,4-dioxane (0.00147), as well as the average response factor for 1,4-dioxane. The initial calibration verification is outside acceptance criteria for bromoform (137%), but within overall method criteria.

The continuing calibration standard, associated with L1615699-01 and -02 (all samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 05/27/16

ORGANICS

VOLATILES

		Serial_No	Serial_No:05271614:41		
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1615699		
Project Number:	roject Number: 35520-410		05/27/16		
	SAMPLE RESU	JLTS			
Lab ID:	L1615699-01	Date Collected:	05/24/16 09:30		
Client ID:	B102 (D)	Date Received:	05/24/16		
Sample Location:	Not Specified	Field Prep:	Not Specified		
Matrix:	Water				
Analytical Method:	97,8260C				
Analytical Date:	05/26/16 16:20				
Analyst:	MM				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	55		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	6.9		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ua/l	1.0		1

				Serial_No:05271614:41				
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI				Lab Number:		L1615699	
Project Number:	35520-410				Report	Date:	05/27/16	
		SAMP	LE RESULTS	S	•		00,21,10	
Lab ID: Client ID: Sample Location:	L1615699-01 B102 (D) Not Specified			Date Collected: Date Received: Field Prep:		05/24/16 09:30 05/24/16 Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	h	444					
wer volatile orge		0						
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		13		ug/l	1.0		1	
1,2-Dichloroethene (total	1)	13		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/I	5.0		1	
2-Hexanone		ND		ug/I	5.0		1	
Tetrobudrefuren		ND		ug/i	2.0		1	
		ND		ug/i	2.0		1	
1.2 Dibromoothana		ND		ug/i	2.0		1	
1.3-Dichloropropage		ND		ug/i	2.0		1	
1,1,1,2-Tetrachloroethan	00	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-lsopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1	

						Serial_N	o:05271614:41	
Project Name:	BOSTON CHILDRE	BOSTON CHILDREN'S HOSPITAL CLI				umber:	L1615699	
Project Number:	35520-410				Report	Date:	05/27/16	
		SAMP		S				
Lab ID:	L1615699-01				Date Co	llected:	05/24/16 09:30	
Client ID:	B102 (D)				Date Re	ceived:	05/24/16	
Sample Location:	Not Specified				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	ab						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				•	ccentance			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	88		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	101		70-130	

		Serial_N	o:05271614:41
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI	Lab Number:	L1615699
Project Number:	35520-410	Report Date:	05/27/16
	SAMPLE R	ESULTS	
Lab ID:	L1615699-02	Date Collected:	05/24/16 10:45
Client ID:	B115 (D)	Date Received:	05/24/16
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	97,8260C		
Analytical Date:	05/26/16 16:51		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	31		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	5.1		ug/l	1.0		1
1.2-Dichlorobenzene	ND		ua/l	1.0		1

					Serial_No:05271614:41			
Project Name:	BOSTON CHILDREI	N'S HOSPITAL	_ CLI		Lab Nu	mber:	L1615699	
Project Number:	35520-410				Report	Date:	05/27/16	
•		SAMP	LE RESULT	S	•		00,21,10	
Lab ID:	L1615699-02				Date Col	lected:	05/24/16 10:45	
Client ID:	B115 (D)				Date Red	ceived:	05/24/16	
Sample Location:	Not Specified				Field Pre	p:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	b						
1.3-Dichlorobenzene		ND		ug/l	1.0		1	
1.4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		8.6		ug/l	1.0		1	
1,2-Dichloroethene (total	l)	8.6		ug/l	1.0		1	
Dibromomethane	<u>.</u>	ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane	!	ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethan	ie	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-I rimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ua/l	2.0		1	

						Serial_N	0:05271614:41	
Project Name:	BOSTON CHILDREN'S HOSPITAL CLI				Lab Number:		L1615699	
Project Number:	35520-410				Report Date:		05/27/16	
		SAMP		S				
Lab ID:	L1615699-02				Date Co	llected:	05/24/16 10:45	
Client ID:	B115 (D)				Date Re	ceived:	05/24/16	
Sample Location:	Not Specified				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Orga	anics - Westborough La	ıb						
Ethyl ether		ND		ug/l	2.0		1	
Isopropyl Ether		ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0		1	
1,4-Dioxane		ND		ug/l	250		1	
				Δ	ccentance			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	101		70-130	

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

Method Blank Analysis Batch Quality Control

Analytical Method:	97,8260C
Analytical Date:	05/26/16 09:06
Analyst:	MM

Parameter	Result	Qualifier	Units	RI	_ MDL
MCP Volatile Organics - V	lestborough Lab for	sample(s):	01-02	Batch:	WG898100-3
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.()
Carbon tetrachloride	ND		ug/l	1.()
1,2-Dichloropropane	ND		ug/l	1.()
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.()
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.()
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.5	0
cis-1,3-Dichloropropene	ND		ug/l	0.5	0
1,3-Dichloropropene, Total	ND		ug/l	0.5	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.()
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.()
Ethylbenzene	ND		ug/l	1.()
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.()
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.()
trans-1,2-Dichloroethene	ND		ug/l	1.()
Trichloroethene	ND		ug/l	1.()

L1615699

05/27/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 355

35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:05/26/16 09:06Analyst:MM

Parameter	Result	Qualifier	Units	RI	L MDL
MCP Volatile Organics -	Westborough Lab for	sample(s):	01-02	Batch:	WG898100-3
1,2-Dichlorobenzene	ND		ug/l	1.()
1,3-Dichlorobenzene	ND		ug/l	1.()
1,4-Dichlorobenzene	ND		ug/l	1.()
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.()
Xylene (Total)	ND		ug/l	1.()
cis-1,2-Dichloroethene	ND		ug/l	1.()
1,2-Dichloroethene (total)	ND		ug/l	1.()
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.()
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.()
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

L1615699

05/27/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

Method Blank Analysis Batch Quality Control

Analytical Method:97,8260CAnalytical Date:05/26/16 09:06Analyst:MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbo	orough Lab for	sample(s):	01-02	Batch:	WG898100-3	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	89		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	98		70-130	

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01-02 Batch: WG898100-1 WG898100-2 Methylene chloride 102 98 70-130 20 4 1,1-Dichloroethane 110 106 70-130 20 4 Chloroform 103 70-130 20 107 4 Carbon tetrachloride 20 105 103 70-130 2 1,2-Dichloropropane 112 70-130 2 20 114 Dibromochloromethane 70-130 20 94 99 5 1,1,2-Trichloroethane 101 102 70-130 20 1 Tetrachloroethene 102 98 70-130 20 4 Chlorobenzene 70-130 20 108 106 2 Trichlorofluoromethane 70-130 20 93 90 3 106 106 70-130 20 1.2-Dichloroethane 0 1,1,1-Trichloroethane 107 104 70-130 3 20 Bromodichloromethane 107 103 70-130 20 4 trans-1,3-Dichloropropene 70-130 20 98 105 7 cis-1,3-Dichloropropene 70-130 20 112 111 1 1,1-Dichloropropene 70-130 20 112 105 6 Bromoform 108 105 70-130 3 20 1,1,2,2-Tetrachloroethane 97 95 70-130 2 20 20 Benzene 113 107 70-130 5 Toluene 70-130 20 102 102 0 Ethylbenzene 109 108 70-130 20 1

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01-02 Batch: WG898100-1 WG898100-2 85 80 70-130 20 Chloromethane 6 Bromomethane 95 107 70-130 12 20 Vinyl chloride 91 70-130 20 91 0 20 Chloroethane 107 108 70-130 1 1,1-Dichloroethene 101 99 70-130 2 20 70-130 20 trans-1.2-Dichloroethene 102 98 4 Trichloroethene 112 107 70-130 5 20 1.2-Dichlorobenzene 104 102 70-130 2 20 70-130 20 1.3-Dichlorobenzene 105 102 3 1,4-Dichlorobenzene 102 70-130 20 99 3 Methyl tert butyl ether 93 70-130 20 96 3 p/m-Xylene 109 109 70-130 0 20 o-Xylene 106 104 70-130 2 20 cis-1.2-Dichloroethene 70-130 20 114 108 5 Dibromomethane 70-130 20 106 103 3 1,2,3-Trichloropropane 98 70-130 20 103 5 Styrene 113 112 70-130 1 20 Q Q Dichlorodifluoromethane 68 66 70-130 3 20 70-130 20 Acetone 80 79 1 Carbon disulfide 70-130 20 100 99 1 2-Butanone 105 100 70-130 20 5

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s): 01-02	2 Batch: WG898	3100-1 WG898100-2		
4-Methyl-2-pentanone	113	111	70-130	2	20
2-Hexanone	96	104	70-130	8	20
Bromochloromethane	110	110	70-130	0	20
Tetrahydrofuran	99	96	70-130	3	20
2,2-Dichloropropane	123	115	70-130	7	20
1,2-Dibromoethane	99	104	70-130	5	20
1,3-Dichloropropane	99	104	70-130	5	20
1,1,1,2-Tetrachloroethane	106	106	70-130	0	20
Bromobenzene	109	101	70-130	8	20
n-Butylbenzene	84	75	70-130	11	20
sec-Butylbenzene	94	84	70-130	11	20
tert-Butylbenzene	96	88	70-130	9	20
o-Chlorotoluene	110	100	70-130	10	20
p-Chlorotoluene	107	99	70-130	8	20
1,2-Dibromo-3-chloropropane	87	90	70-130	3	20
Hexachlorobutadiene	96	89	70-130	8	20
Isopropylbenzene	114	102	70-130	11	20
p-Isopropyltoluene	97	88	70-130	10	20
Naphthalene	114	115	70-130	1	20
n-Propylbenzene	106	96	70-130	10	20
1,2,3-Trichlorobenzene	111	106	70-130	5	20

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual MCP Volatile Organics - Westborough Lab Associated sample(s): 01-02 Batch: WG898100-1 WG898100-2 1,2,4-Trichlorobenzene 102 103 70-130 20 1 1,3,5-Trimethylbenzene 101 95 70-130 6 20 1,2,4-Trimethylbenzene 103 99 70-130 20 4 20 Ethyl ether 94 94 70-130 0 Isopropyl Ether 106 97 70-130 9 20 Ethyl-Tert-Butyl-Ether 70-130 20 105 102 3 Tertiary-Amyl Methyl Ether 106 106 70-130 0 20 1,4-Dioxane 99 104 70-130 20 5 Ethyl Acetate 102 70-130 20 101 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 70-130 20 93 91 2 Q Q 70-130 17 20 lodomethane 48 57 tert-Butyl Alcohol 93 96 70-130 3 20 Vinyl acetate 110 109 70-130 20 1 Acrolein Q 112 70-130 Q 20 228 68 2-Chloroethylvinyl ether 70-130 20 112 113 1 Ethyl methacrylate 104 70-130 20 97 7 Methyl cyclohexane 103 94 70-130 9 20 Cyclohexane 100 95 70-130 5 20 trans-1.4-Dichloro-2-butene 70-130 20 103 100 3 1,4-Diethylbenzene 70-130 20 85 79 7 4-Ethyltoluene 104 96 70-130 8 20

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-02	Batch: WG898	3100-1 WC	G898100-2				
1,2,4,5-Tetramethylbenzene	125		123		70-130	2		20	
1,4-Dichlorobutane	118		108		70-130	9		20	
Acrylonitrile	111		108		70-130	3		20	
Halothane	107		102		70-130	5		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	92		91		70-130	
Toluene-d8	91		94		70-130	
4-Bromofluorobenzene	98		95		70-130	
Dibromofluoromethane	97		99		70-130	

Serial_No:05271614:41

Project Name: BOSTON CHILDREN'S HOSPITAL CLI Project Number: 35520-410

Lab Number: L1615699 Report Date: 05/27/16

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

A

Absent

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1615699-01A	Vial HCI preserved	А	N/A	2.3	Y	Absent	MCP-8260-10(14)
L1615699-01B	Vial HCI preserved	А	N/A	2.3	Υ	Absent	MCP-8260-10(14)
L1615699-01C	Vial HCI preserved	А	N/A	2.3	Y	Absent	MCP-8260-10(14)
L1615699-02A	Vial HCI preserved	А	N/A	2.3	Y	Absent	MCP-8260-10(14)
L1615699-02B	Vial HCI preserved	А	N/A	2.3	Y	Absent	MCP-8260-10(14)
L1615699-02C	Vial HCI preserved	А	N/A	2.3	Y	Absent	MCP-8260-10(14)

Serial_No:05271614:41

L1615699

05/27/16

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name: BOSTON CHILDREN'S HOSPITAL CLI

Project Number: 35520-410

Lab Number: L1615699

Report Date: 05/27/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:BOSTON CHILDREN'S HOSPITAL CLIProject Number:35520-410

 Lab Number:
 L1615699

 Report Date:
 05/27/16

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_I	No:05271	1614:41
----------	----------	---------

HALEY ALDRICH	Haley & Aldr 65 Medford Suite 2200,	ich, Inc. St.,				(СН			OF	C	US	ST	DDY	RE	COR	D L1615099	Phone Fax	e (617) 886-7400 (617) 886-7600
H&A FILE NO. 71 PROJECT NAME 80 H&A CONTACT J	30ston, MA 5520- Ston Ch Thibgu	02129-1402 -410 1.112(en's /1+/T; C	Horpital	Clinic	<u>916vil</u>	LAB CON	ORAT RESS TACT	ORY		tiphi vest	9 00(0 0 a	1/9 h	M	A		DELI TURN PROJ	VERY DATE 5/24/16 VAROUND TIME 3 129	Page	of
		1					_	_		A	nalysis	Reque	sted				ECT MANAGER	LTFA	owitz
Sample No.	Date	Time	Depth	Туре	VOA	ABNs AH only	dCP Metals	testicides CBs	7PH ull Suite -ranges only	PH ull Suite -ranges only	PH (specify)	CLP (specify)	eactivity nitability	(0928) (8260)		Number o Container	f s (special instructions, precaution	mments ns, additiona	l method numbers, etc.)
B102(0)	5/24/16	930	-	GW	1		-	44	PEO	m m O	<u> </u>	F	a ≞₀ (V		2	Laboratory to use applicable D	EP CAM	.
B1150)	5/24/16	1045	-	GW	-									R		3	di	rected.	ethods, unless otherwise
			-	-															
Sampled and Relinquished by Received by				LIQUID							Sampling Comments								
rint Ale X Fleming	Brint	IN Aush													1	/OA Vial			
Im H+A	Finn	LCA					-				-				/	Amber Glass			
ate 5/24/16 Time	Data	chaulte	T:	2				-	-	-	-		-		P	lastic Bottle			
elinquished by	Rece	ived by	Time / L	130				-		-					P	reservative			
en in Million	Sian	Intas	a Chr				-		_			1		_	V	olume			
int M. Aweb	Sign	Alaho	14 10410	Aunt			- 1				SOL	ID							
m HDA	Frint	minha	1049.4	1 mine									_		v	OA Vial			
to Staulle Time 1.3	Firm	Allen.	117	0				-							A	mber Glass			-
elinquished by	Date	5184110) Time 60	0	-						_		_		C	lear Glass			
allah-	Kecel	wea by	71.				-	_		_	_			1	Pr	eservative	Evidence samples were tampered w	ith? YES	NO
and and Phimmar	Sign	mon	ing				_	_	1						V	olume	If YES, please explain in section bel	ow.	
Alena	Print	michae	l Cha-	3						PRESE	RVAT	ION K	KEY						
	Firm	pol	10 SZ		A Samp	ole chille	d	C N	aOH		E H	2SO4		G Metha	nol				
te 5/04/10 Time 1/02	Date C	5/24/16	Time (25	B Samp	ole filtere	d	DH	NO3		F H	CL		H Water.	NaHSO4 (circle)			
Presumptive Certainty Data Pac	kage is needed	initial all ca	ctioner]	Presump	tive Cer	tainty	Data Pa	ackage	(Labora	tory to	use aj	pplicab	le DEP CAM	1 methods)				
The required minimum	field QC sampl	les, as designat	ted in BWSC	CAM-VII h	ave been	or will I	a aalla										Required Reporting Limits and Data	Quality Ob	jectives
Matrix Spike (MS) sam	ples for MCP N	Metals and/or (Cyanide are in	cluded and	identifie	d herein	ie cone	cieu, as	appropr	late, to n	neet the	e requir	rements	of Presumpti	ve Certaint	у.		11 mm	
This Chain of Custody	Record (specify	y)	includes	does	not inclu	ide samn	les defi	ned as T	Drinking	Water C	amples						RC-SI		GW1
If this Chain of Custody appropriate. Laboratory	Record identif should (specif	fies samples de fy if applicable	fined as Drin)a	king Water nalyze	Samples,	Trip Bla	anks and	d Field I	Duplicat	es are in	cluded	and ide	entified	and analysis (of TICs are	required, as	RC-S2 RC-GW1 RC-GW2	\square S2 S3	GW2 GW3
			WHIT	FE - Laborato	ry	CAN	ARY - P	roject M	anager		PINK -	Halev &	& Aldrich	Laboratory					

4A

VOLATILE ORGANICS METHOD BLANK SUMMARY

SAMPLE NO.

WG898100-3BLANK

Lab Name: Alpha Analytical Labs

SDG No.: L1615699

Lab File ID: VJ160526A06 Lab Sample ID: WG898100-3

Date Analyzed: 05/26/16 Time Analyzed: 09:06

Instrument ID: JACK.I

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=================	===================	==================
)1	WG898100-1LCS	WG898100-1	VJ160526A03	05/26/16 07:34
)2	WG898100-2LCSD	WG898100-2	VJ160526A04	05/26/16 08:05
)3	B102 (D)	L1615699-01	VJ160526A20	05/26/16 16:20
)4	B115 (D)	L1615699-02	VJ160526A21	05/26/16 16:51
		l —————		

COMMENTS: _____

page 1 of 1

FORM IV MCP-8260-10 LOW

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615699

Instrument ID: Jack.i	Calibration Date: 26-MAY-2016 Time: 07	:34
Lab File ID: VJ160526A0	Init. Calib. Date(s): 09-MAY-2 09-MAY	-2
Sample No: 8260 CCAL	Init. Calib. Times : 11:55 15:1	0

			MIN		MAX	
Compound	RRF	RRF	RRF	8D	8D	
=======================================	======	======	=====	======	====	
dichlorodifluoromethane	.40999	.278	.1	-32	20	F
chloromethane	24704	.21035	.1	-15	20	
vinyl chloride	.3412	.31092	.1	-9	20	
bromomethane	.16122	.15326	.1	-5	20	
chloroethane	.14779	.15827	.1	7	20	
trichlorofluoromethane	.60766	.56421	.1	-7	20	
ethyl ether	.15878	.14942	.05	-6	20	
1,1,-dichloroethene	.36744	.37224	.1	1	20	
carbon disulfide	.89077	.88622	.1	-1	20	
freon-113	.38161	.35459	.1	-7	20	
iodomethane	.40601	.19654	.05	-52	20	F
acrolein	.0153	.03484	.05	128	20	F
methylene chloride	.30396	.31129	.1	2	20	
acetone	100	79.976	.1	-20	20	F
trans-1,2-dichloroethene	.39316	.40335	.1	3	20	
methyl acetate	.13189	.13181	.1	0	20	
methyl tert butyl ether	.73409	.70664	.1	-4	20	
tert butyl alcohol	.01382	.01288	.05	-7	20	F
Diisopropyl Ether	1.2026	1.2779	.01	6	20	
1,1-dichloroethane	.66827	.73455	.2	10	20	1
acrylonitrile	.07507	.08352	.05	11	20	1
Halothane	.32124	.34356	.05	7	20	1
Ethyl-Tert-Butyl-Ether	.95283	1.0046	.05	5	20	
vinyl acetate	.66888	.73409	.05	10	20	1
cis-1,2-dichloroethene	.44516	.50897	.1	14	20	
2,2-dichloropropane	.5224	.64228	.05	23	20	F
cyclohexane	.65214	.6535	.01	0	30	
bromochloromethane	.20365	.2251	.05	11	20	ł.
chloroform	.67973	.72878	.2	7	20	
carbontetrachloride	.61351	.64716	.1	5	20	
tetrahydrofuran	.07634	.0756	.05	-1	20	
ethyl acetate	.22348	.22581	.05	1	20	İ.
1.1.1-trichloroethane	.66057	.70882	.1	7	20	ł –
1,1-dichloropropene	.52285	.58531	.05	12	20	
2-butanone	.0934	.09803	1.1	5	20	F
benzene	1.5651	1.7633	5	13	2.0	-
Tertiary-Amyl Methyl Ether	76264	.81179	.05	6	20	
1.2-dichloroethane	40854	43409	1	6	20	
			• -	ĺ		
	I	I ———	I ———	I ———	I ———	1

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615699

Instrument ID: Jack.i	Calibration Date: 26-MAY-2016 Time: 07	7:34
Lab File ID: VJ160526A0	Init. Calib. Date(s): 09-MAY-2 09-MAY	Y-2
Sample No: 8260 CCAL	Init. Calib. Times : 11:55 15:1	10

			MIN		MAX	
Compound	RRF	RRF	RRF	%D	%D	
	======	======	=====	======	= = = =	
methyl cyclohexane	.67585	.69873	.01	3	30	
trichloroethene	.43659	.48929	.2	12	20	
dibromomethane	.19015	.20148	.05	6	20	
1,2-dichloropropane	.34014	.38836	.1	14	20	
bromodichloromethane	.45577	.48667	.2	7	20	
1,4-dioxane	.00136	.00135	.05	-1	20	F
2-chloroethylvinyl ether	.15225	.17004	.05	12	20	
cis-1,3-dichloropropene	.51596	.57855	.2	12	20	
toluene	1.7138	1.7410	.4	2	20	
tetrachloroethene	.85577	.871	.2	2	20	
4-methyl-2-pentanone	.06315	.07155	.1	13	20	F
trans-1,3-dichloropropene	.72271	.71124	.1	-2	20	
1,1,2-trichloroethane	.36607	.36924	.1	1	20	
ethyl-methacrylate	.46713	.45478	.01	-3	30	
chlorodibromomethane	.53653	.50557	.1	-6	20	
1,3-dichloropropane	.73232	.72263	.05	-1	20	
1,2-dibromoethane	.43894	.43315	.1	-1	20	
2-hexanone	.18832	.18044	.1	-4	20	
chlorobenzene	1.4764	1.5916	.5	8	20	
ethyl benzene	2.2312	2.4329	.1	9	20	
1,1,1,2-tetrachloroethane	.5414	.57245	.05	6	20	
p/m xylene	.88027	.95653	.1	9	20	
o xylene	.79529	.84005	.3	6	20	
bromoform	.45997	.49819	.1	8	20	
styrene	1.1777	1.3321	.3	13	20	
isopropylbenzene	4.6503	5.2992	.1	14	20	
bromobenzene	1.1065	1.2070	.05	9	20	
1,4-dichlorobutane	.93935	1.1043	.01	18	30	
n-propylbenzene	4.7761	5.0739	.05	6	20	
1,1,2,2,-tetrachloroethane	.6122	.59414	.3	-3	20	
4-ethyltoluene	4.0036	4.1571	.05	4	20	
2-chlorotoluene	3.1145	3.4143	.05	10	20	
1,2,3-trichloropropane	.48482	.49819	.05	3	20	
1,3,5-trimethybenzene	3.4156	3.4601	.05	1	20	
trans-1,4-dichloro-2-butene	.17274	.17865	.05	3	20	
4-chorotoluene	2.8623	3.0621	.05	7	20	
tert-butylbenzene	3.1591	3.0428	.05	-4	20	
1,2,4-trimethylbenzene_	3.1315	3.2352	.05	3	20	
			. —		. – .	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1615699

Instrument ID: Jack.i	Calibration Date: 26-MAY-2016 Time: 07	:34
Lab File ID: VJ160526A0	Init. Calib. Date(s): 09-MAY-2 09-MAY	-2
Sample No: 8260 CCAL	Init. Calib. Times : 11:55 15:1	0

Compound	ਜ਼ਰੂਰ	ਸ਼ਰਰ	MIN RRF	₽D	MAX &D	
	======					
Compound sec-butylbenzene	RRF ===== 4.2815 3.4749 2.2006 2.2159 100 2.0756 2.5483 .11424 100 .50802 1.8645 .9212 ===== .25353 .22712 1.6444 .82416	RRF ===== 4.0482 3.3588 2.3145 2.2503 85.132 84.022 2.1625 3.1938 .0995 90.510 1.1060 .488 2.1292 1.0231 ==== .24527 .20925 1.4885 .80457	RRF ===== .01 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	*D 5 -3 5 2 -15 -16 4 25 -13 -9 2 -4 14 11 ==== -3 -8 -9 -2	<pre>%D ==== 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>	F
						ĺ
						1
						l l
						1

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number: L1712207	
Client: Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400	
ATTN:Lee VanzlerPhone:(617) 886-7561Project Name:BOSTON CHILDREN'S HOPSIT.Project Number:128868-006	AL
Report Date: 04/26/17	

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1712207-01	B115D_04182017	WATER	BOSTON, MA	04/18/17 15:30	04/18/17
L1712207-02	TB_04182017	WATER	BOSTON, MA	04/18/17 11:00	04/18/17

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BOSTON CHILDREN'S HOPSITAL Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics by Method 624

The WG997012-3 LCS recovery for 1,1,1-trichloroethane (110%), associated with L1712207-01 and -02 (both submitted samples), are outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

The WG997012-3 LCS recovery, associated with L1712207-01 and -02 (both submitted samples), is above the acceptance criteria for 1,2-dichlorobenzene (170%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

Semivolatile Organics

The WG995507-2/-3 LCS/LCSD recoveries, associated with L1712207-01 (B115D_04182017), are below the acceptance criteria for benzidine (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

Metals

The WG996069-2 LCS recoveries, associated with L1712207-01 (B115D_04182017), are above the acceptance criteria for cadmium (116%) and selenium (117%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

Solids, Total Suspended

WG995465: A laboratory duplicate could not be performed due to insufficient sample volume available for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whell M. Maria Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/26/17

ORGANICS

VOLATILES

		Serial_No	p:04261719:27
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	SAMPLE RESUL	.TS	
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017	Date Received:	04/18/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/26/17 14:33		
Analyst:	PK		

Parameter		Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Org	anics by GC/MS - Westborou	igh Lab					
Ethanol		ND	ug/l	250	14.	1	
	Surrogate	% Recovery	Qualifier	Acceptance Criteria			
	1,2-Dichloroethane-d4	102		70-130			
	Toluene-d8	102		70-130			
	4-Bromofluorobenzene	99		70-130			
	Dibromofluoromethane	100		70-130			

		Serial_N	0:04261719:27
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	SAMPLE RESULTS		
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017	Date Received:	04/18/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/26/17 16:20		
Analyst:	BD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	3.0	0.68	1	
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1	
Chloroform	0.23	J	ug/l	0.75	0.16	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1	
Tetrachloroethene	5.2		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	0.50	0.18	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.16	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1	
Bromoform	ND		ug/l	2.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.16	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
Chloromethane	0.45	J	ug/l	2.5	0.18	1	
Bromomethane	ND		ug/l	1.0	0.26	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	1.0	0.13	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
1,2-Dichloroethene, Total	2.7		ug/l	0.50	0.16	1	
Trichloroethene	1.4		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1	

					Serial_No:04261719:27			
Project Name:	BOSTON CHILDREN'S	5 HOPSITAL	_		Lab Nu	mber:	L1712207	
Project Number:	128868-006				Report	Date:	04/26/17	
		SAMP	LE RESULTS	S	•		0 11 201 11	
Lab ID: Client ID: Sample Location:	L1712207-01 B115D_04182017 BOSTON, MA				Date Col Date Rec Field Pre	lected: ceived: p:	04/18/17 15:30 04/18/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	Lab						
1.2 Dichlorobonzono					2.5	0.10	1	
				ug/l	2.5	0.19	1	
Methyl tert butyl ether		0.77	.1	ug/l	1.0	0.19	1	
n/m-Xylene		ND	0	ug/l	1.0	0.33	1	
o-Xvlene		ND		ug/l	1.0	0.33	1	
Xylenes Total		ND		ug/l	1.0	0.33	1	
cis-1 2-Dichloroethene		27		ug/l	0.50	0.00	1	
Dibromomethane		ND		ug/l	5.0	0.15	1	
1 4-Dichlorobutane		ND		ug/l	5.0	0.00	1	
1 2 3-Trichloropropage		ND		ug/l	5.0	0.10	1	
Styrene		ND		ug/l	1.0	0.10	1	
Dichlorodifluoromethane		ND		ug/l	5.0	0.24	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	0.30	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	0.31	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	0.42	1	
2-Hexanone		ND		ug/l	5.0	0.52	1	
Ethyl methacrylate		ND		ug/l	5.0	0.61	1	
Acrylonitrile		ND		ug/l	5.0	0.43	1	
Bromochloromethane		ND		ug/l	2.5	0.15	1	
Tetrahydrofuran		ND		ug/l	5.0	0.83	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.20	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.19	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.21	1	
1,1,1,2-Tetrachloroethan	le	ND		ug/l	0.50	0.16	1	
Bromobenzene		ND		ug/l	2.5	0.15	1	
n-Butylbenzene		ND		ug/l	0.50	0.19	1	
sec-Butylbenzene		ND		ug/l	0.50	0.18	1	
tert-Butylbenzene		ND		ug/l	2.5	0.18	1	
o-Chlorotoluene		ND		ug/l	2.5	0.17	1	
p-Chlorotoluene		ND		ug/l	2.5	0.18	1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.35	1	
Hexachlorobutadiene		ND		ug/l	0.50	0.22	1	
Isopropylbenzene		ND		ug/l	0.50	0.19	1	
p-Isopropyltoluene		ND		ug/l	0.50	0.19	1	
Naphthalene		0.52	J	ug/l	2.5	0.22	1	
n-Propylbenzene		ND		ug/l	0.50	0.17	1	
1.2.3-Trichlorobenzene		ND		ua/l	2.5	0.23	1	

						Serial_No	p:04261719:27
Project Name: BOSTON CHILDREN'S		S HOPSITAL	-		Lab Nu	umber:	L1712207
Project Number:	128868-006				Report	Date:	04/26/17
		SAMP	LE RESULTS	5			
Lab ID:	L1712207-01				Date Co	llected:	04/18/17 15:30
Client ID:	B115D_04182017				Date Re	ceived:	04/18/17
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	n Lab					
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.17	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.19	1
trans-1,4-Dichloro-2-bute	ene	ND		ug/l	2.5	0.18	1
Ethyl ether		ND		ug/l	2.5	0.16	1
Tert-Butyl Alcohol		ND		ug/l	10	1.4	1
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0	0.28	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	106		70-130	

			Serial_No	04261719:27
Project Name:	BOSTON CHILDREN'S HO	DPSITAL	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17
		SAMPLE RESULTS		
Lab ID:	L1712207-01		Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017		Date Received:	04/18/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C-SIM(M)			
Analytical Date:	04/26/17 16:20			
Analyst:	BD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Wes							
1,4-Dioxane	ND		ug/l	3.0	0.76	1	

		Serial_No	Serial_No:04261719:27		
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207		
Project Number:	128868-006	Report Date:	04/26/17		
	SAMPLE R	ESULTS			
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30		
Client ID:	B115D_04182017	Date Received:	04/18/17		
Sample Location:	BOSTON, MA	Field Prep:	Not Specified		
Matrix:	Water	Extraction Method	Extraction Method:EPA 504.1		
Analytical Method:	14,504.1	Extraction Date:	04/19/17 11:03		
Analytical Date:	04/19/17 18:25				
Analyst:	SL				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Microextractables by GC - Westborough Lab								
1,2-Dibromoethane	ND		ug/l	0.010	0.004	1	A	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010	0.005	1	А	

		Serial_No:04261719:27		
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207	
Project Number:	128868-006	Report Date:	04/26/17	
	SAMPLE RESULTS			
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30	
Client ID:	B115D_04182017	Date Received:	04/18/17	
Sample Location:	BOSTON, MA	Field Prep:	Not Specified	
Matrix:	Water		-	
Analytical Method:	5,624			
Analytical Date:	04/20/17 17:34			
Analyst:	GT			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	5.0	0.62	1	
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1	
Chloroform	ND		ug/l	1.5	0.22	1	
Carbon tetrachloride	ND		ug/l	1.0	0.32	1	
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1	
Dibromochloromethane	ND		ug/l	1.0	0.33	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1	
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1	
Tetrachloroethene	5.6		ug/l	1.5	0.33	1	
Chlorobenzene	ND		ug/l	3.5	0.30	1	
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1	
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1	
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1	
Bromodichloromethane	ND		ug/l	1.0	0.25	1	
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1	
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1	
Bromoform	ND		ug/l	1.0	0.32	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1	
Benzene	ND		ug/l	1.0	0.23	1	
Toluene	ND		ug/l	1.0	0.32	1	
Ethylbenzene	ND		ug/l	1.0	0.31	1	
Chloromethane	ND		ug/l	5.0	0.64	1	
Bromomethane	ND		ug/l	5.0	1.3	1	
Vinyl chloride	ND		ug/l	1.0	0.30	1	
Chloroethane	ND		ug/l	2.0	0.26	1	
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1	
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1	
cis-1,2-Dichloroethene ¹	3.0		ug/l	1.0	0.29	1	
Trichloroethene	1.5		ug/l	1.0	0.33	1	
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1	

					Serial_No:04261719:27				
Project Name:	ame: BOSTON CHILDREN'S HOPSITAL			Lab Number:		L1712207			
Project Number:	128868-006				Report	Date:	04/26/17		
		SAMP		S					
Lab ID: Client ID: Sample Location:	L1712207-01 B115D_04182017 BOSTON, MA			Date Collected: Date Received: Field Prep:		04/18/17 15:30 04/18/17 Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	by GC/MS - Westborough	n Lab							
1,3-Dichlorobenzene		ND		ug/l	5.0	0.25	1		
1,4-Dichlorobenzene		ND		ug/l	5.0	0.26	1		
p/m-Xylene ¹		ND		ug/l	2.0	0.58	1		
o-xylene ¹		ND		ug/l	1.0	0.22	1		
Xylenes, Total ¹		ND		ug/l	1.0	0.22	1		
Styrene ¹		ND		ug/l	1.0	0.25	1		
Acetone ¹		ND		ug/l	10	4.0	1		
Carbon disulfide1		ND		ug/l	5.0	0.73	1		
2-Butanone ¹		ND		ug/l	10	2.2	1		
Vinyl acetate1		ND		ug/l	10	2.9	1		
4-Methyl-2-pentanone1		ND		ug/l	10	1.8	1		
2-Hexanone ¹		ND		ug/l	10	2.5	1		
Acrolein ¹		ND		ug/l	8.0	1.3	1		
Acrylonitrile ¹		ND		ug/l	10	0.97	1		
Methyl tert butyl Ether ¹		0.72	J	ug/l	10	0.27	1		
Dibromomethane ¹		ND		ug/l	1.0	0.11	1		
Tert-Butyl Alcohol ¹		ND		ug/l	100	6.0	1		
Tertiary-Amyl Methyl Eth	er ¹	ND		ug/l	20	0.18	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	104		80-120	
Fluorobenzene	105		80-120	
4-Bromofluorobenzene	99		80-120	

			Serial_N	o:04261719:27
Project Name:	BOSTON CHILDREN	I'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17
		SAMPLE RESULTS		
Lab ID:	L1712207-02		Date Collected:	04/18/17 11:00
Client ID:	TB_04182017		Date Received:	04/18/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	04/25/17 16:26			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	3.0	0.68	1	
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1	
Chloroform	ND		ug/l	0.75	0.16	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	0.50	0.18	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.16	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1	
Bromoform	ND		ug/l	2.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.16	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
Chloromethane	ND		ug/l	2.5	0.18	1	
Bromomethane	ND		ug/l	1.0	0.26	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	1.0	0.13	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1	

					;	Serial_N	o:04261719:27	
Project Name:	BOSTON CHILDREN	N'S HOPSITAL	_		Lab Nu	mber:	L1712207	
Project Number:	128868-006				Report	Date:	04/26/17	
	120000 000	SAMP		S			07/20/17	
Lab ID:	L1712207-02				Date Col	lected:	04/18/17 11:00	
Client ID:	TB_04182017				Date Ree	ceived:	04/18/17	
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westborou	gh Lab						
		ND			0.5	0.40		
1,3-Dichlorobenzene		ND		ug/l	2.5	0.19	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.19	1	
Methyl tert butyl ether		ND		ug/l	1.0	0.17	1	
p/m-xylene		ND		ug/I	1.0	0.33	1	
o-Xylene		ND		ug/l	1.0	0.33	1	
Xylenes, I otal		ND		ug/l	1.0	0.33	1	
cis-1,2-Dichloroethene		ND		ug/l	0.50	0.19	1	
Dibromomethane		ND		ug/l	5.0	0.36	1	
1,4-Dichlorobutane		ND		ug/l	5.0	0.46	1	
1,2,3-Trichloropropane		ND		ug/l	5.0	0.18	1	
Styrene		ND		ug/l	1.0	0.36	1	
Dichlorodifluoromethane		ND		ug/l	5.0	0.24	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	0.30	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	0.31	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	0.42	1	
2-Hexanone		ND		ug/l	5.0	0.52	1	
Ethyl methacrylate		ND		ug/l	5.0	0.61	1	
Acrylonitrile		ND		ug/l	5.0	0.43	1	
Bromochloromethane		ND		ug/l	2.5	0.15	1	
Tetrahydrofuran		ND		ug/l	5.0	0.83	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.20	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.19	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.21	1	
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50	0.16	1	
Bromobenzene		ND		ug/l	2.5	0.15	1	
n-Butylbenzene		ND		ug/l	0.50	0.19	1	
sec-Butylbenzene		ND		ug/l	0.50	0.18	1	
tert-Butylbenzene		ND		ug/l	2.5	0.18	1	
o-Chlorotoluene		ND		ug/l	2.5	0.17	1	
p-Chlorotoluene		ND		ug/l	2.5	0.18	1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.35	1	
Hexachlorobutadiene		ND		ug/l	0.50	0.22	1	
Isopropylbenzene		ND		ug/l	0.50	0.19	1	
p-Isopropyltoluene		ND		ug/l	0.50	0.19	1	
Naphthalene		0.51	J	ug/l	2.5	0.22	1	
n-Propylbenzene		ND		ug/l	0.50	0.17	1	
1,2,3-Trichlorobenzene		0.43	J	ug/l	2.5	0.23	1	

						Serial_No:04261719:27		
Project Name:	BOSTON CHILDREN	N'S HOPSITAL	_		Lab Nu	umber:	L1712207	
Project Number:	128868-006				Report	Date:	04/26/17	
		SAMP	LE RESULTS	5				
Lab ID:	L1712207-02			Date Co	llected:	04/18/17 11:00		
Client ID:	TB_04182017	Date Receive		ceived:	04/18/17			
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westborou	gh Lab						
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.22	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.17	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.19	1	
trans-1,4-Dichloro-2-bute	ene	ND		ug/l	2.5	0.18	1	
Ethyl ether		ND		ug/l	2.5	0.16	1	
Tert-Butyl Alcohol		ND		ug/l	10	1.4	1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0	0.28	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	109	70-130
Dibromofluoromethane	101	70-130

			Serial_N	o:04261719:27
Project Name:	BOSTON CHILDREN'S H	HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17
		SAMPLE RESULTS		
Lab ID:	L1712207-02		Date Collected:	04/18/17 11:00
Client ID:	TB_04182017		Date Received:	04/18/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C-SIM(M)			
Analytical Date:	04/25/17 16:26			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Wes	tborough Lab						
1,4-Dioxane	ND		ug/l	3.0	0.76	1	

			Serial_No	04261719:27
Project Name:	BOSTON CHILDREN'S HOPSIT	AL	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17
	SAN	IPLE RESULTS		
Lab ID:	L1712207-02		Date Collected:	04/18/17 11:00
Client ID:	TB_04182017		Date Received:	04/18/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water		Extraction Method	1:EPA 504.1
Analytical Method:	14,504.1		Extraction Date:	04/19/17 11:03
Analytical Date:	04/19/17 18:41			
Analyst:	SL			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010	0.004	1	A
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010	0.005	1	А

		Serial_N	0:04261719:27
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	SAMPLE RES	SULTS	
Lab ID:	L1712207-02	Date Collected:	04/18/17 11:00
Client ID:	TB_04182017	Date Received:	04/18/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	5,624		
Analytical Date:	04/20/17 16:06		
Analyst:	GT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	5.0	0.62	1
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1
Chloroform	ND		ug/l	1.5	0.22	1
Carbon tetrachloride	ND		ug/l	1.0	0.32	1
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1
Dibromochloromethane	ND		ug/l	1.0	0.33	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1
Tetrachloroethene	ND		ug/l	1.5	0.33	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1
Bromodichloromethane	ND		ug/l	1.0	0.25	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1
Bromoform	ND		ug/l	1.0	0.32	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1
Benzene	ND		ug/l	1.0	0.23	1
Toluene	ND		ug/l	1.0	0.32	1
Ethylbenzene	ND		ug/l	1.0	0.31	1
Chloromethane	ND		ug/l	5.0	0.64	1
Bromomethane	ND		ug/l	5.0	1.3	1
Vinyl chloride	ND		ug/l	1.0	0.30	1
Chloroethane	ND		ug/l	2.0	0.26	1
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	0.29	1
Trichloroethene	ND		ug/l	1.0	0.33	1
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1

	Serial_No:04261719:27					0:04261719:27		
Project Name:	BOSTON CHILDRE	N'S HOPSITAL	_		Lab Nu	ımber:	L1712207	
Project Number:	128868-006				Report	Date:	04/26/17	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1712207-02 TB_04182017 BOSTON, MA				Date Co Date Re Field Pre	llected: ceived: ep:	04/18/17 11:00 04/18/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westborou	ıgh Lab						
1,3-Dichlorobenzene		ND		ug/l	5.0	0.25	1	
1,4-Dichlorobenzene		ND		ug/l	5.0	0.26	1	
p/m-Xylene ¹		ND		ug/l	2.0	0.58	1	
o-xylene ¹		ND		ug/l	1.0	0.22	1	
Xylenes, Total ¹		ND		ug/l	1.0	0.22	1	
Styrene ¹		ND		ug/l	1.0	0.25	1	
Acetone ¹		ND		ug/l	10	4.0	1	
Carbon disulfide1		ND		ug/l	5.0	0.73	1	
2-Butanone ¹		ND		ug/l	10	2.2	1	
Vinyl acetate1		ND		ug/l	10	2.9	1	
4-Methyl-2-pentanone1		ND		ug/l	10	1.8	1	
2-Hexanone ¹		ND		ug/l	10	2.5	1	
Acrolein ¹		ND		ug/l	8.0	1.3	1	
Acrylonitrile ¹		ND		ug/l	10	0.97	1	
Methyl tert butyl Ether ¹		ND		ug/l	10	0.27	1	
Dibromomethane ¹		ND		ug/l	1.0	0.11	1	
Tert-Butyl Alcohol ¹		ND		ug/l	100	6.0	1	
Tertiary-Amyl Methyl Eth	er ¹	ND		ug/l	20	0.18	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	108		80-120	
Fluorobenzene	108		80-120	
4-Bromofluorobenzene	99		80-120	

Extraction Method: EPA 504.1

Extraction Date:

MDL

0.004

0.005

А

А

ALPHA

04/19/17 11:03

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis Batch Quality Control		

Result

ND

ND

Microextractables by GC - Westborough Lab for sample(s): 01-02

Qualifier

Units

ug/l

ug/l

RL

0.010

0.010

Batch: WG995581-1

Analytical Method:

Analytical Date:

Analyst:

Page 22 of 116

14,504.1

SL

Parameter

1,2-Dibromoethane

1,2-Dibromo-3-chloropropane

04/19/17 17:38

04/26/17

Lab Number:

Project Name:	BOSTON CHILDREN'S HOPSITAL
---------------	----------------------------

Project Number: 128868-006

Report Date: Method Blank Analysis Batch Quality Control

Analytical Method:	5,624
Analytical Date:	04/20/17 11:30
Analyst:	GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough Lal	b for sample(s):	01-02 Batch:	WG997012-4
Methylene chloride	ND	ug/l	5.0	0.62
1,1-Dichloroethane	ND	ug/l	1.5	0.29
Chloroform	ND	ug/l	1.5	0.22
Carbon tetrachloride	ND	ug/l	1.0	0.32
1,2-Dichloropropane	ND	ug/l	3.5	0.27
Dibromochloromethane	ND	ug/l	1.0	0.33
1,1,2-Trichloroethane	ND	ug/l	1.5	0.24
2-Chloroethylvinyl ether	ND	ug/l	10	0.54
Tetrachloroethene	ND	ug/l	1.5	0.33
Chlorobenzene	ND	ug/l	3.5	0.30
Trichlorofluoromethane	ND	ug/l	5.0	0.46
1,2-Dichloroethane	ND	ug/l	1.5	0.32
1,1,1-Trichloroethane	ND	ug/l	2.0	0.30
Bromodichloromethane	ND	ug/l	1.0	0.25
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.26
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.32
Bromoform	ND	ug/l	1.0	0.32
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.22
Benzene	ND	ug/l	1.0	0.23
Toluene	ND	ug/l	1.0	0.32
Ethylbenzene	ND	ug/l	1.0	0.31
Chloromethane	ND	ug/l	5.0	0.64
Bromomethane	ND	ug/l	5.0	1.3
Vinyl chloride	ND	ug/l	1.0	0.30
Chloroethane	ND	ug/l	2.0	0.26
1,1-Dichloroethene	ND	ug/l	1.0	0.37
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene1	ND	ug/I	1.0	0.29
Trichloroethene	ND	ug/l	1.0	0.33

Project Name:	BOSTON CHILDREN'S HOPSITAL	

Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

Analytical Method:	5,624
Analytical Date:	04/20/17 11:30
Analyst:	GT

Parameter	Result	Qualifier Units	s RL	MDL	
/olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-02 Batch:	WG997012-4	
1,2-Dichlorobenzene	ND	ug/l	5.0	0.26	
1,3-Dichlorobenzene	ND	ug/l	5.0	0.25	
1,4-Dichlorobenzene	ND	ug/l	5.0	0.26	
p/m-Xylene ¹	ND	ug/l	2.0	0.58	
o-xylene ¹	ND	ug/l	1.0	0.22	
Xylenes, Total ¹	ND	ug/l	1.0	0.22	
Styrene ¹	ND	ug/l	1.0	0.25	
Acetone ¹	ND	ug/l	10	4.0	
Carbon disulfide1	ND	ug/l	5.0	0.73	
2-Butanone ¹	ND	ug/l	10	2.2	
Vinyl acetate1	ND	ug/l	10	2.9	
4-Methyl-2-pentanone1	ND	ug/l	10	1.8	
2-Hexanone ¹	ND	ug/l	10	2.5	
Acrolein ¹	ND	ug/l	8.0	1.3	
Acrylonitrile ¹	ND	ug/l	10	0.97	
Methyl tert butyl Ether ¹	ND	ug/l	10	0.27	
Dibromomethane ¹	ND	ug/l	1.0	0.11	
Tert-Butyl Alcohol ¹	ND	ug/l	100	6.0	
Tertiary-Amyl Methyl Ether ¹	ND	ug/l	20	0.18	

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
Pentafluorobenzene	104		80-120		
Fluorobenzene	105		80-120		
4-Bromofluorobenzene	96		80-120		

Project Name:	BOSTON CHILDREN'S HOPSITAL
---------------	----------------------------

Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

Analytical Method:	1,8260C
Analytical Date:	04/25/17 14:46
Analyst:	PK

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS ·	· Westborough La	ab for sampl	e(s): 02	Batch:	WG997458-5
Methylene chloride	ND		ug/l	3.0	0.68
1,1-Dichloroethane	ND		ug/l	0.75	0.21
Chloroform	ND		ug/l	0.75	0.16
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.8	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	0.50	0.18
Trichlorofluoromethane	ND		ug/l	2.5	0.16
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.17
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	0.75	0.16
Ethylbenzene	ND		ug/l	0.50	0.17
Chloromethane	ND		ug/l	2.5	0.18
Bromomethane	0.26	J	ug/l	1.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	1.0	0.13
1,1-Dichloroethene	ND		ug/l	0.50	0.17
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16
Trichloroethene	ND		ug/l	0.50	0.18

04/26/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOPSITAL
---------------	----------------------------

Project Number: 128868-006

Analytical Method:	1,8260C
Analytical Date:	04/25/17 14:46
Analyst:	PK

Parameter	Result	Qualifier L	Jnits	RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sample(s): 02	Batch:	WG997458-5
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19
1,4-Dichlorobenzene	ND		ug/l	2.5	0.19
Methyl tert butyl ether	ND		ug/l	1.0	0.17
p/m-Xylene	ND		ug/l	1.0	0.33
o-Xylene	ND		ug/l	1.0	0.33
Xylenes, Total	ND		ug/l	1.0	0.33
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19
Dibromomethane	ND		ug/l	5.0	0.36
1,4-Dichlorobutane	ND		ug/l	5.0	0.46
1,2,3-Trichloropropane	ND		ug/l	5.0	0.18
Styrene	ND		ug/l	1.0	0.36
Dichlorodifluoromethane	ND		ug/l	5.0	0.24
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	0.30
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	0.31
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42
2-Hexanone	ND		ug/l	5.0	0.52
Ethyl methacrylate	ND		ug/l	5.0	0.61
Acrylonitrile	ND		ug/l	5.0	0.43
Bromochloromethane	ND		ug/l	2.5	0.15
Tetrahydrofuran	ND		ug/l	5.0	0.83
2,2-Dichloropropane	ND		ug/l	2.5	0.20
1,2-Dibromoethane	ND		ug/l	2.0	0.19
1,3-Dichloropropane	ND		ug/l	2.5	0.21
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16
Bromobenzene	ND		ug/l	2.5	0.15
n-Butylbenzene	ND		ug/l	0.50	0.19

04/26/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOPSITAL
---------------	----------------------------

Project Number: 128868-006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/25/17 14:46Analyst:PK

Parameter	Result	Qualifier	Units	RL	MDL	
/olatile Organics by GC/MS -	Westborough La	b for samp	le(s): 02	Batch:	WG997458-5	
sec-Butylbenzene	ND		ug/l	0.50	0.18	
tert-Butylbenzene	ND		ug/l	2.5	0.18	
o-Chlorotoluene	ND		ug/l	2.5	0.17	
p-Chlorotoluene	ND		ug/l	2.5	0.18	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35	
Hexachlorobutadiene	ND		ug/l	0.50	0.22	
Isopropylbenzene	ND		ug/l	0.50	0.19	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	
Naphthalene	0.57	J	ug/l	2.5	0.22	
n-Propylbenzene	ND		ug/l	0.50	0.17	
1,2,3-Trichlorobenzene	0.47	J	ug/l	2.5	0.23	
1,2,4-Trichlorobenzene	0.45	J	ug/l	2.5	0.22	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18	
Ethyl ether	ND		ug/l	2.5	0.16	
Tert-Butyl Alcohol	ND		ug/l	10	1.4	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	

		Α	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	95		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	107		70-130
Dibromofluoromethane	99		70-130

04/26/17

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:
Project Number:	128868-006	Report Date:

Analytical Method:	1,8260C
Analytical Date:	04/26/17 14:05
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	ab for sample(s): 01	Batch:	WG997825-5	
Methyl Methacrylate	ND	ug/l	2.5	0.32	
iso-Butyl Alcohol	ND	ug/l	10	4.0	
Ethyl Alcohol	ND	ug/l	250	14.	
iso-Propyl Alcohol	ND	ug/l	100	8.5	
n-Butyl Alcohol	ND	ug/l	100	8.0	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	101		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	100		70-130

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM	- Westborough	Lab for sa	ample(s):	01	Batch:	WG997846-5	
1,4-Dioxane	ND		ug/l		3.0	0.76	

04/26/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOPSITAL
---------------	----------------------------

Project Number: 128868-006

Analytical Method:	1,8260C
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier Un	its	RL	MDL	
Volatile Organics by GC/MS	- Westborough La	b for sample(s)	: 01	Batch:	WG997849-5	
Methylene chloride	ND	U	g/l	3.0	0.68	
1,1-Dichloroethane	ND	U	g/l	0.75	0.21	_
Chloroform	ND	U	g/l	0.75	0.16	
Carbon tetrachloride	ND	U	g/l	0.50	0.13	
1,2-Dichloropropane	ND	U	g/l	1.8	0.14	
Dibromochloromethane	ND	u	g/l	0.50	0.15	
1,1,2-Trichloroethane	ND	u	g/l	0.75	0.14	
Tetrachloroethene	ND	u	g/l	0.50	0.18	
Chlorobenzene	ND	u	g/l	0.50	0.18	
Trichlorofluoromethane	ND	u	g/l	2.5	0.16	
1,2-Dichloroethane	ND	u	g/l	0.50	0.13	
1,1,1-Trichloroethane	ND	u	g/l	0.50	0.16	
Bromodichloromethane	ND	u	g/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	U	g/l	0.50	0.14	
1,1-Dichloropropene	ND	u	g/l	2.5	0.17	
Bromoform	ND	U	g/l	2.0	0.25	
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50	0.17	_
Benzene	ND	u	g/l	0.50	0.16	
Toluene	ND	u	g/l	0.75	0.16	
Ethylbenzene	ND	u	g/l	0.50	0.17	
Chloromethane	ND	U	g/l	2.5	0.18	
Bromomethane	ND	U	g/l	1.0	0.26	
Vinyl chloride	ND	U	g/l	1.0	0.07	
Chloroethane	ND	U	g/l	1.0	0.13	
1,1-Dichloroethene	ND	U	g/l	0.50	0.17	
1,2-Dichloroethene, Total	ND	U	g/l	0.50	0.16	
Trichloroethene	ND	U	g/l	0.50	0.18	

04/26/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOPSITAL	
---------------	----------------------------	--

Project Number: 128868-006

Analytical Method:	1,8260C
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier Units	s RL	MDL
/olatile Organics by GC/MS -	Westborough La	b for sample(s):	01 Batch:	WG997849-5
1,2-Dichlorobenzene	ND	ug/	2.5	0.18
1,3-Dichlorobenzene	ND	ug/	2.5	0.19
1,4-Dichlorobenzene	ND	ug/	2.5	0.19
Methyl tert butyl ether	ND	ug/	l 1.0	0.17
p/m-Xylene	ND	ug/	l 1.0	0.33
o-Xylene	ND	ug/	1.0	0.33
Xylenes, Total	ND	ug/	1.0	0.33
cis-1,2-Dichloroethene	ND	ug/	0.50	0.19
Dibromomethane	ND	ug/	5.0	0.36
1,4-Dichlorobutane	ND	ug/	5.0	0.46
1,2,3-Trichloropropane	ND	ug/	5.0	0.18
Styrene	ND	ug/	1.0	0.36
Dichlorodifluoromethane	ND	ug/	5.0	0.24
Acetone	ND	ug/	5.0	1.5
Carbon disulfide	ND	ug/	5.0	0.30
2-Butanone	ND	ug/	5.0	1.9
Vinyl acetate	ND	ug/	5.0	0.31
4-Methyl-2-pentanone	ND	ug/	5.0	0.42
2-Hexanone	ND	ug/	5.0	0.52
Ethyl methacrylate	ND	ug/	5.0	0.61
Acrylonitrile	ND	ug/	5.0	0.43
Bromochloromethane	ND	ug/	2.5	0.15
Tetrahydrofuran	ND	ug/	5.0	0.83
2,2-Dichloropropane	ND	ug/	2.5	0.20
1,2-Dibromoethane	ND	ug/	2.0	0.19
1,3-Dichloropropane	ND	ug/	2.5	0.21
1,1,1,2-Tetrachloroethane	ND	ug/	0.50	0.16
Bromobenzene	ND	ug/	2.5	0.15
n-Butylbenzene	ND	ug/	0.50	0.19

04/26/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOPSITAL	
---------------	----------------------------	--

Project Number: 128868-006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/26/17 13:00Analyst:BD

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS -	Westborough Lab	o for samp	ole(s): 01	Batch:	WG997849-5
sec-Butylbenzene	ND		ug/l	0.50	0.18
tert-Butylbenzene	ND		ug/l	2.5	0.18
o-Chlorotoluene	ND		ug/l	2.5	0.17
p-Chlorotoluene	ND		ug/l	2.5	0.18
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35
Hexachlorobutadiene	ND		ug/l	0.50	0.22
Isopropylbenzene	ND		ug/l	0.50	0.19
p-Isopropyltoluene	ND		ug/l	0.50	0.19
Naphthalene	0.55	J	ug/l	2.5	0.22
n-Propylbenzene	ND		ug/l	0.50	0.17
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23
1,2,4-Trichlorobenzene	0.35	J	ug/l	2.5	0.22
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18
Ethyl ether	ND		ug/l	2.5	0.16
Tert-Butyl Alcohol	ND		ug/l	10	1.4
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28

		4	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	96		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	98		70-130

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207	
Project Number:	128868-006	Report Date:	04/26/17	
Method Blank Analysis				

Batch Quality Control

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	04/25/17 14:46
Analyst:	PK

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	02	Batch:	WG997859-5	
1,4-Dioxane	ND		ug/l		3.0	0.76	

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01-0	2 Batch: WG9	95581-2					
1,2-Dibromoethane	104		-		70-130	-			A
1,2-Dibromo-3-chloropropane	99		-		70-130	-			А

RPD

Limits

Lab Control Sample Analysis

Qual

%Recovery

Limits

81-122

84-116

83-121

84-123

RPD

-

-

-

-

Batch Quality Control

LCSD

%Recovery

Qual

BOSTON CHILDREN'S HOPSITAL

LCS

%Recovery

110

105

100

90

Qual

Project Name:

Parameter

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997012-3 Methylene chloride 100 70-111 30 --1,1-Dichloroethane 110 78-116 30 --Chloroform 105 86-111 30 --Carbon tetrachloride 30 110 -60-112 -1,2-Dichloropropane 105 83-113 30 --Dibromochloromethane 30 90 58-129 --1,1,2-Trichloroethane 95 80-118 30 --2-Chloroethylvinyl ether 85 69-124 30 --Tetrachloroethene 80-126 30 100 --Chlorobenzene 80-126 30 85 --100 83-128 30 Trichlorofluoromethane --1,2-Dichloroethane 105 82-110 30 --1,1,1-Trichloroethane Q 72-109 30 110 --Bromodichloromethane 100 71-120 30 -trans-1,3-Dichloropropene 73-106 30 100 -cis-1,3-Dichloropropene 78-111 30 100 --Bromoform 80 45-131 30 --

-

-

-

-

30

30

30

30

Ethylbenzene

Benzene

Toluene

1,1,2,2-Tetrachloroethane

Project Number: 128868-006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG997012-3					
Chloromethane	100		-		70-144	-		30	
Bromomethane	75		-		63-141	-		30	
Vinyl chloride	105		-		56-118	-		30	
Chloroethane	105		-		74-130	-		30	
1,1-Dichloroethene	110		-		77-116	-		30	
trans-1,2-Dichloroethene	110		-		81-121	-		30	
cis-1,2-Dichloroethene ¹	105		-		85-110	-		30	
Trichloroethene	105		-		84-118	-		30	
1,2-Dichlorobenzene	170	Q	-		78-128	-		30	
1,3-Dichlorobenzene	105		-		77-125	-		30	
1,4-Dichlorobenzene	110		-		77-125	-		30	
p/m-Xylene ¹	88		-		81-121	-		30	
o-Xylene ¹	85		-		81-124	-		30	
Styrene ¹	85		-		84-133	-		30	
Acetone ¹	106		-		40-160	-		30	
Carbon disulfide ¹	80		-		54-134	-		30	
2-Butanone ¹	106		-		57-116	-		30	
Vinyl acetate ¹	128		-		40-160	-		30	
4-Methyl-2-pentanone ¹	94		-		79-125	-		30	
2-Hexanone ¹	94		-		78-120	-		30	
Acrolein ¹	115		-		40-160	-		30	

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-02 Batch:	WG997012-3					
Acrylonitrile ¹	105		-		66-123	-		30	
Methyl tert butyl ether ¹	100		-		57-126	-		30	
Dibromomethane ¹	100		-		65-126	-		30	
tert-Butyl Alcohol ¹	97		-		52-114	-		30	
Tertiary-Amyl Methyl Ether ¹	100		-		66-111	-		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Pentafluorobenzene	102				80-120	
Fluorobenzene	104				80-120	
4-Bromofluorobenzene	95				80-120	

Project Number: 128868-006

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - West	borough Lab Associated sample(s):	02 Batch: WGS	997458-3 WG997458-4		
Methylene chloride	100	100	70-130	0	20
1,1-Dichloroethane	100	110	70-130	10	20
Chloroform	92	100	70-130	8	20
Carbon tetrachloride	80	84	63-132	5	20
1,2-Dichloropropane	93	96	70-130	3	20
Dibromochloromethane	88	88	63-130	0	20
1,1,2-Trichloroethane	84	89	70-130	6	20
Tetrachloroethene	93	96	70-130	3	20
Chlorobenzene	93	97	75-130	4	25
Trichlorofluoromethane	83	89	62-150	7	20
1,2-Dichloroethane	85	90	70-130	6	20
1,1,1-Trichloroethane	84	91	67-130	8	20
Bromodichloromethane	86	93	67-130	8	20
trans-1,3-Dichloropropene	91	90	70-130	1	20
cis-1,3-Dichloropropene	90	94	70-130	4	20
1,1-Dichloropropene	91	94	70-130	3	20
Bromoform	86	89	54-136	3	20
1,1,2,2-Tetrachloroethane	84	94	67-130	11	20
Benzene	96	99	70-130	3	25
Toluene	96	100	70-130	4	25
Ethylbenzene	93	97	70-130	4	20

Project Number: 128868-006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	2 Batch: WG	997458-3	WG997458-4			
Chloromethane	100		97		64-130	3	20	
Bromomethane	96		110		39-139	14	20	
Vinyl chloride	88		93		55-140	6	20	
Chloroethane	99		110		55-138	11	20	
1,1-Dichloroethene	92		99		61-145	7	25	
Trichloroethene	90		92		70-130	2	25	
1,2-Dichlorobenzene	98		110		70-130	12	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	96		100		70-130	4	20	
Methyl tert butyl ether	83		93		63-130	11	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		100		70-130	5	20	
cis-1,2-Dichloroethene	92		100		70-130	8	20	
Dibromomethane	90		91		70-130	1	20	
1,4-Dichlorobutane	89		95		70-130	7	20	
1,2,3-Trichloropropane	93		86		64-130	8	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	72		78		36-147	8	20	
Acetone	100		110		58-148	10	20	
Carbon disulfide	91		100		51-130	9	20	
2-Butanone	93		92		63-138	1	20	

Project Number: 128868-006

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westb	orough Lab Associated sample(s):	02 Batch: WGS	997458-3 WG997458-4		
Vinyl acetate	84	94	70-130	11	20
4-Methyl-2-pentanone	90	95	59-130	5	20
2-Hexanone	73	82	57-130	12	20
Ethyl methacrylate	87	90	70-130	3	20
Acrylonitrile	92	99	70-130	7	20
Bromochloromethane	89	96	70-130	8	20
Tetrahydrofuran	86	83	58-130	4	20
2,2-Dichloropropane	93	96	63-133	3	20
1,2-Dibromoethane	87	90	70-130	3	20
1,3-Dichloropropane	92	96	70-130	4	20
1,1,1,2-Tetrachloroethane	91	95	64-130	4	20
Bromobenzene	94	100	70-130	6	20
n-Butylbenzene	98	97	53-136	1	20
sec-Butylbenzene	95	99	70-130	4	20
tert-Butylbenzene	93	100	70-130	7	20
o-Chlorotoluene	95	99	70-130	4	20
p-Chlorotoluene	99	100	70-130	1	20
1,2-Dibromo-3-chloropropane	90	97	41-144	7	20
Hexachlorobutadiene	110	120	63-130	9	20
Isopropylbenzene	95	99	70-130	4	20
p-Isopropyltoluene	100	110	70-130	10	20

Project Number: 128868-006

	LCS		LCSE)	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recov	ery Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02 Batch:	WG997458-3	WG997458-4				
Naphthalene	82		87		70-130	6		20	
n-Propylbenzene	96		100		69-130	4		20	
1,2,3-Trichlorobenzene	91		100		70-130	9		20	
1,2,4-Trichlorobenzene	93		100		70-130	7		20	
1,3,5-Trimethylbenzene	98		110		64-130	12		20	
1,2,4-Trimethylbenzene	98		110		70-130	12		20	
trans-1,4-Dichloro-2-butene	140	Q	140	Q	70-130	0		20	
Ethyl ether	98		100		59-134	2		20	
Tert-Butyl Alcohol	80		84		70-130	5		20	
Tertiary-Amyl Methyl Ether	84		91		66-130	8		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	85		91		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	105		106		70-130	
Dibromofluoromethane	98		108		70-130	

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG	997825-3	WG997825-4				
Methyl Methacrylate	95		103		70-130	8		20	
iso-Butyl Alcohol	93		105		70-130	13		20	
Ethyl Alcohol	98		120		70-130	21	Q	20	
iso-Propyl Alcohol	95		113		70-130	17		20	
n-Butyl Alcohol	83		105		70-130	24	Q	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		103		70-130	
Toluene-d8	102		103		70-130	
4-Bromofluorobenzene	98		95		70-130	
Dibromofluoromethane	99		100		70-130	

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

	LCS		LC	SD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	overy	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS-SIM - Westborou	igh Lab Associat	ed sample(s):	01	Batch:	WG997846-3	WG997846-4				
1,4-Dioxane	99		1	110		70-130	11		25	

Project Number: 128868-006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1 Batch: WGS	997849-3	WG997849-4				
Methylene chloride	100		110		70-130	10		20	
1,1-Dichloroethane	100		110		70-130	10		20	
Chloroform	100		100		70-130	0		20	
Carbon tetrachloride	100		100		63-132	0		20	
1,2-Dichloropropane	100		99		70-130	1		20	
Dibromochloromethane	98		100		63-130	2		20	
1,1,2-Trichloroethane	99		96		70-130	3		20	
Tetrachloroethene	110		110		70-130	0		20	
Chlorobenzene	100		100		75-130	0		25	
Trichlorofluoromethane	100		100		62-150	0		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	100		110		67-130	10		20	
Bromodichloromethane	97		93		67-130	4		20	
trans-1,3-Dichloropropene	94		96		70-130	2		20	
cis-1,3-Dichloropropene	96		98		70-130	2		20	
1,1-Dichloropropene	100		100		70-130	0		20	
Bromoform	95		92		54-136	3		20	
1,1,2,2-Tetrachloroethane	87		88		67-130	1		20	
Benzene	100		100		70-130	0		25	
Toluene	100		100		70-130	0		25	
Ethylbenzene	100		100		70-130	0		20	

Lab Control Sample Analysis

Batch Quality Control

Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG997849-3 WG997849-4 87 84 64-130 20 Chloromethane 4 Bromomethane 110 120 39-139 9 20 Vinyl chloride 92 55-140 20 90 2 20 Chloroethane 110 110 55-138 0 1,1-Dichloroethene 100 100 61-145 25 0 25 Trichloroethene 100 100 70-130 0 1,2-Dichlorobenzene 100 100 70-130 0 20 1.3-Dichlorobenzene 100 100 70-130 20 0 70-130 20 1.4-Dichlorobenzene 100 100 0 Methyl tert butyl ether 96 63-130 20 94 2 105 70-130 20 p/m-Xylene 100 5 o-Xylene 110 105 70-130 5 20 cis-1.2-Dichloroethene 100 100 70-130 20 0 70-130 20 Dibromomethane 99 95 4 1,4-Dichlorobutane 70-130 20 88 87 1 1,2,3-Trichloropropane 93 64-130 20 94 1 Styrene 105 105 70-130 0 20 Dichlorodifluoromethane 72 72 36-147 0 20 20 Acetone 86 100 58-148 15 Carbon disulfide 51-130 20 100 100 0 2-Butanone 84 63-138 20 91 8

Project Number: 128868-006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	1 Batch: WG	997849-3	WG997849-4				
Vinyl acetate	90		89		70-130	1		20	
4-Methyl-2-pentanone	85		88		59-130	3		20	
2-Hexanone	79		80		57-130	1		20	
Ethyl methacrylate	92		89		70-130	3		20	
Acrylonitrile	99		86		70-130	14		20	
Bromochloromethane	100		100		70-130	0		20	
Tetrahydrofuran	87		65		58-130	29	Q	20	
2,2-Dichloropropane	100		100		63-133	0		20	
1,2-Dibromoethane	99		98		70-130	1		20	
1,3-Dichloropropane	100		100		70-130	0		20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0		20	
Bromobenzene	100		100		70-130	0		20	
n-Butylbenzene	92		95		53-136	3		20	
sec-Butylbenzene	97		96		70-130	1		20	
tert-Butylbenzene	100		96		70-130	4		20	
o-Chlorotoluene	98		94		70-130	4		20	
p-Chlorotoluene	100		95		70-130	5		20	
1,2-Dibromo-3-chloropropane	92		98		41-144	6		20	
Hexachlorobutadiene	130		120		63-130	8		20	
Isopropylbenzene	95		94		70-130	1		20	
p-Isopropyltoluene	100		100		70-130	0		20	

Project Number: 128868-006

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch: WG	997849-3	WG997849-4				
Naphthalene	86		90		70-130	5		20	
n-Propylbenzene	97		95		69-130	2		20	
1,2,3-Trichlorobenzene	97		95		70-130	2		20	
1,2,4-Trichlorobenzene	100		97		70-130	3		20	
1,3,5-Trimethylbenzene	100		98		64-130	2		20	
1,2,4-Trimethylbenzene	100		98		70-130	2		20	
trans-1,4-Dichloro-2-butene	93		85		70-130	9		20	
Ethyl ether	110		110		59-134	0		20	
Tert-Butyl Alcohol	98		98		70-130	0		20	
Tertiary-Amyl Methyl Ether	94		97		66-130	3		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		98		70-130	
Toluene-d8	99		102		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	100		104		70-130	

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

	LCS		LC	SD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	covery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS-SIM - Westborou	gh Lab Associate	ed sample(s):	02	Batch:	WG997859-3	WG997859-4				
1,4-Dioxane	100			100		70-130	0		25	

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

	Native	MS	MS	MS		MSD	MSD		Recover	У		RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Microextractables by GC - W	estborough Lab	Associated	d sample(s): (01-02 QC Bat	tch ID: W	G995581-3	QC Sample	e: L1712	207-01	Client ID:	B115D	_041820	17
1,2-Dibromoethane	ND	0.249	0.257	103		-	-		65-135	-		20	А
1,2-Dibromo-3-chloropropane	ND	0.249	0.249	100		-	-		65-135	-		20	А

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s): 01-02 QC	Batch ID:	WG99702	12-10 QC	Sample: I	L1712543-02	Clier	t ID: MS Sample
Methylene chloride	ND	200	280	140	Q	-	-		70-111	-	30
1,1-Dichloroethane	ND	200	300	150	Q	-	-		78-116	-	30
Chloroform	ND	200	280	140	Q	-	-		86-111	-	30
Carbon tetrachloride	ND	200	300	150	Q	-	-		60-112	-	30
1,2-Dichloropropane	ND	200	280	140	Q	-	-		83-113	-	30
Dibromochloromethane	ND	200	220	110		-	-		58-129	-	30
1,1,2-Trichloroethane	ND	200	230	115		-	-		80-118	-	30
2-Chloroethylvinyl ether	ND	200	160	80		-	-		69-124	-	30
Tetrachloroethene	ND	200	230	115		-	-		80-126	-	30
Chlorobenzene	ND	200	220	110		-	-		80-126	-	30
Trichlorofluoromethane	ND	200	310	155	Q	-	-		83-128	-	30
1,2-Dichloroethane	ND	200	280	140	Q	-	-		82-110	-	30
1,1,1-Trichloroethane	ND	200	290	145	Q	-	-		72-109	-	30
Bromodichloromethane	ND	200	240	120		-	-		71-120	-	30
rans-1,3-Dichloropropene	ND	200	230	115	Q	-	-		73-106	-	30
cis-1,3-Dichloropropene	ND	200	230	115	Q	-	-		78-111	-	30
Bromoform	ND	200	190	95		-	-		45-131	-	30
1,1,2,2-Tetrachloroethane	ND	200	270	135	Q	-	-		81-122	-	30
Benzene	ND	200	280	140	Q	-	-		84-116	-	30
Foluene	ND	200	240	120		-	-		83-121	-	30
Ethylbenzene	ND	200	220	110		-	-		84-123	-	30

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	ery 5 RPL	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s): 01-02 QC	Batch ID:	WG9970 ⁻	12-10 QC Sa	ample: L1712543	3-02 Cli	ent ID: MS Sample
Chloromethane	ND	200	370	185	Q	-	-	70-144	-	30
Bromomethane	ND	200	270	135		-	-	63-141	-	30
Vinyl chloride	ND	200	360	180	Q	-	-	56-118	-	30
Chloroethane	ND	200	320	160	Q	-	-	74-130	-	30
1,1-Dichloroethene	ND	200	300	150	Q	-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	200	300	150	Q	-	-	81-121	-	30
cis-1,2-Dichloroethene1	ND	200	280	140	Q	-	-	85-110	-	30
Trichloroethene	ND	200	270	135	Q	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	200	400	200	Q	-	-	78-128	-	30
1,3-Dichlorobenzene	ND	200	240	120		-	-	77-125	-	30
1,4-Dichlorobenzene	ND	200	250	125		-	-	77-125	-	30
p/m-Xylene ¹	ND	400	450	113		-	-	81-121	-	30
o-Xylene ¹	ND	200	220	110		-	-	81-124	-	30
Styrene ¹	ND	200	220	110		-	-	84-133	-	30
Acetone ¹	47.J	500	790	158		-	-	40-160	-	30
Carbon disulfide ¹	ND	200	220	110		-	-	54-134	-	30
2-Butanone ¹	ND	500	720	144	Q	-	-	57-116	-	30
Vinyl acetate ¹	ND	400	670	168	Q	-	-	40-160	-	30
4-Methyl-2-pentanone ¹	ND	500	600	120		-	-	79-125	-	30
2-Hexanone ¹	ND	500	600	120		-	-	78-120	-	30
Acrolein ¹	ND	400	530	133		-	-	40-160	-	30

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits
Volatile Organics by GC/MS -	Westborough	Lab Associ	ated sample(s	s): 01-02 QC	Batch ID:	WG99701	2-10 QC S	ample: L1712543-	02 Client	ID: MS Sample
Acrylonitrile ¹	ND	400	580	145	Q	-	-	66-123	-	30
Dibromomethane ¹	ND	200	270	135	Q	-	-	65-126	-	30

	MS		MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
4-Bromofluorobenzene	94				80-120	
Fluorobenzene	105				80-120	
Pentafluorobenzene	104				80-120	

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 0	1-02 QC Batch ID: Wo	G997012-9 Q	C Sample: L17	712543-02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-	02 QC Batch ID: WG	9997012-9 QC	C Sample: L17	712543-02 Client ID: DUP
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	47.J	44J	ug/l	NC	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-02	QC Batch ID: WC	6997012-9	QC Sample: L17	712543-02 Client ID: DUP	
2-Butanone ¹	ND	ND	ug/l	NC	30	
Vinyl acetate ¹	ND	ND	ug/l	NC	30	
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30	
2-Hexanone ¹	ND	ND	ug/l	NC	30	
Acrolein ¹	ND	ND	ug/l	NC	30	
Acrylonitrile ¹	ND	ND	ug/l	NC	30	
Dibromomethane ¹	ND	ND	ug/l	NC	30	

				Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier	Criteria	
Pentafluorobenzene	104	106		80-120	
Fluorobenzene	105	107		80-120	
4-Bromofluorobenzene	94	94		80-120	

SEMIVOLATILES

	Serial_No:04261719:2			
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207	
Project Number:	128868-006	Report Date:	04/26/17	
	SAMPLE RESULTS			
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30	
Client ID:	B115D_04182017	Date Received:	04/18/17	
Sample Location:	BOSTON, MA	Field Prep:	Not Specified	
Matrix:	Water	Extraction Method	I:EPA 3510C	
Analytical Method:	1,8270D	Extraction Date:	04/19/17 08:15	
Analytical Date:	04/24/17 13:03			
Analyst:	SZ			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Benzidine	ND		ug/l	20	8.1	1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.69	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
Azobenzene	ND		ug/l	2.0	0.75	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
Aniline	ND		ug/l	2.0	0.65	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	

	Serial_No:04261719:27							
Project Name:	BOSTON CHILDREN'S	6 HOPSITAL			Lab Nu	mber:	L1712207	
Project Number:	128868-006				Report	Date:	04/26/17	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1712207-01 B115D_04182017 BOSTON, MA				Date Col Date Ree Field Pre	llected: ceived: ep:	04/18/17 15:30 04/18/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbor	ough Lab						
4-Nitroaniline		ND		ug/l	5.0	1.3	1	
Dibenzofuran		ND		ug/l	2.0	0.66	1	
n-Nitrosodimethylamine		ND		ug/l	2.0	0.67	1	
2,4,6-Trichlorophenol		ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol		ND		ug/l	2.0	0.62	1	
2-Chlorophenol		ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1	
2-Nitrophenol		ND		ug/l	10	1.5	1	
4-Nitrophenol		ND		ug/l	10	1.8	1	
2,4-Dinitrophenol		ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1	
Phenol		ND		ug/l	5.0	1.9	1	
2-Methylphenol		ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylp	phenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1	
Benzoic Acid		ND		ug/l	50	13.	1	
Benzyl Alcohol		ND		ug/l	2.0	0.72	1	
Carbazole		ND		ug/l	2.0	0.63	1	
Pyridine		ND		ug/l	3.5	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	21-120	
Phenol-d6	34	10-120	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	68	15-120	
2,4,6-Tribromophenol	101	10-120	
4-Terphenyl-d14	79	41-149	

		Serial_No:	04261719:27
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	SAMPLE RESULT	S	
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017	Date Received:	04/18/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	04/19/17 08:18
Analytical Date:	04/21/17 11:40		
Analyst:	KL		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	ND		ug/l	0.10	0.04	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1				
Fluoranthene	ND		ug/l	0.20	0.04	1				
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1				
Naphthalene	ND		ug/l	0.20	0.04	1				
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1				
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1				
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1				
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1				
Chrysene	ND		ug/l	0.20	0.04	1				
Acenaphthylene	ND		ug/l	0.20	0.04	1				
Anthracene	ND		ug/l	0.20	0.04	1				
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1				
Fluorene	ND		ug/l	0.20	0.04	1				
Phenanthrene	ND		ug/l	0.20	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1				
Pyrene	ND		ug/l	0.20	0.04	1				
1-Methylnaphthalene	ND		ug/l	0.20	0.04	1				
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1				
Pentachlorophenol	ND		ug/l	0.80	0.22	1				
Hexachlorobenzene	ND		ug/l	0.80	0.03	1				
Hexachloroethane	ND		ug/l	0.80	0.03	1				

		Serial_No:04261719:27						
Project Name:	BOSTON CHILDREN'S	S HOPSITAL	-		Lab Nu	umber:	L1712207	
Project Number:	128868-006			Report	Date:	04/26/17		
		SAMP		S				
Lab ID:	L1712207-01				Date Co	llected:	04/18/17 15:30	
Client ID:	B115D_04182017				Date Re	ceived:	04/18/17	
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab								

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	43		21-120	
Phenol-d6	33		10-120	
Nitrobenzene-d5	70		23-120	
2-Fluorobiphenyl	69		15-120	
2,4,6-Tribromophenol	91		10-120	
4-Terphenyl-d14	73		41-149	

		Serial_No:04261719:27		
Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207	
Project Number:	128868-006	Report Date:	04/26/17	
	SAMPLE RESULTS			
Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30	
Client ID:	B115D_04182017	Date Received:	04/18/17	
Sample Location:	BOSTON, MA	Field Prep:	Not Specified	
Matrix:	Water	Extraction Methor	d:EPA 625	
Analytical Method:	5,625	Extraction Date:	04/19/17 08:30	
Analytical Date:	04/21/17 18:02			
Analyst:	PS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/l	2.0	0.71	1			
Benzidine ¹	ND		ug/l	20	8.2	1			
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.90	1			
Hexachlorobenzene	ND		ug/l	2.0	0.66	1			
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.55	1			
2-Chloronaphthalene	ND		ug/l	2.0	0.79	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.3	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	0.87	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1			
Azobenzene ¹	ND		ug/l	2.0	0.60	1			
Fluoranthene	ND		ug/l	2.0	0.64	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.67	1			
4-Bromophenyl phenyl ether ¹	ND		ug/l	2.0	0.77	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.52	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.54	1			
Hexachlorobutadiene	ND		ug/l	2.0	0.66	1			
Hexachlorocyclopentadiene1	ND		ug/l	9.9	3.7	1			
Hexachloroethane	ND		ug/l	2.0	0.74	1			
Isophorone	ND		ug/l	5.0	0.78	1			
Naphthalene	ND		ug/l	2.0	0.80	1			
Nitrobenzene	ND		ug/l	2.0	0.68	1			
NDPA/DPA ¹	ND		ug/l	2.0	0.72	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.53	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.3	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.1	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1			
Di-n-octylphthalate	ND		ug/l	5.0	0.99	1			
Diethyl phthalate	ND		ug/l	5.0	0.73	1			
Dimethyl phthalate	ND		ug/l	5.0	0.70	1			
Benzo(a)anthracene	ND		ug/l	2.0	0.67	1			

					S	Serial_No)4261719:27	
Project Name: BOSTON CHILDREN'S HOPSITAL				Lab Number:		L1712207		
Project Number:	128868-006				Report	Date:	04/26/17	
		SAMPI		5				
Lab ID: Client ID: Sample Location:	L1712207-01 B115D_04182017 BOSTON, MA				Date Col Date Rec Field Pre	lected: ceived: p:	04/18/17 15:30 04/18/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Orgar	nics by GC/MS - Westbor	ough Lab						
Benzo(a)pyrene		ND		ug/l	2.0	0.62	1	
Benzo(b)fluoranthene		ND		ug/l	2.0	0.64	1	
Benzo(k)fluoranthene		ND		ug/l	2.0	0.67	1	
Chrysene		ND		ug/l	2.0	0.68	1	
Acenaphthylene		ND		ug/l	2.0	0.62	1	
Anthracene		ND		ug/l	2.0	0.68	1	
Benzo(ghi)perylene		ND		ug/l	2.0	0.71	1	
Fluorene		ND		ug/l	2.0	0.66	1	
Phenanthrene		ND		ug/l	2.0	0.66	1	
Dibenzo(a,h)anthracene		ND		ug/l	2.0	0.67	1	
Indeno(1,2,3-cd)pyrene		ND		ug/l	2.0	0.72	1	
Pyrene		ND		ug/l	2.0	0.62	1	
4-Chloroaniline1		ND		ug/l	5.0	1.2	1	
Dibenzofuran ¹		ND		ug/l	2.0	0.69	1	
2-Methylnaphthalene1		ND		ug/l	2.0	0.76	1	
n-Nitrosodimethylamine ¹		ND		ug/l	2.0	0.77	1	
2,4,6-Trichlorophenol		ND		ug/l	5.0	0.80	1	
p-Chloro-m-cresol1		ND		ug/l	2.0	0.66	1	
2-Chlorophenol		ND		ug/l	2.0	0.62	1	
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol		ND		ug/l	5.0	1.4	1	
2-Nitrophenol		ND		ug/l	5.0	1.3	1	
4-Nitrophenol		ND		ug/l	9.9	1.1	1	
2,4-Dinitrophenol		ND		ug/l	20	8.0	1	
4,6-Dinitro-o-cresol1		ND		ug/l	9.9	1.8	1	
Pentachlorophenol		ND		ug/l	5.0	2.8	1	
Phenol		ND		ug/l	5.0	0.74	1	
2-Methylphenol ¹		ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methyl	phenol ¹	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol ¹		ND		ug/l	5.0	0.91	1	
Benzoic Acid ¹		ND		ug/l	50	6.2	1	
Benzyl Alcohol ¹		ND		ug/l	2.0	0.72	1	

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
			o				
Sample Location:	BOSTON, MA				Field Pre	p:	Not Specified
Client ID:	B115D_04182017				Date Red	ceived:	04/18/17
Lab ID:	L1712207-01				Date Col	lected:	04/18/17 15:30
		SAMP	LE RESULTS	5			
Project Number:	128868-006				Report	Date:	04/26/17
Project Name:	BOSTON CHILDREN'S	S HOPSITAL	-		Lab Nu	mber:	L1712207
					S	Serial_N	0:04261719:27

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	33		21-120	
Phenol-d6	24		10-120	
Nitrobenzene-d5	57		23-120	
2-Fluorobiphenyl	60		15-120	
2,4,6-Tribromophenol	76		10-120	
4-Terphenyl-d14	63		33-120	

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207					
Project Number:	128868-006	Report Date:	04/26/17					
Method Blank Analysis								

Analytical Method:	5,625	Extraction Method:	EPA 625
Analytical Date:	04/20/17 13:21	Extraction Date:	04/18/17 22:05
Analyst:	ALS		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG995416-1
Acenaphthene	ND		ua/l		2.0	0.72
Benzidine ¹	ND		ua/l		20	8.3
1.2.4-Trichlorobenzene	ND		ua/l		5.0	0.91
Hexachlorobenzene	ND		ua/l		2.0	0.67
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.55
2-Chloronaphthalene	ND		ug/l		2.0	0.79
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.3
2,4-Dinitrotoluene	ND		ug/l		5.0	0.88
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1
Azobenzene ¹	ND		ug/l		2.0	0.61
Fluoranthene	ND		ug/l		2.0	0.64
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.68
4-Bromophenyl phenyl ether ¹	ND		ug/l		2.0	0.78
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.54
Hexachlorobutadiene	ND		ug/l		2.0	0.67
Hexachlorocyclopentadiene1	ND		ug/l		10	3.7
Hexachloroethane	ND		ug/l		2.0	0.74
Isophorone	ND		ug/l		5.0	0.79
Naphthalene	ND		ug/l		2.0	0.81
Nitrobenzene	ND		ug/l		2.0	0.68
NDPA/DPA ¹	ND		ug/l		2.0	0.73
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.54
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.3
Butyl benzyl phthalate	ND		ug/l		5.0	1.1
Di-n-butylphthalate	ND		ug/l		5.0	0.97
Di-n-octylphthalate	ND		ug/l		5.0	0.99
Diethyl phthalate	ND		ug/l		5.0	0.73
Dimethyl phthalate	ND		ug/l		5.0	0.70

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Analytical Method:	5,625	Extraction Method:	EPA 625
Analytical Date:	04/20/17 13:21	Extraction Date:	04/18/17 22:05
Analyst:	ALS		

arameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	01	Batch:	WG995416-1
Benzo(a)anthracene	ND		ug/l		2.0	0.68
Benzo(a)pyrene	ND		ug/l		2.0	0.63
Benzo(b)fluoranthene	ND		ug/l		2.0	0.65
Benzo(k)fluoranthene	ND		ug/l		2.0	0.68
Chrysene	ND		ug/l		2.0	0.68
Acenaphthylene	ND		ug/l		2.0	0.63
Anthracene	ND		ug/l		2.0	0.69
Benzo(ghi)perylene	ND		ug/l		2.0	0.71
Fluorene	ND		ug/l		2.0	0.66
Phenanthrene	ND		ug/l		2.0	0.66
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.68
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.73
Pyrene	ND		ug/l		2.0	0.62
4-Chloroaniline ¹	ND		ug/l		5.0	1.2
Dibenzofuran ¹	ND		ug/l		2.0	0.69
2-Methylnaphthalene1	ND		ug/l		2.0	0.76
n-Nitrosodimethylamine ¹	ND		ug/l		2.0	0.78
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.80
p-Chloro-m-cresol ¹	ND		ug/l		2.0	0.66
2-Chlorophenol	ND		ug/l		2.0	0.62
2,4-Dichlorophenol	ND		ug/l		5.0	0.78
2,4-Dimethylphenol	ND		ug/l		5.0	1.4
2-Nitrophenol	ND		ug/l		5.0	1.3
4-Nitrophenol	ND		ug/l		10	1.1
2,4-Dinitrophenol	ND		ug/l		20	8.0
4,6-Dinitro-o-cresol ¹	ND		ug/l		10	1.9
Pentachlorophenol	ND		ug/l		5.0	2.8
Phenol	ND		ug/l		5.0	0.74
2-Methylphenol ¹	ND		ug/l		5.0	1.0

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207			
Project Number:	128868-006	Report Date:	04/26/17			
Method Blank Analysis						

Analytical Method:	5,625	Extraction Method:	EPA 625
Analytical Date:	04/20/17 13:21	Extraction Date:	04/18/17 22:05
Analyst:	ALS		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG995416-1	
3-Methylphenol/4-Methylphenol1	ND		ug/l		5.0	1.1	
2,4,5-Trichlorophenol ¹	ND		ug/l		5.0	0.92	
Benzoic Acid ¹	ND		ug/l		50	6.2	
Benzyl Alcohol ¹	ND		ug/l		2.0	0.72	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	29		21-120	
Phenol-d6	22		10-120	
Nitrobenzene-d5	53		23-120	
2-Fluorobiphenyl	56		15-120	
2,4,6-Tribromophenol	65		10-120	
4-Terphenyl-d14	68		33-120	
1 2				

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/23/17 16:49	Extraction Date:	04/19/17 08:15
Analyst:	KV		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS ·	· Westborough	n Lab for sa	ample(s):	01	Batch:	WG995507-1
Acenaphthene	ND		ug/l		2.0	0.59
Benzidine	ND		ug/l		20	8.1
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.66
Hexachlorobenzene	ND		ug/l		2.0	0.58
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67
2-Chloronaphthalene	ND		ug/l		2.0	0.64
1,2-Dichlorobenzene	ND		ug/l		2.0	0.73
1,3-Dichlorobenzene	ND		ug/l		2.0	0.69
1,4-Dichlorobenzene	ND		ug/l		2.0	0.71
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1
Azobenzene	ND		ug/l		2.0	0.75
Fluoranthene	ND		ug/l		2.0	0.57
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63
Hexachlorobutadiene	ND		ug/l		2.0	0.72
Hexachlorocyclopentadiene	ND		ug/l		20	7.8
Hexachloroethane	ND		ug/l		2.0	0.68
Isophorone	ND		ug/l		5.0	0.60
Naphthalene	ND		ug/l		2.0	0.68
Nitrobenzene	ND		ug/l		2.0	0.75
NDPA/DPA	ND		ug/l		2.0	0.64
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	0.91
Butyl benzyl phthalate	ND		ug/l		5.0	1.3
Di-n-butylphthalate	ND		ug/l		5.0	0.69

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/23/17 16:49	Extraction Date:	04/19/17 08:15
Analyst:	KV		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS ·	- Westborough	Lab for s	ample(s):	01	Batch:	WG995507-1
Di-n-octylphthalate	ND		ug/l		5.0	1.1
Diethyl phthalate	ND		ug/l		5.0	0.63
Dimethyl phthalate	ND		ug/l		5.0	0.65
Benzo(a)anthracene	ND		ug/l		2.0	0.61
Benzo(a)pyrene	ND		ug/l		2.0	0.54
Benzo(b)fluoranthene	ND		ug/l		2.0	0.64
Benzo(k)fluoranthene	ND		ug/l		2.0	0.60
Chrysene	ND		ug/l		2.0	0.54
Acenaphthylene	ND		ug/l		2.0	0.66
Anthracene	ND		ug/l		2.0	0.64
Benzo(ghi)perylene	ND		ug/l		2.0	0.61
Fluorene	ND		ug/l		2.0	0.62
Phenanthrene	ND		ug/l		2.0	0.61
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.71
Pyrene	ND		ug/l		2.0	0.57
Biphenyl	ND		ug/l		2.0	0.76
Aniline	ND		ug/l		2.0	0.65
4-Chloroaniline	ND		ug/l		5.0	0.63
1-Methylnaphthalene	ND		ug/l		2.0	0.67
2-Nitroaniline	ND		ug/l		5.0	1.1
3-Nitroaniline	ND		ug/l		5.0	1.2
4-Nitroaniline	ND		ug/l		5.0	1.3
Dibenzofuran	ND		ug/l		2.0	0.66
2-Methylnaphthalene	ND		ug/l		2.0	0.72
n-Nitrosodimethylamine	ND		ug/l		2.0	0.67
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68
p-Chloro-m-cresol	ND		ug/l		2.0	0.62
2-Chlorophenol	ND		ug/l		2.0	0.63

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/23/17 16:49	Extraction Date:	04/19/17 08:15
Analyst:	KV		

			Unita		RL	MDL	
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG995507-1	
2,4-Dichlorophenol	ND		ug/l		5.0	0.77	
2,4-Dimethylphenol	ND		ug/l		5.0	1.6	
2-Nitrophenol	ND		ug/l		10	1.5	
4-Nitrophenol	ND		ug/l		10	1.8	
2,4-Dinitrophenol	ND		ug/l		20	5.5	
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1	
Pentachlorophenol	ND		ug/l		10	3.4	
Phenol	ND		ug/l		5.0	1.9	
2-Methylphenol	ND		ug/l		5.0	1.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72	
Benzoic Acid	ND		ug/l		50	13.	
Benzyl Alcohol	ND		ug/l		2.0	0.72	
Carbazole	ND		ug/l		2.0	0.63	
Pyridine	ND		ug/l		3.5	1.9	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/23/17 16:49	Extraction Date:	04/19/17 08:15
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - V	Nestborough	Lab for sa	ample(s): 01	Batch:	WG995507-1

	_	Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	83	15-120
2,4,6-Tribromophenol	95	10-120
4-Terphenyl-d14	92	41-149

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/21/17 08:22	Extraction Date:	04/19/17 08:18
Analyst:	KL		

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/	MS-SIM - Westbo	rough Lab for sample	e(s): 01	Batch: WG995509-1
Acenaphthene	ND	ug/l	0.10	0.04
2-Chloronaphthalene	ND	ug/l	0.20	0.04
Fluoranthene	ND	ug/l	0.20	0.04
Hexachlorobutadiene	ND	ug/l	0.50	0.04
Naphthalene	ND	ug/l	0.20	0.04
Benzo(a)anthracene	ND	ug/l	0.20	0.02
Benzo(a)pyrene	ND	ug/l	0.20	0.04
Benzo(b)fluoranthene	ND	ug/l	0.20	0.02
Benzo(k)fluoranthene	ND	ug/l	0.20	0.04
Chrysene	ND	ug/l	0.20	0.04
Acenaphthylene	ND	ug/l	0.20	0.04
Anthracene	ND	ug/l	0.20	0.04
Benzo(ghi)perylene	ND	ug/l	0.20	0.04
Fluorene	ND	ug/l	0.20	0.04
Phenanthrene	ND	ug/l	0.20	0.02
Dibenzo(a,h)anthracene	ND	ug/l	0.20	0.04
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.20	0.04
Pyrene	ND	ug/l	0.20	0.04
1-Methylnaphthalene	ND	ug/l	0.20	0.04
2-Methylnaphthalene	ND	ug/l	0.20	0.05
Pentachlorophenol	ND	ug/l	0.80	0.22
Hexachlorobenzene	ND	ug/l	0.80	0.03
Hexachloroethane	ND	ug/l	0.80	0.03

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/21/17 08:22	Extraction Date:	04/19/17 08:18
Analyst:	KL		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SII	M - Westbor	ough Lab f	for sample(s):	01	Batch: WG995509-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	83	41-149

Lab Control Sample Analysis

Batch Quality Control

Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Qual Qual Parameter Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG995416-2 Acenaphthene 68 47-145 30 --1,2,4-Trichlorobenzene 69 44-142 30 --2-Chloronaphthalene 60-118 30 71 --2,4-Dinitrotoluene 39-139 30 84 --2.6-Dinitrotoluene 80 50-158 30 --Fluoranthene 26-137 30 74 --4-Chlorophenyl phenyl ether 74 25-158 30 -n-Nitrosodi-n-propylamine 72 1-230 30 --Butyl benzyl phthalate 1-152 30 75 _ -Anthracene 27-133 30 71 --52-115 30 Pyrene 74 --P-Chloro-M-Cresol¹ 74 22-147 30 --2-Chlorophenol 65 23-134 30 --2-Nitrophenol 29-182 30 75 --4-Nitrophenol 52 1-132 30 --2,4-Dinitrophenol 1-191 30 74 --Pentachlorophenol 75 14-176 30 --5-112 30 Phenol 31 --

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD
 Qual
 Limits

 Semivolatile Organics by GC/MS - Westborough Lab
 Associated sample(s):
 01
 Batch:
 WG995416-2

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	38				21-120	
Phenol-d6	31				10-120	
Nitrobenzene-d5	63				23-120	
2-Fluorobiphenyl	65				15-120	
2,4,6-Tribromophenol	76				10-120	
4-Terphenyl-d14	66				33-120	

Project Number: 128868-006 Lab Number: L1712207 Report Date: 04/26/17

Parameter	LCS %Recovery QL	LCSD Ial %Recov) rery Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westt	borough Lab Associated s	ample(s): 01 Ba	atch: WG995507-2	2 WG995507-3			
Acenaphthene	72	69		37-111	4		30
Benzidine	0	Q 0	Q	10-75	NC		30
1,2,4-Trichlorobenzene	70	66		39-98	6		30
Hexachlorobenzene	84	81		40-140	4		30
Bis(2-chloroethyl)ether	70	64		40-140	9		30
2-Chloronaphthalene	75	72		40-140	4		30
1,2-Dichlorobenzene	65	61		40-140	6		30
1,3-Dichlorobenzene	63	59		40-140	7		30
1,4-Dichlorobenzene	64	59		36-97	8		30
3,3'-Dichlorobenzidine	43	45		40-140	5		30
2,4-Dinitrotoluene	86	83		48-143	4		30
2,6-Dinitrotoluene	87	82		40-140	6		30
Azobenzene	72	68		40-140	6		30
Fluoranthene	80	76		40-140	5		30
4-Chlorophenyl phenyl ether	78	75		40-140	4		30
4-Bromophenyl phenyl ether	85	78		40-140	9		30
Bis(2-chloroisopropyl)ether	62	58		40-140	7		30
Bis(2-chloroethoxy)methane	76	71		40-140	7		30
Hexachlorobutadiene	67	63		40-140	6		30
Hexachlorocyclopentadiene	66	62		40-140	6		30
Hexachloroethane	62	57		40-140	8		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG995507-2 WG995507-3 70 40-140 30 Isophorone 75 7 Naphthalene 68 66 40-140 3 30 Nitrobenzene 69 40-140 30 72 4 NDPA/DPA 30 74 71 40-140 4 n-Nitrosodi-n-propylamine 72 67 29-132 30 7 Bis(2-ethylhexyl)phthalate 40-140 30 78 73 7 Butyl benzyl phthalate 80 75 40-140 6 30 Di-n-butylphthalate 79 75 40-140 30 5 Di-n-octylphthalate 40-140 30 78 73 7 Diethyl phthalate 40-140 30 78 73 7 Dimethyl phthalate 79 40-140 30 83 5 Benzo(a)anthracene 74 70 40-140 6 30 Benzo(a)pyrene 71 40-140 30 76 7 Benzo(b)fluoranthene 40-140 30 76 73 4 Benzo(k)fluoranthene 40-140 30 78 72 8 Chrysene 40-140 30 74 71 4 Acenaphthylene 76 74 45-123 3 30 Anthracene 75 70 40-140 7 30 Benzo(ghi)perylene 40-140 30 81 76 6 40-140 30 Fluorene 77 72 7 Phenanthrene 78 74 40-140 5 30

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006 Lab Number: L1712207 Report Date: 04/26/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - We	estborough Lab Associated sample	e(s): 01 Batch:	WG995507-2	WG995507-3		
Dibenzo(a,h)anthracene	81	75		40-140	8	30
Indeno(1,2,3-cd)pyrene	81	75		40-140	8	30
Pyrene	79	74		26-127	7	30
Biphenyl	80	78		40-140	3	30
Aniline	23 Q	28	Q	40-140	20	30
4-Chloroaniline	52	49		40-140	6	30
1-Methylnaphthalene	68	67		41-103	1	30
2-Nitroaniline	95	91		52-143	4	30
3-Nitroaniline	74	66		25-145	11	30
4-Nitroaniline	83	78		51-143	6	30
Dibenzofuran	74	71		40-140	4	30
2-Methylnaphthalene	72	70		40-140	3	30
n-Nitrosodimethylamine	45	39		22-74	14	30
2,4,6-Trichlorophenol	85	82		30-130	4	30
p-Chloro-m-cresol	79	75		23-97	5	30
2-Chlorophenol	73	65		27-123	12	30
2,4-Dichlorophenol	82	75		30-130	9	30
2,4-Dimethylphenol	21 Q	25	Q	30-130	17	30
2-Nitrophenol	87	82		30-130	6	30
4-Nitrophenol	53	50		10-80	6	30
2,4-Dinitrophenol	103	100		20-130	3	30

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

LCSD LCS %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG995507-2 WG995507-3 4,6-Dinitro-o-cresol 102 98 20-164 30 4 9-103 Pentachlorophenol 91 81 12 30 Phenol 36 34 12-110 6 30 2-Methylphenol 30 57 30-130 5 60 3-Methylphenol/4-Methylphenol 64 59 30-130 8 30 2,4,5-Trichlorophenol 85 30-130 30 88 3 Benzoic Acid 30 46 38 10-164 19 Benzyl Alcohol 65 59 26-116 10 30 Carbazole 73 55-144 30 78 7 Pyridine 18 10-66 25 30 14

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	53		47		21-120	
Phenol-d6	38		34		10-120	
Nitrobenzene-d5	77		71		23-120	
2-Fluorobiphenyl	78		75		15-120	
2,4,6-Tribromophenol	92		89		10-120	
4-Terphenyl-d14	84		78		41-149	

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Parameter	LCS %Recovery	L Qual %R	.CSD ecovery	%R Qual I	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - We	estborough Lab As	sociated sample(s):	01 Batch	h: WG995509-2	2 WG995509-3	3		
Acenaphthene	59		68	;	37-111	14		40
2-Chloronaphthalene	61		72	2	40-140	17		40
Fluoranthene	60		70	4	40-140	15		40
Hexachlorobutadiene	57		65	4	40-140	13		40
Naphthalene	58		67	2	40-140	14		40
Benzo(a)anthracene	63		74	2	40-140	16		40
Benzo(a)pyrene	61		72	2	40-140	17		40
Benzo(b)fluoranthene	66		77	4	40-140	15		40
Benzo(k)fluoranthene	61		70	4	40-140	14		40
Chrysene	63		76	2	40-140	19		40
Acenaphthylene	61		73	2	40-140	18		40
Anthracene	64		74	2	40-140	14		40
Benzo(ghi)perylene	64		76	2	40-140	17		40
Fluorene	50		58	2	40-140	15		40
Phenanthrene	62		71	4	40-140	14		40
Dibenzo(a,h)anthracene	68		80	2	40-140	16		40
Indeno(1,2,3-cd)pyrene	68		80	2	40-140	16		40
Pyrene	60		69	2	26-127	14		40
1-Methylnaphthalene	57		67		40-140	16		40
2-Methylnaphthalene	62		72		40-140	15		40
Pentachlorophenol	68		81		9-103	17		40

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

	LCS		LCSD	%R	Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual I	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS-SIM - West	borough Lab As	ssociated samp	le(s): 01 Bato	ch: WG995509-3	2 WG995509	9-3		
Hexachlorobenzene	63		74		40-140	16		40
Hexachloroethane	52		56		40-140	7		40

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Eluorophenol	45		50		21-120	
Phenol-d6	35		39		10-120	
Nitrobenzene-d5	71		79		23-120	
2-Fluorobiphenyl	72		84		15-120	
2,4,6-Tribromophenol	85		104		10-120	
4-Terphenyl-d14	73		83		41-149	

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by O	GC/MS - Westbor	rough Lab	Associated sar	nple(s): 01 C	C Batch ID	: WG995	416-3 QC	Sample: I	_1711957-01	Clier	nt ID: MS	S Sample
Acenaphthene	ND	40.8	24	59		-	-		47-145	-		30
1,2,4-Trichlorobenzene	ND	40.8	25	61		-	-		44-142	-		30
2-Chloronaphthalene	ND	40.8	25	61		-	-		60-118	-		30
2,4-Dinitrotoluene	ND	40.8	28	69		-	-		39-139	-		30
2,6-Dinitrotoluene	ND	40.8	28	69		-	-		50-158	-		30
Fluoranthene	ND	40.8	18	44		-	-		26-137	-		30
4-Chlorophenyl phenyl ether	ND	40.8	25	61		-	-		25-158	-		30
n-Nitrosodi-n-propylamine	ND	40.8	25	61		-	-		1-230	-		30
Butyl benzyl phthalate	ND	40.8	26	64		-	-		1-152	-		30
Anthracene	ND	40.8	25	61		-	-		27-133	-		30
Pyrene	ND	40.8	25	61		-	-		52-115	-		30
P-Chloro-M-Cresol ¹	ND	40.8	26	64		-	-		22-147	-		30
2-Chlorophenol	ND	40.8	24	59		-	-		23-134	-		30
2-Nitrophenol	ND	40.8	28	69		-	-		29-182	-		30
4-Nitrophenol	ND	40.8	20	49		-	-		1-132	-		30
2,4-Dinitrophenol	ND	40.8	27	66		-	-		1-191	-		30
Pentachlorophenol	ND	40.8	29	71		-	-		14-176	-		30
Phenol	ND	40.8	12	29		-	-		5-112	-		30

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

		Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Paramete	er	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivola	tile Organics by GC/MS	6 - Westboro	ugh Lab	Associated san	nple(s): 01 C	C Batch ID	D: WG9954	116-3 QC Sa	ample: L	1711957-01	Clien	t ID: M	S Sample	

	MS	5	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	66				10-120	
2-Fluorobiphenyl	55				15-120	
2-Fluorophenol	35				21-120	
4-Terphenyl-d14	55				33-120	
Nitrobenzene-d5	54				23-120	
Phenol-d6	30				10-120	

-

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG995416-4	QC Sample:	L1712064-01	Client ID:	DUP
Acenaphthene	ND	ND	ug/l	NC		30	
Benzidine ¹	ND	ND	ug/l	NC		30	
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC		30	
Hexachlorobenzene	ND	ND	ug/l	NC		30	
Bis(2-chloroethyl)ether	ND	ND	ug/l	NC		30	
2-Chloronaphthalene	ND	ND	ug/l	NC		30	
3,3'-Dichlorobenzidine	ND	ND	ug/l	NC		30	
2,4-Dinitrotoluene	ND	ND	ug/l	NC		30	
2,6-Dinitrotoluene	ND	ND	ug/l	NC		30	
Azobenzene ¹	ND	ND	ug/l	NC		30	
Fluoranthene	ND	ND	ug/l	NC		30	
4-Chlorophenyl phenyl ether	ND	ND	ug/l	NC		30	
4-Bromophenyl phenyl ether ¹	ND	ND	ug/l	NC		30	
Bis(2-chloroisopropyl)ether	ND	ND	ug/l	NC		30	
Bis(2-chloroethoxy)methane	ND	ND	ug/l	NC		30	
Hexachlorobutadiene	ND	ND	ug/l	NC		30	
Hexachlorocyclopentadiene ¹	ND	ND	ug/l	NC		30	
Hexachloroethane	ND	ND	ug/l	NC		30	
Isophorone	ND	ND	ug/l	NC		30	

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborough Lal Sample	o Associated sample(s): 0	01 QC Batch ID:	WG995416-4	QC Sample:	L1712064-01 (Client ID:	DUP
Naphthalene	ND	ND	ug/l	NC		30	
Nitrobenzene	ND	ND	ug/l	NC		30	
NitrosoDiPhenylAmine(NDPA)/DPA ¹	ND	ND	ug/l	NC		30	
n-Nitrosodi-n-propylamine	ND	ND	ug/l	NC		30	
Bis(2-Ethylhexyl)phthalate	ND	ND	ug/l	NC		30	
Butyl benzyl phthalate	ND	ND	ug/l	NC		30	
Di-n-butylphthalate	ND	ND	ug/l	NC		30	
Di-n-octylphthalate	ND	ND	ug/l	NC		30	
Diethyl phthalate	ND	ND	ug/l	NC		30	
Dimethyl phthalate	ND	ND	ug/l	NC		30	
Benzo(a)anthracene	ND	ND	ug/l	NC		30	
Benzo(a)pyrene	ND	ND	ug/l	NC		30	
Benzo(b)fluoranthene	ND	ND	ug/l	NC		30	
Benzo(k)fluoranthene	ND	ND	ug/l	NC		30	
Chrysene	ND	ND	ug/l	NC		30	
Acenaphthylene	ND	ND	ug/l	NC		30	
Anthracene	ND	ND	ug/l	NC		30	
Benzo(ghi)perylene	ND	ND	ug/l	NC		30	
Fluorene	ND	ND	ug/l	NC		30	

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG995416-4	QC Sample:	L1712064-01	Client ID:	DUP
Phenanthrene	ND	ND	ug/l	NC		30	
Dibenzo(a,h)anthracene	ND	ND	ug/l	NC		30	
Indeno(1,2,3-cd)Pyrene	ND	ND	ug/l	NC		30	
Pyrene	ND	ND	ug/l	NC		30	
Biphenyl ¹	ND	ND	ug/l	NC		30	
Aniline ¹	ND	ND	ug/l	NC		30	
4-Chloroaniline ¹	ND	ND	ug/l	NC		30	
1-Methylnaphthalene ¹	ND	ND	ug/l	NC		30	
2-Nitroaniline ¹	ND	ND	ug/l	NC		30	
3-Nitroaniline ¹	ND	ND	ug/l	NC		30	
4-Nitroaniline ¹	ND	ND	ug/l	NC		30	
Dibenzofuran ¹	ND	ND	ug/l	NC		30	
2-Methylnaphthalene ¹	ND	ND	ug/l	NC		30	
Acetophenone ¹	ND	ND	ug/l	NC		30	
n-Nitrosodimethylamine ¹	ND	ND	ug/l	NC		30	
2,4,6-Trichlorophenol	ND	ND	ug/l	NC		30	
P-Chloro-M-Cresol ¹	ND	ND	ug/l	NC		30	
2-Chlorophenol	ND	ND	ug/l	NC		30	
2,4-Dichlorophenol	ND	ND	ug/l	NC		30	

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: L1712207 Report Date: 04/26/17

Project Number: 128868-006

Parameter		Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS Sample	- Westborough Lab	Associated sample(s): 0	1 QC Batch ID: \	WG995416-4	QC Sample:	L1712064-01	Client ID: DUP	
2,4-Dimethylphenol		ND	ND	ug/l	NC		30	
2-Nitrophenol		ND	ND	ug/l	NC		30	
4-Nitrophenol		ND	ND	ug/l	NC		30	
2,4-Dinitrophenol		ND	ND	ug/l	NC		30	
4,6-Dinitro-o-cresol ¹		ND	ND	ug/l	NC		30	
Pentachlorophenol		ND	ND	ug/l	NC		30	
Phenol		ND	ND	ug/l	NC		30	
2-Methylphenol ¹		ND	ND	ug/l	NC		30	
3-Methylphenol/4-Methylphenol ¹		ND	ND	ug/l	NC		30	
2,4,5-Trichlorophenol ¹		ND	ND	ug/l	NC		30	
Benzoic Acid ¹		ND	ND	ug/l	NC		30	
Benzyl Alcohol ¹		ND	ND	ug/l	NC		30	
Carbazole ¹		ND	ND	ug/l	NC		30	
Pyridine ¹		ND	ND	ug/l	NC		30	
n-Decane ¹		ND	ND	ug/l	NC		30	
Octadecane (C18) ¹		ND	ND	ug/l	NC		30	

Acceptance Surrogate %Recovery Qualifier %Recovery Qualifier Criteria

Project Name: Project Number:	Project Name: BOSTON CHILDREN'S HOPSITAL Lab Duplicate Analysis Project Number: 128868-006 Batch Quality Control				Lab Numbe Report Date	er: e:	L1712207 04/26/17	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Semivolatile Organics by Sample	GC/MS - Westborough Lab	Associated sample(s): 0	1 QC Batch ID: W	G995416-4	QC Sample:	L1712064-01	Client ID	: DUP
	_			Acc	eptance			

Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria
2-Fluorophenol	39	30	21-120
Phenol-d6	29	23	10-120
Nitrobenzene-d5	63	53	23-120
2-Fluorobiphenyl	64	57	15-120
2,4,6-Tribromophenol	80	73	10-120
4-Terphenyl-d14	66	61	33-120

PCBS

			Serial_No	0:04261719:27
Project Name:	BOSTON CHILDREN'S H	OPSITAL	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17
		SAMPLE RESULTS		
Lab ID:	L1712207-01		Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017		Date Received:	04/18/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water		Extraction Method	1:EPA 608
Analytical Method:	5,608		Extraction Date:	04/21/17 23:49
Analytical Date:	04/23/17 23:39		Cleanup Method:	EPA 3665A
Analyst:	HT		Cleanup Date:	04/22/17
			Cleanup Method:	EPA 3660B
			Cleanup Date:	04/22/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/l	0.287	0.048	1	A
Aroclor 1221	ND		ug/l	0.287	0.064	1	А
Aroclor 1232	ND		ug/l	0.287	0.028	1	А
Aroclor 1242	ND		ug/l	0.287	0.032	1	А
Aroclor 1248	ND		ug/l	0.287	0.032	1	А
Aroclor 1254	ND		ug/l	0.287	0.049	1	А
Aroclor 1260	ND		ug/l	0.230	0.052	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85		30-150	А
Decachlorobiphenyl	66		30-150	А

Project Name:	BOSTON CHILDREN'S HOPSITAL	Lab Number:	L1712207
Project Number:	128868-006	Report Date:	04/26/17
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

5,608 04/23/17 23:52 HT Extraction Method:EPA 608Extraction Date:04/21/17 23:49Cleanup Method:EPA 3665ACleanup Date:04/22/17Cleanup Method:EPA 3660BCleanup Date:04/22/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westborougl	h Lab for s	ample(s):	01 Batch:	WG996562-1	
Aroclor 1016	ND		ug/l	0.250	0.042	А
Aroclor 1221	ND		ug/l	0.250	0.056	А
Aroclor 1232	ND		ug/l	0.250	0.024	А
Aroclor 1242	ND		ug/l	0.250	0.028	А
Aroclor 1248	ND		ug/l	0.250	0.028	А
Aroclor 1254	ND		ug/l	0.250	0.043	А
Aroclor 1260	ND		ug/l	0.200	0.045	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	81		30-150	A	
Decachlorobiphenyl	70		30-150	А	

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbord	ugh Lab Associa	ted sample(s)	: 01 Batch:	WG996562-2					
Aroclor 1016	116		-		40-140	-		50	A
Aroclor 1260	113		-		40-140	-		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81				30-150	А
Decachlorobiphenyl	71				30-150	А

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	y Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	<u>Column</u>
Polychlorinated Biphenyls by	GC - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch	ID: WG996	562-4 QC S	ample: I	L1706390-34	Client	t ID: M	IS Sample	ļ
Aroclor 1016	ND	3.12	3.64	116		-	-		40-140	-		50	А
Aroclor 1260	ND	3.12	3.52	113		-	-		40-140	-		50	А

	MS	;	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82				30-150	A
Decachlorobiphenyl	67				30-150	А

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL

Lab Number: Report Date:

L1712207 04/26/17

Project Number: 128868-006

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG996562-5	QC Sample:	L1706390-34	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		50	А
Aroclor 1221	ND	ND	ug/l	NC		50	А
Aroclor 1232	ND	ND	ug/l	NC		50	А
Aroclor 1242	ND	ND	ug/l	NC		50	А
Aroclor 1248	ND	ND	ug/l	NC		50	А
Aroclor 1254	ND	ND	ug/l	NC		50	А
Aroclor 1260	ND	ND	ug/l	NC		50	А

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		82		30-150	А
Decachlorobiphenyl	66		47		30-150	А

METALS

Serial_No:04261719:27

Project Name:	BOST	ON CHILD	REN'S H	IOPSITA	۹L		Lab Nu	mber:	L1712	207	
Project Number:	12886	600-88					Report	Date:	04/26/	17	
				SAMP	LE RES	ULTS					
Lab ID:	L1712	207-01					Date Co	ollected:	04/18/	'17 15:30	
Client ID:	B115I	D_0418201	7				Date Re	eceived:	04/18/	'17	
Sample Location:	BOST	ON, MA					Field Pr	ep:	Not Sp	pecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	0.00141	J	mg/l	0.00400	0.00042	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Arsenic, Total	0.00183		mg/l	0.00100	0.00016	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Chromium, Total	0.00701		mg/l	0.00100	0.00017	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Copper, Total	0.00355		mg/l	0.00100	0.00038	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Iron, Total	0.102		mg/l	0.050	0.009	1	04/19/17 10:10	04/20/17 16:20	EPA 3005A	19,200.7	PS
Lead, Total	0.00055		mg/l	0.00050	0.00034	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Mercury, Total	ND		mg/l	0.00020	0.00006	1	04/19/17 14:03	3 04/20/17 15:13	EPA 245.1	3,245.1	MG
Nickel, Total	0.00148	J	mg/l	0.00200	0.00055	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Silver, Total	ND		mg/l	0.00040	0.00026	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Zinc, Total	0.00462	J	mg/l	0.01000	0.00341	1	04/19/17 10:10	04/22/17 10:51	EPA 3005A	3,200.8	BV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	589		mg/l	0.660	NA	1	04/19/17 10:10	04/20/17 18:28	EPA 3005A	19,200.7	AB

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s)	: 01 Batch	n: WG99	5549-1					
Iron, Total	ND	mg/l	0.050	0.009	1	04/19/17 10:10	04/20/17 13:45	5 19,200.7	PS
	_	l Digestion	Prep Info Method:	ormatio EPA	n 3005A				
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield L	ab for sam	ple(s): C	1 Bato	h: WG995	549-1			
Hardness	ND	mg/l	0.660	NA	1	04/19/17 10:10	04/20/17 18:20	19,200.7	AB
	_	I	Prep Info	ormatio	n				
		Digestion	Method:	EPA	3005A				
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s)	: 01 Batch	n: WG99	5653-1					
Mercury, Total	ND	mg/l	0.00020	0.00006	6 1	04/19/17 14:03	04/20/17 14:50	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for s	sample(s):	01 Batcl	h: WG99	6069-1					
Antimony, Total	0.00123	J	mg/l	0.00400	0.00042	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Arsenic, Total	0.00046	J	mg/l	0.00100	0.00016	5 1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Chromium, Total	ND		mg/l	0.00100	0.00017	[′] 1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Copper, Total	ND		mg/l	0.00100	0.00038	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Lead, Total	ND		mg/l	0.00050	0.00034	· 1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Method Blank Analysis Batch Quality Control

Nickel, Total	ND	mg/l	0.00200	0.00055	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Selenium, Total	ND	mg/l	0.00500	0.00173	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Silver, Total	ND	mg/l	0.00040	0.00026	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV
Zinc, Total	ND	mg/l	0.01000	0.00341	1	04/19/17 10:10	04/22/17 10:24	3,200.8	BV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	-
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG99554	19-2						
Iron, Total	101		-		85-115	-			
Total Hardness by SM 2340B - Mansfield Lab As	ssociated sampl	e(s): 01	Batch: WG995549	-2					Ĺ
Hardness	109		-		85-115	-			
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG99565	53-2						Ĺ
Mercury, Total	100		-		85-115	-			
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG99606	69-2						Ĺ
Antimony, Total	101		-		85-115	-			
Arsenic, Total	108		-		85-115	-			
Cadmium, Total	116	Q	-		85-115	-			
Chromium, Total	105		-		85-115	-			
Copper, Total	107		-		85-115	-			
Lead, Total	107		-		85-115	-			
Nickel, Total	106		-		85-115	-			
Selenium, Total	117	Q	-		85-115	-			
Silver, Total	104		-		85-115	-			
Zinc, Total	113		-		85-115	-			

Matrix Spike Analysis

		Batch Quality Control		
Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Total Metals - Mansfield Lab Associated sample (s): 0 QC Batch ID: WG995549-3 QC Sample: L171161-01 Client ID: MS Sample Iron, Total 4.07 1 4.91 84 - 75-125 20 Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): U QC Batch ID: WG995549-3 QC Sample: L1711161-01 Client ID: MS Sample Hardness 302. 662 355 80 - 75-125 20 Total Metals - Mansfield Lab Associated sample(s): U QC Batch ID: WG995549-7 QC Sample: L1711798-01 Client ID: MS Sample Iron, Total 0.151 1 1.14 99 - 75-125 20 Total Metals - Mansfield Lab Associated sample(s): U QC Batch ID: WG995549-7 QC Sample: L1711798-01 Client ID: MS Sample Hardness 168. 66.2 224 85 .	Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limi	rery ts RPD	RPD Qual Limits
Inon, Total4.0714.91847.5122Inon, TotalNBSSosSosSosSosCSample: L1711616-00Client ID:MS sampleHardness30266.2Sos80	Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG995549-	-3 Q	C Sample:	L1711616-01	Client ID: MS	S Sample	
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG995549-3 QC Sample: L171161-01 Client ID: MS Sample Hardness 302. 66.2 365 80 . 75-125 . 20 Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG995549-7 QC Sample: L1711798-01 Client ID: MS Sample Iron, Total 0.151 1 1.14 99 . . 75-125 .	Iron, Total	4.07	1	4.91	84		-	-	75-12	5 -	20
Hardness302.62.35580751220Total Matals - Mansfield Lab Associated sample00	Total Hardness by SM 2340	B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batc	h ID: V	VG995549-	-3 QC Sampl	e: L1711616-0	1 Client IE): MS Sample
Total Metals - Mansfield Lab Associated sample(s): 0QC Batch ID: WG995549-7QC Sample: L1711798-01Client ID: MS SampleIron, Total0.15111.149975:125-20Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01QC Batch ID: WG995549-7QC Sample: L1711798-01Client ID: MS SampleHardness168.6.222485-C75:125-20Total Metals - Mansfield Lab Associated sample(s): 01QC Batch ID: WG995653-3QC Sample: L1711900-01Client ID: MS SampleMercury, TotalND0.00097-70-130-20Total Metals - Mansfield Lab Associated sample(s): 01QC Batch ID: WG99669-3QC Sample: L1700004-71Client ID: MS SampleMercury, TotalND0.00097-70-130-20Total Metals - Mansfield Lab Associated sample(s): 01QC Batch ID: WG996069-3QC Sample: L1700004-71Client ID: MS SampleAntimony, TotalND0.0120.01810470-130-Antimony, TotalND0.200.056611170-130-20Cadmium, TotalND0.210.056611170-130-20Copper, Total0.00623J0.51710370-130-20Nickel, TotalND0.510.51710370-13020Nickel, TotalND0.517	Hardness	302.	66.2	355	80		-	-	75-12	5 -	20
Iron, Total0.15111.149975-125.20Total Hardness by SM 2340B - Marsfield Lab Associated sample(s): UQC Barth L: WG995549.7QC Sample: L1711798-01Client L: MS SampleHardness188.66.222485<	Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG995549-	-7 Q	C Sample:	L1711798-01	Client ID: MS	Sample	
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01QC Batch ID: WG995649-7QC Sample: L1711798-01Client ID: MS SampleHardness168.66.222485-7.5125	Iron, Total	0.151	1	1.14	99		-	-	75-12	5 -	20
Hardness 168. 66.2 224 85 - 7 75-125 .20 Total Metals - Mansfield Lab Associated sample: ND 0.05 0.0485 97 - .0 .0 .20 Mercury, Total ND 0.05 0.0485 97 - .0 .0 .20 Autimory, Total ND 0.05 0.058 97 .0 .0 .20 .20 Antimory, Total 0.0054J 0.518 104 .0 .0 .20	Total Hardness by SM 2340	B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batc	h ID: V	VG995549-	-7 QC Sampl	e: L1711798-0	1 Client IE): MS Sample
Antimory, Total ND 0.005 0.00485 97 - - 70-130 - 20 Antimory, Total ND 0.005 0.7 - - 70-130 - 20 Antimory, Total 0.0054JJ 0.5 0.518 104 - - 70-130 - 20 Antimory, Total 0.0054JJ 0.5 0.518 104 - - 70-130 - 20 Arsenic, Total ND 0.12 0.130 108 - - 70-130 - 20 Cadmium, Total ND 0.21 0.0566 111 - - 70-130 - 20 Copper, Total ND 0.22 0.208 104 - - 70-130 - 20 Lead, Total 0.00529J 0.51 0.544 107 - - 70-130 - 20 Kicel, Total ND 0.5 0.517 103 -<	Hardness	168.	66.2	224	85		-	-	75-12	5 -	20
Mercury, TotalND0.0050.0048597-70-130-20Total Metals - Mansfield Lassociated sample: Storie Associated sampl	Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG995653-	-3 Q	C Sample:	L1711900-01	Client ID: MS	Sample	
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG996069-3 QC Sample: L1700004-71 Client ID: MS Sample Antimony, Total 0.00544J 0.5 0.518 104 - - 70-130 - 20 Arsenic, Total ND 0.12 0.130 108 - - 70-130 - 20 Cadmium, Total ND 0.051 0.0566 111 - - 70-130 - 20 Chromium, Total ND 0.051 0.0566 111 - - 70-130 - 20 Chromium, Total ND 0.2 0.208 104 - - 70-130 - 20 Copper, Total 0.0404 0.25 0.298 103 - - 70-130 - 20 Lead, Total 0.00529J 0.51 0.544 107 - - 70-130 - 20 Nickel, Total ND 0.5 0.517 103 -	Mercury, Total	ND	0.005	0.00485	97		-	-	70-13	0 -	20
Antimony, Total 0.00544J 0.5 0.518 104 - - 70-130 - 20 Arsenic, Total ND 0.12 0.130 108 - - 70-130 - 20 Cadmium, Total ND 0.051 0.0566 111 - - 70-130 - 20 Chromium, Total ND 0.2 0.208 104 - - 70-130 - 20 Chromium, Total ND 0.2 0.208 104 - - 70-130 - 20 Copper, Total 0.0404 0.25 0.298 103 - - 70-130 - 20 Lead, Total 0.00529J 0.51 0.544 107 - - 70-130 - 20 Nickel, Total ND 0.12 0.134 112 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102	Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG996069-	-3 Q	C Sample:	L1700004-71	Client ID: MS	Sample	
Arsenic, TotalND0.120.13010870-130-20Cadmium, TotalND0.0510.056611170-130-20Chromium, TotalND0.20.20810470-130-20Copper, Total0.04040.250.29810370-130-20Lead, Total0.00529J0.510.54410770-130-20Nickel, TotalND0.50.51710370-130-20Selenium, TotalND0.120.13411270-130-20Silver, TotalND0.050.051010270-130-20Zinc, Total0.0618J0.50.60012070-130-20	Antimony, Total	0.00544J	0.5	0.518	104		-	-	70-13	0 -	20
Cadmium, TotalND0.0510.056611170-130-20Chromium, TotalND0.20.20810470-130-20Copper, Total0.04040.250.29810370-130-20Lead, Total0.00529J0.510.54410770-130-20Nickel, TotalND0.50.51710370-130-20Selenium, TotalND0.120.13411270-130-20Silver, TotalND0.050.051010270-130-20Jinc, Total0.0618J0.50.60012070-130-20Zinc, Total0.0618J0.50.60012070-130-20Zinc, Total0.0618J0.50.60012070-130-20	Arsenic, Total	ND	0.12	0.130	108		-	-	70-13	0 -	20
Chromium, TotalND0.20.20810470-130-20Copper, Total0.04040.250.29810370-130-20Lead, Total0.00529J0.510.54410770-130-20Nickel, TotalND0.50.51710370-130-20Selenium, TotalND0.120.13411270-130-20Silver, TotalND0.050.051010270-130-20Zinc, Total0.0618J0.50.60012070-130-20	Cadmium, Total	ND	0.051	0.0566	111		-	-	70-13	0 -	20
Copper, Total 0.0404 0.25 0.298 103 - - 70-130 - 20 Lead, Total 0.00529J 0.51 0.544 107 - 70-130 - 20 Nickel, Total ND 0.5 0.517 103 - - 70-130 - 20 Selenium, Total ND 0.12 0.134 112 - - 70-130 - 20 Silver, Total ND 0.12 0.0510 112 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Zinc, Total 0.0618J 0.5 0.600 120 - - 70-130 - 20	Chromium, Total	ND	0.2	0.208	104		-	-	70-13	0 -	20
Lead, Total 0.00529J 0.51 0.544 107 - 70-130 - 20 Nickel, Total ND 0.5 0.517 103 - 70-130 - 20 Selenium, Total ND 0.12 0.134 112 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Zinc, Total 0.0618J 0.5 0.600 120 - - 70-130 - 20	Copper, Total	0.0404	0.25	0.298	103		-	-	70-13	0 -	20
Nickel, Total ND 0.5 0.517 103 - - 70-130 - 20 Selenium, Total ND 0.12 0.134 112 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Zinc, Total 0.0618J 0.5 0.600 120 - - 70-130 - 20	Lead, Total	0.00529J	0.51	0.544	107		-	-	70-13	0 -	20
Selenium, Total ND 0.12 0.134 112 - - 70-130 - 20 Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Zinc, Total 0.0618J 0.5 0.600 120 - - 70-130 - 20	Nickel, Total	ND	0.5	0.517	103		-	-	70-13	0 -	20
Silver, Total ND 0.05 0.0510 102 - - 70-130 - 20 Zinc, Total 0.0618J 0.5 0.600 120 - - 70-130 - 20	Selenium, Total	ND	0.12	0.134	112		-	-	70-13	0 -	20
Zinc, Total 0.0618J 0.5 0.600 120 70-130 - 20	Silver, Total	ND	0.05	0.0510	102		-	-	70-13	0 -	20
and store	Zinc, Total	0.0618J	0.5	0.600	120		-	-	70-13	0 -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL Project Number: 128868-006

Lab Number:

L1712207 Report Date: 04/26/17

Parameter	Native Sample Du	plicate Sample	e Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG995549-4	QC Sample:	L1711616-01	Client ID: DUI	P Sample	
Iron, Total	4.07	4.06	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG995653-4	QC Sample:	L1711900-01	Client ID: DUI	P Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG996069-4	QC Sample:	L1700004-71	Client ID: DUI	Sample	
Antimony, Total	0.00544J	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.0404	0.0365	mg/l	10		20
Lead, Total	0.00529J	0.00502J	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0618J	0.0549J	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:04261719:27

L1712207

04/26/17

Lab Number:

Report Date:

Project Name: BOS	TON CHILDREN'S HOPSITAL
-------------------	-------------------------

Project Number: 128868-006

SAMPLE RESULTS

Lab ID:	L1712207-01	Date Collected:	04/18/17 15:30
Client ID:	B115D_04182017	Date Received:	04/18/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	16.		mg/l	5.0	NA	1	-	04/19/17 11:50	121,2540D	DW
Cyanide, Total	0.002	J	mg/l	0.005	0.001	1	04/19/17 17:46	6 04/20/17 13:37 121,4500CN-CE		DE
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	04/19/17 00:05 121,4500CL-D		AS
Nitrogen, Ammonia	0.224		mg/l	0.075	0.022	1	04/19/17 20:00	04/20/17 22:20	04/20/17 22:20 121,4500NH3-BF	
TPH, SGT-HEM	ND		mg/l	5.20	1.61	1.3	04/20/17 14:45	04/20/17 19:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030	0.010	1	04/20/17 14:18	04/21/17 12:40	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	04/19/17 00:25	04/19/17 00:43	1,7196A	VB
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	566.		mg/l	12.5	1.35	25	-	04/19/17 19:09	44,300.0	AU

Serial_No:04261719:27

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lab	for sam	ple(s): 01	Batch:	WG99	5422-1				
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	04/19/17 00:05	121,4500CL-D	AS
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	5425-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	04/19/17 00:25	04/19/17 00:42	1,7196A	VB
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	5465-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/19/17 11:50	121,2540D	DW
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	5717-1				
Nitrogen, Ammonia	ND		mg/l	0.075	0.022	1	04/19/17 20:00	04/20/17 22:09	121,4500NH3-B	H AT
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	5718-1				
Cyanide, Total	0.001	J	mg/l	0.005	0.001	1	04/19/17 17:46	04/20/17 13:20	121,4500CN-CI	E DE
Anions by Ion Chromatogra	aphy - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG9	95808-1			
Chloride	ND		mg/l	0.500	0.054	1	-	04/19/17 17:21	44,300.0	AU
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	6062-1				
Phenolics, Total	ND		mg/l	0.030	0.010	1	04/20/17 14:18	04/21/17 12:24	4,420.1	AW
General Chemistry - Westh	oorough Lab	for sam	ple(s): 01	Batch:	WG99	6072-1				
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	04/20/17 14:45	04/20/17 19:30	74,1664A	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Devenue (en	LCS	0	LCSD	9	%Recovery				
Parameter	%Recovery	Quai	%Recovery	Qual	LIMITS	RPD	Qual	RPD LIMIts	
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG995422-2						
Chlorine, Total Residual	101		-		90-110	-			
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG995425-2						
Chromium, Hexavalent	101		-		85-115	-		20	
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG995717-2						
Nitrogen, Ammonia	96		-		80-120	-		20	
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG995718-2						
Cyanide, Total	93		-		90-110	-			
Anions by Ion Chromatography - Westboroug	h Lab Associate	d samp	le(s): 01 Batch: W	G995808-2					
Chloride	104		-		90-110	-			
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG996062-2						
Phenolics, Total	98		-		70-130	-			
General Chemistry - Westborough Lab Assoc	ciated sample(s):	01 Ba	atch: WG996072-2						
ТРН	85		-		64-132	-		34	

Matrix Spike Analysis

		Batch Quality Control		
Project Name:	BOSTON CHILDREN'S HOPSITAL	Batch Quality Control	Lab Number:	L1712207
Project Number:	128868-006		Report Date:	04/26/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSE Qual Four	MSD MSD %Recovery	Recove Qual Limits	ery 6 RPD (RPD Qual Limits
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG995422-4	QC Sample: L17	12207-01 Clier	nt ID: B115	D_04182017
Chlorine, Total Residual	ND	0.248	0.25	101		-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG995425-4	QC Sample: L17	12207-01 Clier	nt ID: B115I	D_04182017
Chromium, Hexavalent	ND	0.1	0.108	108		-	85-115	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG995717-4	QC Sample: L17	12207-01 Clier	nt ID: B115I	D_04182017
Nitrogen, Ammonia	0.224	4	3.97	94		-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG995718-4	QC Sample: L17	'11801-01 Clier	nt ID: MS S	ample
Cyanide, Total	0.003J	0.2	0.163	82	Q ·	-	90-110	-	30
Anions by Ion Chromatography	· - Westboroug	gh Lab Asso	ciated sar	nple(s): 01 Q	C Batch ID: W	G995808-3 QC	Sample: L17121	68-01 Clie	nt ID: MS Samp
Chloride	16.7	4	20.3	91		-	90-110	-	18
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG996062-4	QC Sample: L17	00004-69 Clier	nt ID: MS S	ample
Phenolics, Total	ND	0.4	0.49	122		-	70-130	-	20
General Chemistry - Westboro	ugh Lab Assoc	ciated samp	ole(s): 01	QC Batch ID:	WG996072-4	QC Sample: L17	12290-02 Clier	nt ID: MS S	ample
TPH	ND	22.2	17.4	78			64-132	-	34

Lab Duplicate Analysis Batch Quality Control

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

 Lab Number:
 L1712207

 Report Date:
 04/26/17

Parameter	arameter Native Sample		Duplicate Sa	mple Units	RPD	Qual RPD Limits	
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG995422-3	QC Sample: L17122	07-01 Clier	nt ID: B115D_04182017
Chlorine, Total Residu	Jal		ND	ND	mg/l	NC	20
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG995425-3	QC Sample: L17122	07-01 Clier	nt ID: B115D_04182017
Chromium, Hexavaler	nt		ND	ND	mg/l	NC	20
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG995717-3	QC Sample: L17122	07-01 Clier	nt ID: B115D_04182017
Nitrogen, Ammonia			0.224	0.216	mg/l	4	20
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG995718-3	QC Sample: L17122	07-01 Clier	nt ID: B115D_04182017
Cyanide, Total			0.002J	0.002J	mg/l	NC	30
Anions by Ion Chrom Sample	natography - Westb	orough Lab Associated	l sample(s): 01 (QC Batch ID: W	G995808-4 QC Sam	ple: L1712 ⁻	168-01 Client ID: DUP
Chloride			16.7	16.6	mg/l	1	18
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG996062-3	QC Sample: L17000	04-69 Clier	nt ID: DUP Sample
Phenolics, Total			ND	ND	mg/l	NC	20
General Chemistry -	Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG996072-3	QC Sample: L17122	90-01 Clier	nt ID: DUP Sample
ТРН			ND	ND	mg/l	NC	34

Serial_No:04261719:27

Project Name: BOSTON CHILDREN'S HOPSITAL Project Number: 128868-006

Lab Number: L1712207 Report Date: 04/26/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

В

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1712207-01A	Vial HCI preserved	В	N/A	4.0	Y	Absent	8260-SIM(14),8260(14)
L1712207-01B	Vial HCI preserved	В	N/A	4.0	Y	Absent	8260-SIM(14),8260(14)
L1712207-01C	Vial HCI preserved	В	N/A	4.0	Y	Absent	8260-SIM(14),8260(14)
L1712207-01D	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	624(3)
L1712207-01E	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	624(3)
L1712207-01F	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	624(3)
L1712207-01G	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	504(14)
L1712207-01H	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	504(14)
L1712207-01I	Plastic 250ml HNO3 preserved	В	<2	4.0	Υ	Absent	CD-2008T(180),NI- 2008T(180),ZN-2008T(180),CU- 2008T(180),FE- UI(180),HARDU(180),AG- 2008T(180),AS-2008T(180),HG- U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB- 2008T(180)
L1712207-01J	Plastic 250ml NaOH preserved	В	>12	4.0	Y	Absent	TCN-4500(14)
L1712207-01K	Plastic 500ml H2SO4 preserved	В	<2	4.0	Y	Absent	NH3-4500(28)
L1712207-01L	Plastic 950ml unpreserved	В	8	4.0	Y	Absent	CL-300(28),HEXCR- 7196(1),TRC-4500(1)
L1712207-01M	Plastic 950ml unpreserved	В	8	4.0	Y	Absent	TSS-2540(7)
L1712207-01N	Amber 1000ml H2SO4 preserved	В	<2	4.0	Y	Absent	TPHENOL-420(28)
L1712207-01O	Amber 1000ml unpreserved	В	8	4.0	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1712207-01Q	Amber 1000ml unpreserved	В	8	4.0	Y	Absent	8270TCL(7),8270TCL-SIM(7)
L1712207-01R	Amber 1000ml Na2S2O3	В	8	4.0	Y	Absent	625(7)
L1712207-01S	Amber 1000ml Na2S2O3	В	8	4.0	Y	Absent	625(7)
L1712207-01T	Amber 1000ml Na2S2O3	В	8	4.0	Y	Absent	PCB-608(7)
L1712207-01U	Amber 1000ml Na2S2O3	В	8	4.0	Y	Absent	PCB-608(7)
L1712207-01V	Amber 1000ml HCI preserved	В	N/A	4.0	Y	Absent	TPH-1664(28)
L1712207-01W	Amber 1000ml HCI preserved	В	N/A	4.0	Y	Absent	TPH-1664(28)
L1712207-01X	Amber 500ml Na Sulfite/NaHSO3 pr	В	3	4.0	Y	Absent	HOLD-1,4DIOX(7)
L1712207-01Y	Amber 500ml Na Sulfite/NaHSO3 pr	В	3	4.0	Y	Absent	HOLD-1,4DIOX(7)
L1712207-01Z	Vial unpreserved	В	N/A	4.0	Y	Absent	HOLD-8260(14)

Project Name:BOSTON CHILDREN'S HOPSITALProject Number:128868-006

Lab Number: L1712207 Report Date: 04/26/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1712207-02A	Vial HCI preserved	В	N/A	4.0	Y	Absent	8260-SIM(14),8260(14)
L1712207-02B	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	624(3)
L1712207-02C	Vial Na2S2O3 preserved	В	N/A	4.0	Y	Absent	504(14)

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

Lab Number: L1712207

Report Date: 04/26/17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
	1

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: BOSTON CHILDREN'S HOPSITAL

Project Number: 128868-006

Lab Number: L1712207

Report Date: 04/26/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Lab Number:
 L1712207

 Report Date:
 04/26/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

coc edits by Gina Hall AAL 4/24/17

Serial_No:04261719:27

	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Albany, NY 12205 Tonawanda, NY 1415	Portsmouth, NH 03801 Ma 0 Holmes, PA 19043	ahwah, NJ 07430	Page	r 2		Date in	Rec' Lab	d 4	4/18	11	2		ALPHA JOB # LIZI DDD7	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	on	Set of the			Deliv	verable	S						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Boston Child	lren's Hospita	I (BCCB)		~	Ema	il			Fax			Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Boston, MA					EQu	S (1 F	ile)	1	EQul	S (4 F	ile)	PO #	
H&A Information		Project #	128868-001	12886	8-006		Other:									
H&A Client: Jonathan T	hibault	(Use Project nam	ne as Project #)	2			Regulatory Requirements (Program/Criteria)							ria)	Disposal Site Information	
H&A Address: 465 Medfor	d Street	Project Manager:	L. Vanzler												Please identify below location of	
Suite 2200, Boston, MA 021	29	ALPHAQuote #:					1								applicable disposal facilities.	
H&A Phone: 617.680.22	93	Turn-Around Tim	ie	and the second											Disposal Facility:	
H&A Fax:		S	Standard 🗹	Due Date:]							U NJ U NY		
H&A Email: jthibault@h	aleyaldrich.com	Rush (only if pre a	approved)	# of Days:			Note:	Select	State f	rom me	nu & id	lentify o	criteria.		Other:	
These samples have been p	previously analyzed by	Alpha					ANA	LYSIS							Sample Filtration	т
Other project specific requ	uirements/comments	i:					0	Î			S				Done	o t
Sample submitted for 2017 levels as required by EPA.	NPDES RGP permit a	pplication; please	follow appropriate tes	ting methods	and minimu	m detection	UIS pu	IS put	80	64	Meta	350	300	8	Lab to do	a I
Please specify Metals or T	.01					-	24 a	25	3s 6	116	GP	onia	ide	3 45	Lab to do	B
Fiedde specify metals of 1	AL.						(62	s (6	PC	E .	ESF	mm	hlor	TRO	(Plazza Spacify balow)	t t
			Calls	ation			ő	Q	e,	4	PD	5. AI	7.0	ŝ	(Flease Specify below)	t
ALPHA Lab ID (Lab Use Only) Sa		mple ID	Data	Time	Sample	Sampler's		S			5. N	Ű			Sample Specific Comments	e
1222 01	1/1150	04182017	Hin ha	K20	12004	-2 L.	\sim	V	X	V	X	X	X	×	5 NDDES BCD Metale:	
IDDOT _01	121121	_010001+	1/16/11	1100	NUV	-112	K	X		~	1	\sim	~	~	S. NPDES RGP Metals.	
	115-0	4182017		1100	*1		~	1						-	Sb, As, Cd, Cr, Cu, Fe, Pb	
							-						-	-	NI, Se, Ag and Zn by 200.8,	
							-	-	-		-			-	Hg by 245	
							-	-		-					Can Deal	
							-	-					-		see page	
							-								2	
							-	<u> </u>						-	Adla Son 1 1 1	
							-			-			Mar Jan	>	IVITS-SCO MIPICSING	_
Preservative Code:	Container Code							-		_					Please print clearly legibly and	
A = None	P = Plastic	Westboro: Certifie	cation No: MA935		Cont	tainer Type	V	A	A	A	P			P	completely. Samples can not be	
B = HCI C = HNO ₂	A = Amber Glass V = Vial	Mansfield: Certific	cation No: MAU15					0		-	,			1	logged in and turnaround time c will not start until any ambiguiti	lock
$D = H_2SO_4$	G = Glass				P	reservative	B	H	H	B	·C			A	are resolved. Alpha Analytical's	
E = NaOH	B = Bacteria Cup						19		• 1	-	-	-			services under this Chain of Custo	dy with
r = MeOH G = NaHSO₄	O = Other	Alt Reling	uished By:	Date/	Time		Receiv	ved By	:		1.	Date/	Time		terms and conditions within Blanke	et
$H = Na_2S_2O_3$	E = Encore	Martin		7118/17	1616	X	-1	NA.	-	7	1/4/1	2	161	6	Service Agreement# 2015-18-Alph	ia
K/E = Zn Ac/NaOH		K	AAL 41	11/15	1500	no	6	-1	-	- "	1/18/19 18000				Aldrich, Inc., its subsidiaries and	
- Juici								_							affiliates and Alpha Analytical.	
Document ID: 20455 Rev 1 (1/28	3/2016)		10													

Serial_No:04261719:27

Агрна	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Albany, NY 12205 Tonawanda, NY 14150	Portsmouth, NH 03801 Ma Holmes, PA 19043	ahwah, NJ 07430	Page	12		Date in	Rec'o Lab	d 4	+/18	11	2		ALPHA JOB # 21717707
Westborough, MA 01581 8 Walkup Dr	Mansfield, MA 02048 320 Forbes Blvd	Project Information	1	Section 4			Deliv	erable	S					12/24	Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Boston Child	lren's Hospita	I (BCCB)		7	Ema	il			Fax			Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Boston, MA					EQu	S (1 F	ile)	1	EQui	IS (4 F	ile)	PO#
H&A Information		Project #	128868-001					Othe	r:						*
H&A Client: Jonathan Th	hibault	(Use Project name	as Project #)				Regulatory Requirements (Program/Criteria) Disposa							Disposal Site Information	
H&A Address: 465 Medford	d Street	Project Manager:	L. Vanzler												Please identify below location of
Suite 2200, Boston, MA 021	29	ALPHAQuote #:					1								applicable disposal facilities.
H&A Phone: 617.680.229	93	Turn-Around Time													Disposal Facility:
H&A Fax:		Sta	andard 🗹	Due Date			1								🗌 NJ 🗌 NY
H&A Email: jthibault@ha	aleyaldrich.com	Rush (only if pre app	proved)	# of Days			Note:	Select	State fr	rom me	enu & id	lentify o	criteria.		Other:
These samples have been p	reviously analyzed by	Alpha					ANA	LYSIS							Sample Filtration
Other project specific requ	irements/comments	:					6	ŝ			S				Done
Sample submitted for 2017 I levels as required by EPA.	NPDES RGP permit a	pplication; please fo	llow appropriate tes	ting methods	and minimu	m detection	4 and SIN	25 and SII	s 608	1664	GP Metal	nia 350	de 300	4500	Lab to do Preservation Lab to do B
Please specify Metals or 1	AL.						DCs (62	OCs (62	3. PCB	4. TPH	PDES R	. Ammo	7. Chlori	8. TRC	(Please Specify below)
ALPHA Lab ID Sample		mple ID		Collection Sample Samp		Sampler's	×	SV			N.	9			e
(Lab Use Only)	0/11/200		Date	Time	watrix	Initials	-	N	24		47	10			Sample Specific Comments s
10007 -01	ISTISD	_04182017	9/16/17	1530	MODE	> Ag	X	X	X	X	X	X	X	X	5. NPDES RGP Metals:
07	TB-0	4182017	u	1100	+1	11	X	Z							Sb, As, Cd, Cr, Cu, Fe, Pb
								1							Ni, Se, Ag and Zn by 200.8,
															Hg by 245
													-		C
															see frage
															7'
														-	C
			1. C.										-	7	NH3-500 miplastic
															W preserve D.
Preservative Code: A = None B = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certifica Mansfield: Certifica	tion No: MA935 tion No: MA015		Cont	tainer Type	V	A	A	A	P			P	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup				Р	reservative	B	BAH		B	C			A	will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody
F = MeOH	C = Cube	al IBelinqui	shed By:	, Date/	Time	1	Receiv	ed By	c		1	Date/	Time		shall be performed in accordance with
$G = NaHSO_4$ H = Na ₂ S ₂ O ₂	E = Encore	Mother	-	4/18/17	1616	A	~/	AA.	-	4	VKE/	17	161	16	Service Agreement# 2015-18-Alpha
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Fr.	AAL 41	IFIIS,	1800	Nie	an'				1/18/19 18/00				Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.
Designed ID: 00455 Designed (4/00	/2016)														

			COC ed	its by Gina	a Hall AA	L 4/24/1	7							Seria	al_No:04261719:27	
Асрна	CHAIN OF CUSTODY	Service Centers Page 2 Brewer, ME 04412 Portsmouth, NH 03801 Mahwah, NJ 07430 Page 2 Albany, NY 12205 of 2 Tonawanda, NY 14150 Holmes, PA 19043					Date Rec'd 4/18/17						ALPHA Job #			
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Eorbes Blvd	Project Information					Deli	verabl	es						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Boston Chil	dren's Hospita	al (BCCB)		1	Ema	ail		Г	Fax			Same as Client Info	
FAX: 506-696-9193	FAX: 508-822-3288	Project Location:	Boston, MA				EQUIS (1 File)							File)	PO #	
H&A Information		Project #	128868-001	1288	68-006		1 2] Othe	er:			-				
H&A Client: Jonathan	Thibault	(Use Project name as P	roject #)				Reg	ulator	Requ	uireme	ents (P	rogra	m/Crit	eria)	Disposal Site Information	
H&A Address: 465 Medfo	rd Street	Project Manager:	L. Vanzler										salés teluj	STREET.	Please identify below location of	
Suite 2200, Boston, MA 02	129	ALPHAQuote #:					1								applicable disposal facilities.	
H&A Phone: 617.680.22	293	Turn-Around Time			a state										Disposal Facility:	
H&A Fax:		Standard	4 🗸	Due Date	:											
H&A Email: jthibault@h	aleyaldrich.com	Rush (only if pre approved		# of Davs			Note:	Select	State t	from m	I enu & i	dentify	criteria			
These samples have been	previously analyzed by	Alpha		j e			ANA	LYSIS	3			- Charly	5110110		Sample Filtration	
Other project specific req	uirements/comments	s:					-	T		T	1	1	1	1		
Sample submitted for 2017 levels as required by EPA.	NPDES RGP permit a	pplication; please follow a	ppropriate tes	sting methods	and minimu	um detection	540	7196	ide 4500	iols 420	504		ess	ature	Done Lab to do Preservation	
Please specify Metals or 1	AL.						S 21	ວັ	yan	her	B	표	d	ber	Lab to do	
							IS	Hex	alC	al P	Ш	14.	표	Tem	(Please Specify below)	
ALPHA Lab ID Collection Sample				Sampler's	ത്	10.	Tot	19	100		15	10.	(riease specily below)			
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials			1.	12					Sample Specific Comments	
10007 01	3115	D 04182017	4/10/17	(530	Ag	MID	X	×	×	×	V	~		V	Sample Specific Comments	
02			1100111		11-6	11130					<u> </u>	\sim	X	~	(16 for svite	
	TB	04182012	17	11082	A	1000	-	-	-		1		<u> </u>	-	S AT 1110: 17-	
Children and the state		- 110 0011			12	NUSS		-	-		X				TAC-19Diakane 122	
							-					-	-	-	LSOOM the	
										-	-		-	-	h / Gtt preserve	
				-												
reservative Code:	Container Code	Westboro: Certification N	O. MA935				_		0			_			Please print clearly legibly and	
= None = HCI	P = Plastic A = Amber Glass	Mansfield: Certification No	: MA015	-	Con	ainer Type	P	P	P	A	γ				completely. Samples can not be	
= HNO ₃	V = Vial						~	Λ	٨	5	c				logged in and turnaround time clock will not start until any ambiguities	
= NaOH	B = Bacteria Cup			2	P	reservative	A	IT	A	D	H		÷		are resolved. Alpha Analytical's	
= MeOH	C = Cube	A Belifiquished B	by:	, Date/1	Time	15	Receiv	ed By				Date	Time		services under this Chain of Custody shall be performed in accordance with	
= NaHSO4	E = Encore	Macalla		4/18/17	1616		A	00 Dy		4	heli	Date	rime	11	terms and conditions within Blanket	
/E = Zn Ac/NaOH	D = BOD Bottle	AA	VIA	12 11	Enci	Min	1	IN A		-4	1	111	16	12	Service Agreement# 2015-18-Alpha Analytical by and between Haley &	
= Other		- Julite	7/10	1 10		- qui	-		-	-	11(8/	191	ye		Aldrich, Inc., its subsidiaries and	
ocument ID: 20455 Pour 1 /4/28	2016)									-			_		affiliates and Alpha Analytical.	

Serial_No:04261719:27

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 H&A Information H&A Client: Jonathan T H&A Address: 465 Medfor Suite 2200, Boston, MA 021 H&A Phone: 617.680.22 H&A Fax:	CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288 Thibault rd Street 129	Service Centers Brewer, ME 04412 Portsm Albany, NY 12205 Tonawanda, NY 14150 Holme Project Information Project Name: Project Location: Project Location: Project # (Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time	Boston Chil Boston Chil Boston, MA 128868-001 roject #)	Mahwah, NJ 07430 Idren's Hospita	BI (BCCB)	je 2 of 2	Deli'	Date in verabl Ema EQu Othe	e Rec' Lab es iil IS (1 F er: 7 Requ	d // File)	+/18	Fax EQu	nIS (4 I	File) eria)	ALPHA Job # ////////////////////////////////////
H&A Email: jthibault@h	aleyaldrich.com	Rush (only if pre approved)		# of Days:			Note:	Select	State f	rom me	enu & io	dentify	criteria		Other:
Other project specific real	previously analyzed by	Alpha 🛄					ANA	LYSIS							Sample Filtration
Sample submitted for 2017 levels as required by EPA. Please specify Metals or T	NPDES RGP permit a	: pplication; please follow a	ppropriate tes	sting methods	and minim	um detection	9. TSS 2540	. Hex Cr 7196	ital Cyanide 4500	otal Phenols 420	3. EDB 504	14. pH	5. Hardness	Temperature	Done Lab to do Preservation Lab to do Preservation (Please Specify below)
ALPHA Lab ID (Lab Use Only)	San	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	0,	10	11. To	12. Ti	-		÷	16.	Sample Specific Commonto
10707 01	3115	D_04182017	4/10/17	(530	Aq.	MJD	×	×	×	\times	×	\times	×	×	(26 for Suite)
	TB.	-04182017	n .	1100	Ag.	MJD					×				+AZ-14Diakane 122 2 500 ml Atuber W/Gtt preserve.
Preservative Code: $A = None$ $B = HCl$ $C = HNO_3$ $D = H_2SO_4$	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Con	Container Type Preservative			PPPA		Y			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities	
E = NAOH E F = MeOH C G = NaHSO ₄ C H = Na ₂ S ₂ O ₃ E K/E = Zn Ac/NaOH C D = Other Document ID: 20455 Rev 1 (1/28/	C = Cube C = Cube D = Other E = Encore D = BOD Bottle 2016)	Method B Method AAL	y: //	Date/T 9/18/17 8/17 18	ime 1616 °00	du	A			44	5) 15/12 1(18)	Date/	Time 16	15	services under this Chain of Custody shall be performed in accordance with terms and conditions within Blanket Service Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.

1

ANALYTICAL REPORT

Lab N	umber:	L1712403
Client	:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN Phone Projec Projec	: e: ct Name: ct Number:	Lee Vanzler (617) 886-7561 BOSTON CHILDREN'S HOSPITAL 128868-006
Керо	i Dale:	04/27/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1712403-01	B115S_04192017	WATER	BOSTON, MA	04/19/17 14:05	04/19/17
L1712403-02	TB_04192017	WATER	BOSTON, MA	04/19/17 12:00	04/19/17

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BOSTON CHILDREN'S HOSPITAL Project Number: 128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics by Method 624

The WG997012-3 LCS recovery for 1,1,1-trichloroethane (110%), associated with L1712403-01 and -02 (all samples), is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method. The WG997012-3 LCS recovery, associated with L1712403-01 and -02 (all samples), is above the acceptance criteria for 1,2-dichlorobenzene (170%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 04/27/17

ORGANICS

VOLATILES

		Serial_No	0:04271715:45
Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1712403
Project Number:	128868-006	Report Date:	04/27/17
	SAMPLE RESULT	ſS	
Lab ID:	L1712403-01	Date Collected:	04/19/17 14:05
Client ID:	B115S_04192017	Date Received:	04/19/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/26/17 15:29		
Analyst:	PK		

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Org	anics by GC/MS - Westborough L	ab					
Ethanol		ND		ug/l	250	14.	1
	Surrogate	% Recovery	Qualifi	er	Acceptance Criteria		
	1,2-Dichloroethane-d4	98			70-130		
	Toluene-d8	100			70-130		
	4-Bromofluorobenzene	98			70-130		
	Dibromofluoromethane	102			70-130		

		Serial_No	:04271715:45
Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1712403
Project Number:	128868-006	Report Date:	04/27/17
	SAMPLE RESUL	TS	
Lab ID:	L1712403-01	Date Collected:	04/19/17 14:05
Client ID:	B115S_04192017	Date Received:	04/19/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/26/17 20:14		
Analyst:	PK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0	0.68	1
1,1-Dichloroethane	0.30	J	ug/l	0.75	0.21	1
Chloroform	1.9		ug/l	0.75	0.16	1
Carbon tetrachloride	6.4		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1
Tetrachloroethene	43		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.18	1
Trichlorofluoromethane	6.3		ug/l	2.5	0.16	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.70		ug/l	0.50	0.16	1
Toluene	ND		ug/l	0.75	0.16	1
Ethylbenzene	0.27	J	ug/l	0.50	0.17	1
Chloromethane	ND		ug/l	2.5	0.18	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	1.0	0.13	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichloroethene, Total	5.2		ug/l	0.50	0.16	1
Trichloroethene	3.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ua/l	2.5	0.18	1

						Serial_N	0:04271715:45
Project Name:	BOSTON CHILDREN	S HOSPITAL	_		Lab Nu	mber:	L1712403
Project Number:	128868-006				Report	Date:	04/27/17
··· , ········	120000 000	SAMP	LE RESULT	S			0-7/21/11
Lab ID: Client ID: Sample Location:	L1712403-01 B115S_04192017 BOSTON, MA				Date Co Date Re Field Pre	llected: ceived: p:	04/19/17 14:05 04/19/17 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	by GC/MS - Westborough	n Lab					
1.2 Dichlorobonzono		ND			2.5	0.10	1
1.4-Dichlorobenzene		ND		ug/I	2.5	0.19	1
Methyl tert butyl ether		0.41	.1	ug/l	1.0	0.13	1
p/m-Xylene		0.92		ug/l	1.0	0.33	1
o-Xvlene		0.50	 	ug/l	1.0	0.33	1
Xvlenes, Total		1.4		ug/l	1.0	0.33	1
cis-1.2-Dichloroethene		5.2	~	ug/l	0.50	0.19	1
Dibromomethane		ND		ua/l	5.0	0.36	1
1.4-Dichlorobutane		ND		ua/l	5.0	0.46	1
1,2,3-Trichloropropane		ND		ua/l	5.0	0.18	1
Styrene		ND		ua/l	1.0	0.36	1
Dichlorodifluoromethane		ND		ug/l	5.0	0.24	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	0.30	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone		ND		ug/l	5.0	0.42	1
2-Hexanone		ND		ug/l	5.0	0.52	1
Ethyl methacrylate		ND		ug/l	5.0	0.61	1
Acrylonitrile		ND		ug/l	5.0	0.43	1
Bromochloromethane		ND		ug/l	2.5	0.15	1
Tetrahydrofuran		ND		ug/l	5.0	0.83	1
2,2-Dichloropropane		ND		ug/l	2.5	0.20	1
1,2-Dibromoethane		ND		ug/l	2.0	0.19	1
1,3-Dichloropropane		ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethan	ie	ND		ug/l	0.50	0.16	1
Bromobenzene		ND		ug/l	2.5	0.15	1
n-Butylbenzene		ND		ug/l	0.50	0.19	1
sec-Butylbenzene		ND		ug/l	0.50	0.18	1
tert-Butylbenzene		ND		ug/l	2.5	0.18	1
o-Chlorotoluene		ND		ug/l	2.5	0.17	1
p-Chlorotoluene		ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.35	1
Hexachlorobutadiene		ND		ug/l	0.50	0.22	1
Isopropylbenzene		ND		ug/l	0.50	0.19	1
p-Isopropyltoluene		ND		ug/l	0.50	0.19	1
Naphthalene		ND		ug/l	2.5	0.22	1
n-Propylbenzene		ND		ug/l	0.50	0.17	1
1.2.3-Trichlorobenzene		ND		ua/l	2.5	0.23	1

						Serial_No	√o:04271715:45	
Project Name:	Name: BOSTON CHILDREN'S HOSPITAL		-		Lab Nu	umber:	L1712403	
Project Number:	128868-006				Report	Date:	04/27/17	
		SAMP	LE RESULTS	S				
Lab ID:	L1712403-01				Date Collected:		04/19/17 14:05	
Client ID:	B115S_04192017				Date Re	ceived:	04/19/17	
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	n Lab						
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.22	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.17	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.19	1	
trans-1,4-Dichloro-2-bute	ene	ND		ug/l	2.5	0.18	1	
Ethyl ether		ND		ug/l	2.5	0.16	1	
Tert-Butyl Alcohol		ND		ug/l	10	1.4	1	
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0	0.28	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

			Serial_N	o:04271715:45
Project Name:	BOSTON CHILDREN'S H	HOSPITAL	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17
		SAMPLE RESULTS		
Lab ID:	L1712403-01		Date Collected:	04/19/17 14:05
Client ID:	B115S_04192017		Date Received:	04/19/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C-SIM(M)			
Analytical Date:	04/26/17 20:14			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westb	orough Lab					
1,4-Dioxane	4.5		ug/l	3.0	0.76	1

		Serial_N	0:04271715:45
Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1712403
Project Number:	128868-006	Report Date:	04/27/17
	SAMPLE RESULTS		
Lab ID:	L1712403-01	Date Collected:	04/19/17 14:05
Client ID:	B115S_04192017	Date Received:	04/19/17
Sample Location:	BOSTON, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	5,624		
Analytical Date:	04/20/17 18:07		
Analyst:	GT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	5.0	0.62	1	
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1	
Chloroform	2.1		ug/l	1.5	0.22	1	
Carbon tetrachloride	7.0		ug/l	1.0	0.32	1	
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1	
Dibromochloromethane	ND		ug/l	1.0	0.33	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1	
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1	
Tetrachloroethene	40		ug/l	1.5	0.33	1	
Chlorobenzene	ND		ug/l	3.5	0.30	1	
Trichlorofluoromethane	6.8		ug/l	5.0	0.46	1	
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1	
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1	
Bromodichloromethane	ND		ug/l	1.0	0.25	1	
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1	
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1	
Bromoform	ND		ug/l	1.0	0.32	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1	
Benzene	0.62	J	ug/l	1.0	0.23	1	
Toluene	ND		ug/l	1.0	0.32	1	
Ethylbenzene	ND		ug/l	1.0	0.31	1	
Chloromethane	ND		ug/l	5.0	0.64	1	
Bromomethane	ND		ug/l	5.0	1.3	1	
Vinyl chloride	ND		ug/l	1.0	0.30	1	
Chloroethane	ND		ug/l	2.0	0.26	1	
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1	
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1	
cis-1,2-Dichloroethene ¹	4.9		ug/l	1.0	0.29	1	
Trichloroethene	3.6		ug/l	1.0	0.33	1	
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1	

					:	Serial_No	0:04271715:45	
Project Name:	BOSTON CHILDREN	S HOSPITAL	_		Lab Nu	mber:	L1712403	
Project Number:	128868-006				Report	Date:	04/27/17	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1712403-01 B115S_04192017 BOSTON, MA				Date Col Date Ree Field Pre	llected: ceived: ep:	04/19/17 14:05 04/19/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	n Lab						
1,3-Dichlorobenzene		ND		ug/l	5.0	0.25	1	
1,4-Dichlorobenzene		ND		ug/l	5.0	0.26	1	
p/m-Xylene ¹		ND		ug/l	2.0	0.58	1	
o-xylene ¹		ND		ug/l	1.0	0.22	1	
Xylenes, Total ¹		ND		ug/l	1.0	0.22	1	
Styrene ¹		ND		ug/l	1.0	0.25	1	
Acetone ¹		ND		ug/l	10	4.0	1	
Carbon disulfide1		ND		ug/l	5.0	0.73	1	
2-Butanone ¹		ND		ug/l	10	2.2	1	
Vinyl acetate1		ND		ug/l	10	2.9	1	
4-Methyl-2-pentanone1		ND		ug/l	10	1.8	1	
2-Hexanone ¹		ND		ug/l	10	2.5	1	
Acrolein ¹		ND		ug/l	8.0	1.3	1	
Acrylonitrile ¹		ND		ug/l	10	0.97	1	
Methyl tert butyl Ether ¹		ND		ug/l	10	0.27	1	
Dibromomethane ¹		ND		ug/l	1.0	0.11	1	
Tert-Butyl Alcohol ¹		ND		ug/l	100	6.0	1	
Tertiary-Amyl Methyl Eth	er ¹	ND		ug/l	20	0.18	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	108		80-120	
Fluorobenzene	108		80-120	
4-Bromofluorobenzene	95		80-120	

	Serial_No:04271715:45					
Project Name:	BOSTON CHILDREN'S HOSPI	TAL	Lab Number:	L1712403		
Project Number:	128868-006		Report Date:	04/27/17		
	SA	MPLE RESULTS				
Lab ID:	L1712403-02		Date Collected:	04/19/17 12:00		
Client ID:	TB_04192017		Date Received:	04/19/17		
Sample Location:	BOSTON, MA		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	1,8260C					
Analytical Date:	04/26/17 20:47					
Analyst:	MM					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	3.0	0.68	1	
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1	
Chloroform	ND		ug/l	0.75	0.16	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	0.50	0.18	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.16	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1	
Bromoform	ND		ug/l	2.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	0.75	0.16	1	
Ethylbenzene	ND		ug/l	0.50	0.17	1	
Chloromethane	ND		ug/l	2.5	0.18	1	
Bromomethane	ND		ug/l	1.0	0.26	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	1.0	0.13	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1	

		Serial_No:04271715:45						
Project Name:	BOSTON CHILDREN	N'S HOSPITAL	_		Lab Nu	mber:	L1712403	
Project Number:	128868-006				Report	Date:	04/27/17	
	120000 000	SAMP		S			07/2//17	
Lab ID: Client ID:	L1712403-02 TB 04192017				Date Col Date Ree	llected: ceived:	04/19/17 12:00 04/19/17	
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics I	by GC/MS - Westborou	gh Lab						
1 3-Dichlorobenzene		ND		ug/l	25	0.19	1	
1.4-Dichlorobenzene		ND		ug/l	2.5	0.19	1	
Methyl tert butyl ether		ND		ug/l	1.0	0.17	1	
p/m-Xylene		ND		ug/l	1.0	0.33	1	
o-Xvlene		ND		ug/l	1.0	0.33	1	
Xvlenes, Total		ND		ug/l	1.0	0.33	1	
cis-1 2-Dichloroethene		ND		ug/l	0.50	0.00	1	
Dibromomethane		ND		ug/l	5.0	0.13	1	
1 4-Dichlorobutane		ND		ug/l	5.0	0.30	1	
1,2 2-Trichloropropago		ND		ug/l	5.0	0.40	1	
Styropo		ND		ug/l	1.0	0.10	1	
Dichlorodifluoromothano		ND		ug/l	5.0	0.30	1	
Acotopo		ND		ug/l	5.0	1.5	1	
Carbon disulfido		ND		ug/i	5.0	0.20	1	
2-Butanono		ND		ug/i	5.0	1.0	1	
Vinyl acotato		ND		ug/i	5.0	0.31	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	0.01	1	
2-Hovanono		ND		ug/i	5.0	0.42	1	
Ethyl methacrylate		ND		ug/l	5.0	0.52	1	
		ND		ug/i	5.0	0.01	1	
Bromochloromothano		ND		ug/i	2.5	0.45	1	
Totrabydrofuran		ND		ug/i	5.0	0.15	1	
		ND		ug/i	2.5	0.00	1	
1.2-Dibromoethano		ND		ug/i	2.0	0.20	1	
1.3-Dichloropropapo		ND		ug/i	2.0	0.19	1	
1,1,1,2-Tetrachloroethan	0	ND		ug/i	0.50	0.21	1	
Bromobonzono		ND		ug/l	2.5	0.10	1	
n-Butylbonzono		ND		ug/l	0.50	0.10	1	
soc-Butylbonzono		ND		ug/l	0.50	0.19	1	
tert-Butylbenzene		ND		ug/l	2.5	0.10	1	
		ND		ug/l	2.5	0.10	1	
p-Chlorotoluono		ND		ug/l	2.5	0.17	1	
1 2-Dibromo-3-chloropro	nane	סא		ug/i	2.5	0.10	1	
Hexachlorobutadiono	puno	סא		ug/i	0.50	0.00	1	
Isonronylbenzeno		סא		ug/i	0.50	0.22	1	
n-leopropultaluana		סא		ug/i	0.50	0.19	1	
Nanhthalana		טא חוא		ug/i	0.00	0.19	1	
		סא		ug/i	2.3	0.22	1	
1 2 3-Trichlorohonzono		סא		ug/i	25	0.17	1	
1,2,0-11011010DE112e11e		ND		uy/I	2.0	0.23	I	

						Serial_No:04271715:45	
Project Name:	BOSTON CHILDREN	N'S HOSPITAL	_		Lab Nu	umber:	L1712403
Project Number:	128868-006				Report	Date:	04/27/17
		SAMP	LE RESULTS	5			
Lab ID:	L1712403-02				Date Co	llected:	04/19/17 12:00
Client ID:	TB_04192017				Date Re	ceived:	04/19/17
Sample Location:	BOSTON, MA				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborou	gh Lab					
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.17	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.19	1
trans-1,4-Dichloro-2-bute	ene	ND		ug/l	2.5	0.18	1
Ethyl ether		ND		ug/l	2.5	0.16	1
Tert-Butyl Alcohol		ND		ug/l	10	1.4	1
Tertiary-Amyl Methyl Eth	er	ND		ug/l	2.0	0.28	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	104		70-130	

			Serial_N	o:04271715:45
Project Name:	BOSTON CHILDREN'S H	OSPITAL	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17
		SAMPLE RESULTS		
Lab ID:	L1712403-02		Date Collected:	04/19/17 12:00
Client ID:	TB_04192017		Date Received:	04/19/17
Sample Location:	BOSTON, MA		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C-SIM(M)			
Analytical Date:	04/26/17 20:47			
Analyst:	MM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Wes	tborough Lab						
1,4-Dioxane	ND		ug/l	3.0	0.76	1	

Serial_No:04271715:45					
Project Name:	BOSTON CHILDREN'S	S HOSPITAL	Lab Number:	L1712403	
Project Number:	128868-006		Report Date:	04/27/17	
		SAMPLE RESULTS			
Lab ID:	L1712403-02		Date Collected:	04/19/17 12:00	
Client ID:	TB_04192017		Date Received:	04/19/17	
Sample Location:	BOSTON, MA		Field Prep:	Not Specified	
Matrix:	Water				
Analytical Method:	5,624				
Analytical Date:	04/20/17 16:39				
Analyst:	GT				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	5.0	0.62	1			
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1			
Chloroform	ND		ug/l	1.5	0.22	1			
Carbon tetrachloride	ND		ug/l	1.0	0.32	1			
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1			
Dibromochloromethane	ND		ug/l	1.0	0.33	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1			
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1			
Tetrachloroethene	ND		ug/l	1.5	0.33	1			
Chlorobenzene	ND		ug/l	3.5	0.30	1			
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1			
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1			
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1			
Bromodichloromethane	ND		ug/l	1.0	0.25	1			
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1			
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1			
Bromoform	ND		ug/l	1.0	0.32	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1			
Benzene	ND		ug/l	1.0	0.23	1			
Toluene	ND		ug/l	1.0	0.32	1			
Ethylbenzene	ND		ug/l	1.0	0.31	1			
Chloromethane	ND		ug/l	5.0	0.64	1			
Bromomethane	ND		ug/l	5.0	1.3	1			
Vinyl chloride	ND		ug/l	1.0	0.30	1			
Chloroethane	ND		ug/l	2.0	0.26	1			
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1			
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1			
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	0.29	1			
Trichloroethene	ND		ug/l	1.0	0.33	1			
1,2-Dichlorobenzene	ND		ua/l	5.0	0.26	1			

		Serial_No:04271715:45						
Project Name:	BOSTON CHILDRE	N'S HOSPITAL	-		Lab Nu	ımber:	L1712403	
Project Number:	128868-006				Report	Date:	04/27/17	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L1712403-02 TB_04192017 BOSTON, MA				Date Co Date Re Field Pre	llected: ceived: ep:	04/19/17 12:00 04/19/17 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westborou	igh Lab						
1,3-Dichlorobenzene		ND		ug/l	5.0	0.25	1	
1,4-Dichlorobenzene		ND		ug/l	5.0	0.26	1	
p/m-Xylene ¹		ND		ug/l	2.0	0.58	1	
o-xylene ¹		ND		ug/l	1.0	0.22	1	
Xylenes, Total ¹		ND		ug/l	1.0	0.22	1	
Styrene ¹		ND		ug/l	1.0	0.25	1	
Acetone ¹		ND		ug/l	10	4.0	1	
Carbon disulfide1		ND		ug/l	5.0	0.73	1	
2-Butanone ¹		ND		ug/l	10	2.2	1	
Vinyl acetate1		ND		ug/l	10	2.9	1	
4-Methyl-2-pentanone1		ND		ug/l	10	1.8	1	
2-Hexanone ¹		ND		ug/l	10	2.5	1	
Acrolein ¹		ND		ug/l	8.0	1.3	1	
Acrylonitrile ¹		ND		ug/l	10	0.97	1	
Methyl tert butyl Ether ¹		ND		ug/l	10	0.27	1	
Dibromomethane ¹		ND		ug/l	1.0	0.11	1	
Tert-Butyl Alcohol ¹		ND		ug/l	100	6.0	1	
Tertiary-Amyl Methyl Eth	er ¹	ND		ug/l	20	0.18	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		80-120	
Fluorobenzene	105		80-120	
4-Bromofluorobenzene	96		80-120	

04/27/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL
---------------	----------------------------

Project Number: 128868-006

Analytical Method:	5,624
Analytical Date:	04/20/17 11:30
Analyst:	GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sample(s): 01	-02 Batch:	WG997012-4
Methylene chloride	ND	ug/l	5.0	0.62
1,1-Dichloroethane	ND	ug/l	1.5	0.29
Chloroform	ND	ug/l	1.5	0.22
Carbon tetrachloride	ND	ug/l	1.0	0.32
1,2-Dichloropropane	ND	ug/l	3.5	0.27
Dibromochloromethane	ND	ug/l	1.0	0.33
1,1,2-Trichloroethane	ND	ug/l	1.5	0.24
2-Chloroethylvinyl ether	ND	ug/l	10	0.54
Tetrachloroethene	ND	ug/l	1.5	0.33
Chlorobenzene	ND	ug/l	3.5	0.30
Trichlorofluoromethane	ND	ug/l	5.0	0.46
1,2-Dichloroethane	ND	ug/l	1.5	0.32
1,1,1-Trichloroethane	ND	ug/l	2.0	0.30
Bromodichloromethane	ND	ug/l	1.0	0.25
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.26
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.32
Bromoform	ND	ug/l	1.0	0.32
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.22
Benzene	ND	ug/l	1.0	0.23
Toluene	ND	ug/l	1.0	0.32
Ethylbenzene	ND	ug/l	1.0	0.31
Chloromethane	ND	ug/l	5.0	0.64
Bromomethane	ND	ug/l	5.0	1.3
Vinyl chloride	ND	ug/l	1.0	0.30
Chloroethane	ND	ug/l	2.0	0.26
1,1-Dichloroethene	ND	ug/l	1.0	0.37
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene1	ND	ug/l	1.0	0.29
Trichloroethene	ND	ug/l	1.0	0.33

04/27/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL
---------------	----------------------------

Project Number: 128868-006

Method Blank Analysis Batch Quality Control

Analytical Method:5,624Analytical Date:04/20/17 11:30Analyst:GT

Parameter	Result	Qualifier Units	RL	MDL	
/olatile Organics by GC/MS - Wes	tborough Lab	o for sample(s): 01-0	2 Batch:	WG997012-4	
1,2-Dichlorobenzene	ND	ug/l	5.0	0.26	
1,3-Dichlorobenzene	ND	ug/l	5.0	0.25	
1,4-Dichlorobenzene	ND	ug/l	5.0	0.26	
p/m-Xylene ¹	ND	ug/l	2.0	0.58	
o-xylene ¹	ND	ug/l	1.0	0.22	
Xylenes, Total ¹	ND	ug/l	1.0	0.22	
Styrene ¹	ND	ug/l	1.0	0.25	
Acetone ¹	ND	ug/l	10	4.0	
Carbon disulfide ¹	ND	ug/l	5.0	0.73	
2-Butanone ¹	ND	ug/l	10	2.2	
Vinyl acetate ¹	ND	ug/l	10	2.9	
4-Methyl-2-pentanone ¹	ND	ug/l	10	1.8	
2-Hexanone ¹	ND	ug/l	10	2.5	
Acrolein ¹	ND	ug/l	8.0	1.3	
Acrylonitrile ¹	ND	ug/l	10	0.97	
Methyl tert butyl Ether ¹	ND	ug/l	10	0.27	
Dibromomethane ¹	ND	ug/l	1.0	0.11	
Tert-Butyl Alcohol ¹	ND	ug/l	100	6.0	
Tertiary-Amyl Methyl Ether ¹	ND	ug/l	20	0.18	

		Α	cceptance
Surrogate	%Recovery	Qualifier	Criteria
Pentafluorobenzene	104		80-120
Fluorobenzene	105		80-120
4-Bromofluorobenzene	96		80-120

Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Nun
Project Number:	128868-006	Report I

 Number:
 L1712403

 ort Date:
 04/27/17

Analytical Method:	1,8260C
Analytical Date:	04/26/17 14:05
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s): 01	Batch:	WG997825-5	
Methyl Methacrylate	ND		ug/l	2.5	0.32	
iso-Butyl Alcohol	ND		ug/l	10	4.0	
Ethyl Alcohol	ND		ug/l	250	14.	
iso-Propyl Alcohol	ND		ug/l	100	8.5	
n-Butyl Alcohol	ND		ug/l	100	8.0	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	101		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	100		70-130

Project Name:	BOSTON CHILDREN'S HOSPITAL	Lab Number:	L1712403
Project Number:	128868-006	Report Date:	04/27/17
	Method Blank Analysis		

Analytical Method:	1,8260C-SIM(M)
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01-02	Batch:	WG997846-5	
1,4-Dioxane	ND		ug/l	3.0		0.76	

04/27/17

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Analytical Method:	1,8260C
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sample(s):	01-02 Batch:	WG997849-5
Methylene chloride	ND	uq/	3.0	0.68
1,1-Dichloroethane	ND	ug/	0.75	0.21
Chloroform	ND	ug/	0.75	0.16
Carbon tetrachloride	ND	ug/	0.50	0.13
1,2-Dichloropropane	ND	ug/	l 1.8	0.14
Dibromochloromethane	ND	ug/	0.50	0.15
1,1,2-Trichloroethane	ND	ug/	0.75	0.14
Tetrachloroethene	ND	ug/	0.50	0.18
Chlorobenzene	ND	ug/	0.50	0.18
Trichlorofluoromethane	ND	ug/	2.5	0.16
1,2-Dichloroethane	ND	ug/	0.50	0.13
1,1,1-Trichloroethane	ND	ug/	0.50	0.16
Bromodichloromethane	ND	ug/	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/	0.50	0.14
1,1-Dichloropropene	ND	ug/	2.5	0.17
Bromoform	ND	ug/	2.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17
Benzene	ND	ug/	0.50	0.16
Toluene	ND	ug/	0.75	0.16
Ethylbenzene	ND	ug/	0.50	0.17
Chloromethane	ND	ug/	2.5	0.18
Bromomethane	ND	ug/	l 1.0	0.26
Vinyl chloride	ND	ug/	l 1.0	0.07
Chloroethane	ND	ug/	l 1.0	0.13
1,1-Dichloroethene	ND	ug/	0.50	0.17
1,2-Dichloroethene, Total	ND	ug/	0.50	0.16
Trichloroethene	ND	ug/	0.50	0.18

04/27/17

Lab Number:

Report Date:

Project Name:	BOSTON CHILDREN'S HOSPITAL
---------------	----------------------------

Project Number: 128868-006

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/26/17 13:00Analyst:BD

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lal	b for sample(s):	01-02 Batch:	WG997849-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.18	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.19	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.19	
Methyl tert butyl ether	ND	ug/l	1.0	0.17	
p/m-Xylene	ND	ug/l	1.0	0.33	
o-Xylene	ND	ug/l	1.0	0.33	
Xylenes, Total	ND	ug/l	1.0	0.33	
cis-1,2-Dichloroethene	ND	ug/l	0.50	0.19	
Dibromomethane	ND	ug/l	5.0	0.36	
1,4-Dichlorobutane	ND	ug/l	5.0	0.46	
1,2,3-Trichloropropane	ND	ug/l	5.0	0.18	
Styrene	ND	ug/l	1.0	0.36	
Dichlorodifluoromethane	ND	ug/l	5.0	0.24	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	0.30	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	0.31	
4-Methyl-2-pentanone	ND	ug/l	5.0	0.42	
2-Hexanone	ND	ug/l	5.0	0.52	
Ethyl methacrylate	ND	ug/l	5.0	0.61	
Acrylonitrile	ND	ug/l	5.0	0.43	
Bromochloromethane	ND	ug/l	2.5	0.15	
Tetrahydrofuran	ND	ug/l	5.0	0.83	
2,2-Dichloropropane	ND	ug/l	2.5	0.20	
1,2-Dibromoethane	ND	ug/l	2.0	0.19	
1,3-Dichloropropane	ND	ug/l	2.5	0.21	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	0.16	
Bromobenzene	ND	ug/l	2.5	0.15	
n-Butylbenzene	ND	ug/l	0.50	0.19	

04/27/17

Lab Number:

Report Date:

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Analytical Method:	1,8260C
Analytical Date:	04/26/17 13:00
Analyst:	BD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lat	o for samp	le(s): 01-02	Batch:	WG997849-5	
sec-Butylbenzene	ND		ug/l	0.50	0.18	
tert-Butylbenzene	ND		ug/l	2.5	0.18	
o-Chlorotoluene	ND		ug/l	2.5	0.17	
p-Chlorotoluene	ND		ug/l	2.5	0.18	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35	
Hexachlorobutadiene	ND		ug/l	0.50	0.22	
Isopropylbenzene	ND		ug/l	0.50	0.19	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	
Naphthalene	0.55	J	ug/l	2.5	0.22	
n-Propylbenzene	ND		ug/l	0.50	0.17	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	
1,2,4-Trichlorobenzene	0.35	J	ug/l	2.5	0.22	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18	
Ethyl ether	ND		ug/l	2.5	0.16	
Tert-Butyl Alcohol	ND		ug/l	10	1.4	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	

		4	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	96		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	98		70-130

Lab Control Sample Analysis

Batch Quality Control

Project Number: 128868-006

Lab Number: L1712403 Report Date: 04/27/17

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997012-3 Methylene chloride 100 70-111 30 --1,1-Dichloroethane 110 78-116 30 --Chloroform 105 86-111 30 --Carbon tetrachloride 30 110 -60-112 -1,2-Dichloropropane 105 83-113 30 --Dibromochloromethane 30 90 58-129 --1,1,2-Trichloroethane 95 80-118 30 --2-Chloroethylvinyl ether 85 69-124 30 --Tetrachloroethene 80-126 30 100 --Chlorobenzene 80-126 30 85 --Trichlorofluoromethane 100 83-128 30 --1,2-Dichloroethane 105 82-110 30 --1,1,1-Trichloroethane Q 72-109 30 110 --Bromodichloromethane 100 71-120 30 -trans-1,3-Dichloropropene 73-106 30 100 -cis-1,3-Dichloropropene 78-111 30 100 --Bromoform 80 45-131 30 --1,1,2,2-Tetrachloroethane 110 81-122 30 --84-116 30 Benzene 105 --Toluene 100 83-121 30 --Ethylbenzene 90 84-123 30 --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 128868-006

Lab Number: L1712403 Report Date: 04/27/17

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997012-3 Chloromethane 100 70-144 30 --Bromomethane 75 63-141 30 --Vinyl chloride 105 56-118 30 --74-130 30 Chloroethane 105 --1,1-Dichloroethene 110 77-116 30 --81-121 30 trans-1.2-Dichloroethene 110 -cis-1,2-Dichloroethene1 105 85-110 30 --Trichloroethene 105 84-118 30 --1.2-Dichlorobenzene Q 78-128 30 170 _ -105 77-125 30 1,3-Dichlorobenzene --1.4-Dichlorobenzene 110 77-125 30 -p/m-Xylene¹ 88 81-121 30 -o-Xylene1 81-124 30 85 --Styrene¹ 84-133 30 85 --Acetone¹ 40-160 30 106 --Carbon disulfide1 54-134 30 80 --2-Butanone¹ 106 57-116 30 --Vinyl acetate1 128 40-160 30 --4-Methyl-2-pentanone1 79-125 30 94 --2-Hexanone¹ 78-120 30 94 --Acrolein¹ 115 40-160 30 --

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG997012-3					
Acrylonitrile ¹	105		-		66-123	-		30	
Methyl tert butyl ether ¹	100		-		57-126	-		30	
Dibromomethane ¹	100		-		65-126	-		30	
tert-Butyl Alcohol ¹	97		-		52-114	-		30	
Tertiary-Amyl Methyl Ether ¹	100		-		66-111	-		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Pentafluorobenzene	102				80-120	
Fluorobenzene	104				80-120	
4-Bromofluorobenzene	95				80-120	

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG	997825-3	WG997825-4				
Methyl Methacrylate	95		103		70-130	8		20	
iso-Butyl Alcohol	93		105		70-130	13		20	
Ethyl Alcohol	98		120		70-130	21	Q	20	
iso-Propyl Alcohol	95		113		70-130	17		20	
n-Butyl Alcohol	83		105		70-130	24	Q	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		103		70-130	
Toluene-d8	102		103		70-130	
4-Bromofluorobenzene	98		95		70-130	
Dibromofluoromethane	99		100		70-130	

Lab Control Sample Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL	Batch Quality Control	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Valatile Organize by CC/MC SIM Masthered	ahlah Assasiat	ad a ample (a).	01.00 Det	ah. MC0070					
Volatile Organics by GC/MS-SIM - Westborou	gn Lab Associate	ed sample(s):	01-02 Bat	cn: wG9978	46-3 VVG997846-4	•			
1,4-Dioxane	99		110		70-130	11		25	

Lab Control Sample Analysis

Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1712403 Report Date: 04/27/17

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997849-3 WG997849-4 Methylene chloride 100 110 70-130 10 20 1,1-Dichloroethane 100 110 70-130 10 20 Chloroform 100 100 70-130 20 0 Carbon tetrachloride 20 100 100 63-132 0 1,2-Dichloropropane 100 99 70-130 20 1 Dibromochloromethane 63-130 20 98 100 2 1,1,2-Trichloroethane 99 96 70-130 3 20 Tetrachloroethene 110 70-130 20 110 0 Chlorobenzene 75-130 25 100 100 0 Trichlorofluoromethane 62-150 20 100 100 0 100 70-130 20 1.2-Dichloroethane 100 0 1,1,1-Trichloroethane 100 110 67-130 10 20 Bromodichloromethane 67-130 20 97 93 4 trans-1,3-Dichloropropene 70-130 20 94 96 2 cis-1,3-Dichloropropene 70-130 20 96 98 2 1,1-Dichloropropene 70-130 20 100 100 0 Bromoform 95 92 54-136 3 20 1,1,2,2-Tetrachloroethane 87 88 67-130 1 20 25 Benzene 100 100 70-130 0 Toluene 70-130 25 100 100 0 Ethylbenzene 100 100 70-130 20 0

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbor	ough Lab Associated sample(s): 01-02 Batch: \	NG997849-3 WG997849-4		
Chloromethane	87	84	64-130	4	20
Bromomethane	110	120	39-139	9	20
Vinyl chloride	90	92	55-140	2	20
Chloroethane	110	110	55-138	0	20
1,1-Dichloroethene	100	100	61-145	0	25
Trichloroethene	100	100	70-130	0	25
1,2-Dichlorobenzene	100	100	70-130	0	20
1,3-Dichlorobenzene	100	100	70-130	0	20
1,4-Dichlorobenzene	100	100	70-130	0	20
Methyl tert butyl ether	94	96	63-130	2	20
p/m-Xylene	100	105	70-130	5	20
o-Xylene	110	105	70-130	5	20
cis-1,2-Dichloroethene	100	100	70-130	0	20
Dibromomethane	99	95	70-130	4	20
1,4-Dichlorobutane	88	87	70-130	1	20
1,2,3-Trichloropropane	94	93	64-130	1	20
Styrene	105	105	70-130	0	20
Dichlorodifluoromethane	72	72	36-147	0	20
Acetone	86	100	58-148	15	20
Carbon disulfide	100	100	51-130	0	20
2-Butanone	91	84	63-138	8	20

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1712403 Report Date: 04/27/17

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997849-3 WG997849-4 Vinyl acetate 90 89 70-130 20 1 4-Methyl-2-pentanone 85 88 59-130 3 20 2-Hexanone 80 57-130 20 79 1 Ethyl methacrylate 20 92 89 70-130 3 Acrylonitrile 86 70-130 14 20 99 Bromochloromethane 70-130 20 100 100 0 Tetrahydrofuran 87 65 58-130 29 Q 20 2,2-Dichloropropane 100 100 63-133 0 20 1.2-Dibromoethane 98 70-130 20 99 1 70-130 20 1,3-Dichloropropane 100 100 0 1.1.1.2-Tetrachloroethane 100 100 64-130 20 0 Bromobenzene 100 100 70-130 0 20 n-Butylbenzene 92 95 53-136 20 3 sec-Butylbenzene 96 70-130 20 97 1 tert-Butylbenzene 70-130 20 100 96 4 o-Chlorotoluene 94 70-130 20 98 4 p-Chlorotoluene 100 95 70-130 5 20 1,2-Dibromo-3-chloropropane 92 98 41-144 6 20 Hexachlorobutadiene 63-130 20 130 120 8 Isopropylbenzene 70-130 20 95 94 1 p-Isopropyltoluene 100 100 70-130 0 20

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

LCSD LCS %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG997849-3 WG997849-4 Naphthalene 86 90 70-130 5 20 n-Propylbenzene 97 95 69-130 2 20 1,2,3-Trichlorobenzene 97 95 70-130 2 20 97 20 1,2,4-Trichlorobenzene 100 70-130 3 1,3,5-Trimethylbenzene 100 98 64-130 2 20 1,2,4-Trimethylbenzene 100 98 70-130 2 20 trans-1,4-Dichloro-2-butene 70-130 20 93 85 9 Ethyl ether 110 110 59-134 0 20 Tert-Butyl Alcohol 98 98 70-130 20 0 Tertiary-Amyl Methyl Ether 97 66-130 20 94 3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	97		98		70-130	
Toluene-d8	99		102		70-130	
4-Bromofluorobenzene	97		98		70-130	
Dibromofluoromethane	100		104		70-130	

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL	Batch Quality Control	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s): 01-02 QC	Batch ID:	WG99702	12-10 QC	Sample:	L1712543-02	Clier	t ID: MS Sample
Methylene chloride	ND	200	280	140	Q	-	-		70-111	-	30
1,1-Dichloroethane	ND	200	300	150	Q	-	-		78-116	-	30
Chloroform	ND	200	280	140	Q	-	-		86-111	-	30
Carbon tetrachloride	ND	200	300	150	Q	-	-		60-112	-	30
1,2-Dichloropropane	ND	200	280	140	Q	-	-		83-113	-	30
Dibromochloromethane	ND	200	220	110		-	-		58-129	-	30
1,1,2-Trichloroethane	ND	200	230	115		-	-		80-118	-	30
2-Chloroethylvinyl ether	ND	200	160	80		-	-		69-124	-	30
Tetrachloroethene	ND	200	230	115		-	-		80-126	-	30
Chlorobenzene	ND	200	220	110		-	-		80-126	-	30
Trichlorofluoromethane	ND	200	310	155	Q	-	-		83-128	-	30
1,2-Dichloroethane	ND	200	280	140	Q	-	-		82-110	-	30
1,1,1-Trichloroethane	ND	200	290	145	Q	-	-		72-109	-	30
Bromodichloromethane	ND	200	240	120		-	-		71-120	-	30
trans-1,3-Dichloropropene	ND	200	230	115	Q	-	-		73-106	-	30
cis-1,3-Dichloropropene	ND	200	230	115	Q	-	-		78-111	-	30
Bromoform	ND	200	190	95		-	-		45-131	-	30
1,1,2,2-Tetrachloroethane	ND	200	270	135	Q	-	-		81-122	-	30
Benzene	ND	200	280	140	Q	-	-		84-116	-	30
Foluene	ND	200	240	120	-	-	-		83-121	-	30
Ethylbenzene	ND	200	220	110		-	-		84-123	-	30

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL	Batch Quality Control	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recover	y Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ·	- Westborough	Lab Asso	ciated sample(s): 01-02 Q	C Batch ID:	WG9970 ⁻	12-10 QC	Sample: I	_1712543-02	Clier	t ID: MS Sample
Chloromethane	ND	200	370	185	Q	-	-		70-144	-	30
Bromomethane	ND	200	270	135		-	-		63-141	-	30
Vinyl chloride	ND	200	360	180	Q	-	-		56-118	-	30
Chloroethane	ND	200	320	160	Q	-	-		74-130	-	30
1,1-Dichloroethene	ND	200	300	150	Q	-	-		77-116	-	30
trans-1,2-Dichloroethene	ND	200	300	150	Q	-	-		81-121	-	30
cis-1,2-Dichloroethene1	ND	200	280	140	Q	-	-		85-110	-	30
Trichloroethene	ND	200	270	135	Q	-	-		84-118	-	30
1,2-Dichlorobenzene	ND	200	400	200	Q	-	-		78-128	-	30
1,3-Dichlorobenzene	ND	200	240	120		-	-		77-125	-	30
1,4-Dichlorobenzene	ND	200	250	125		-	-		77-125	-	30
p/m-Xylene ¹	ND	400	450	113		-	-		81-121	-	30
o-Xylene ¹	ND	200	220	110		-	-		81-124	-	30
Styrene ¹	ND	200	220	110		-	-		84-133	-	30
Acetone ¹	47.J	500	790	158		-	-		40-160	-	30
Carbon disulfide ¹	ND	200	220	110		-	-		54-134	-	30
2-Butanone ¹	ND	500	720	144	Q	-	-		57-116	-	30
Vinyl acetate ¹	ND	400	670	168	Q	-	-		40-160	-	30
4-Methyl-2-pentanone ¹	ND	500	600	120		-	-		79-125	-	30
2-Hexanone ¹	ND	500	600	120		-	-		78-120	-	30
Acrolein ¹	ND	400	530	133		-	-		40-160	-	30

Matrix Spike Analysis

Project Name:	BOSTON CHILDREN'S HOSPITAL	Batch Quality Control	Lab Number:	L1712403
Project Number:	128868-006		Report Date:	04/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Volatile Organics by GC/MS -	Westborough	Lab Associa	ated sample(s	s): 01-02 QC	Batch ID:	WG99701	2-10 QC Sa	mple: L1712543-02	Client ID:	MS Sample
Acrylonitrile ¹	ND	400	580	145	Q	-	-	66-123	-	30
Dibromomethane ¹	ND	200	270	135	Q	-	-	65-126	-	30

	MS			SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
4-Bromofluorobenzene	94				80-120	
Fluorobenzene	105				80-120	
Pentafluorobenzene	104				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Lab Number: L1712403 Report Date: 04/27/17

Project Number: 128868-006

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-02	QC Batch ID: W	/G997012-9 QC	Sample: L17	712543-02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Lab Number: L1712403 04/27/17 Report Date:

Project Number: 128868-006

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01	I-02 QC Batch ID: WG	997012-9 Q	C Sample: L17	712543-02 Client ID: DUP
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	47.J	44J	ug/l	NC	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: BOSTON CHILDREN'S HOSPITAL

Lab Number: Report Date:

Project Number: 128868-006

Parameter	Native Sample	Duplicate S	Sample Units	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s):	01-02 QC Batch	ID: WG997012-9	QC Sample:	L1712543-02	Client ID: D	UP
2-Butanone ¹	ND	ND	ug/l	NC		30	
Vinyl acetate ¹	ND	ND	ug/l	NC		30	
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC		30	
2-Hexanone ¹	ND	ND	ug/l	NC		30	
Acrolein ¹	ND	ND	ug/l	NC		30	
Acrylonitrile ¹	ND	ND	ug/l	NC		30	
Dibromomethane ¹	ND	ND	ug/l	NC		30	

			Acceptance			
Surrogate	%Recovery	Qualifier %Recovery	Qualifier	Criteria		
Pentafluorobenzene	104	106		80-120		
Fluorobenzene	105	107		80-120		
4-Bromofluorobenzene	94	94		80-120		

Serial_No:04271715:45

Project Name: BOSTON CHILDREN'S HOSPITAL Project Number: 128868-006

Lab Number: L1712403 Report Date: 04/27/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

А

Absent

Container Information					Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)		
L1712403-01A	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260-SIM(14),8260(14)		
L1712403-01B	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260-SIM(14),8260(14)		
L1712403-01C	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260-SIM(14),8260(14)		
L1712403-01D	Vial Na2S2O3 preserved	А	N/A	5.8	Y	Absent	624(3)		
L1712403-01E	Vial Na2S2O3 preserved	А	N/A	5.8	Y	Absent	624(3)		
L1712403-01F	Vial Na2S2O3 preserved	А	N/A	5.8	Y	Absent	624(3)		
L1712403-01G	Amber 1000ml unpreserved	А	7	5.8	Y	Absent	HOLD-8270(7)		
L1712403-01H	Amber 1000ml unpreserved	А	7	5.8	Y	Absent	HOLD-8270(7)		
L1712403-011	Amber 1000ml Na2S2O3	А	7	5.8	Y	Absent	HOLD-625(7)		
L1712403-01J	Amber 1000ml Na2S2O3	А	7	5.8	Y	Absent	HOLD-625(7)		
L1712403-02A	Vial Na2S2O3 preserved	А	N/A	5.8	Y	Absent	624(3)		
L1712403-02B	Vial HCI preserved	А	N/A	5.8	Y	Absent	8260-SIM(14),8260(14)		

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1712403

Report Date: 04/27/17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to experime limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: BOSTON CHILDREN'S HOSPITAL

Project Number: 128868-006

Lab Number: L1712403

Report Date: 04/27/17

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:BOSTON CHILDREN'S HOSPITALProject Number:128868-006

 Lab Number:
 L1712403

 Report Date:
 04/27/17

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: NPW and SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance
SM3500: NPW: Ferrous Iron
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.
SM5310C: DW: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04271715:45

Westborough, MA 0158 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Brewer, ME 04412 Portsn Albany, NY 12205 Tonawanda, NY 14150 Holm Project Information Project Name: Project Location:	nouth, NH 03801 nes, PA 19043 Boston Ch Boston, M	I Mahwah, NJ 0743 nildren's Hospit	al (BCCB)	ge of	Del	Dat i iverat	te Rec n Lab oles nail	c'd] Fax	S (4 File)	ALPHA Job # [7 12403 Billing Information Same as Client Info	
H&A Information		Project # 128868-001 128868-006												F0#	
H&A Client: Jonatha	n Thibault	(Use Project name as Project #)							rv Reg	uirem	ents /	Dispessel Site Information	and the state of		
H&A Address: 465 Med	ford Street	Project Manager: L. Vanzler							Jiteq	unern		Togran	(Griteria)	Disposal Site Information	
Suite 2200, Boston, MA	02129	ALPHAQuote #:												Please identify below location o	of
H&A Phone: 617.680.	.2293	Turn-Around Time												Signation of the second	
H&A Fax:		Standar	чV	Due Dete				1						Disposal Facility:	
H&A Email: jthibault	@haleyaldrich.com	Rush (only if pre approved		# of Dave			Noto	Color							
These samples have bee	n previously analyzed by	Alpha						Selec	ct State	from m	nenu &	identify c	riteria.	Other:	
Other project specific re	equirements/comments						ANALYSIS							Sample Filtration	т
Sample submitted for 20 ⁻ levels as required by EPA Please specify Metals o	17 NPDES RGP permit a A. coc edits r TAL.	pplication; please follow a s by Gina Hall AAI	appropriate te 2 4/24/16	esting methods	and minim	um detectior	(8260 and SIM	s (8270 and SIM	(624 and SIM)	s (625 and SIM				Done Lab to do Preservation Lab to do	t a I B o
ALPHA Lab ID		Collection					ő	8	ő	8				(Please Specify below)	t t
(Lab Use Only)	Sar	mple ID	Date	Time	Matrix	Sampler's	×.	S	1. <	5					l
12903 - 01	B115S 04192017		4/10/2017	1405		iniciais	-	N	-	0	-			Sample Specific Comments	S
10-10-	TB 04192017		4/19/2017	1405	Aq	MJD	X	X	X	X	-				10
			4/19/2017	1200	Aq	MJD		-	X	-	-	+		Traps	2
									-						
															\vdash
Preservative Code:	Cantalana D. J.												_	12 TOTAL	
A = None	P = Plastic	Westboro: Certification No	o: MA935		Con	tainer Tunc	11	٨	. /	۵				Please print clearly, legibly and	\vdash
B = HCI $C = HNO_3$ $D = H_2SO_4$	A = Amber Glass I V = Vial G = Glass	Mansfield: Certification No	o: MA015		001	tainer Type	V	A	V	1			-	completely. Samples can not be logged in and turnaround time of will not start until any ambiguiti	e clock
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	1. 190-		Date/Time Reco		B	BAHH ecceived By:						are resolved. Alpha Analytical's services under this Chain of Custody		
G = NaHSO₄ H = Na S.O.	O = Other	Medil & A	sy:			Receiv					Date/Ti	ime	shall be performed in accordance with		
K/E = Zn Ac/NaOH	D = BOD Bottle	Main	4/19/2017 4/19/2017		Man	0					9/17/1	6/3-	Service Agreement# 2015-18-Alph	ha	
0 = Other	-	- Hullelin			The	hll					2/17	1630	Analytical by and between Haley &		
Document ID: 20455 Rev 1 (1/2	8/2016)	I HUMANIAW		-tictle/	19512	aus	4	u		-	4/10	117/80	n	affiliates and Alpha Analytical.	

Serial_No:04271715:45

ALPHA	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Albany, NY 12205 Tonawanda, NY 1415	Portsmouth, NH 03801 M	fahwah, NJ 07430	Pag	pe of		Date	e Rec Lab	'd	1/19	117		ALPHA JOB #	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information						verab	es			Billing Information			
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Project Name: Boston Children's Hospital (BCCB)						ail			Fax	Same as Client Info		
	1702 506-622-5286	Project Location: Boston, MA						EQUIS (1 File) EQUIS (4 File)) PO#	
H&A Information Project # 128868-001							Oth	er:			2 policies and				
H&A Client: Jonathar	n Thibault	(Use Project name as Project #)							y Requ	uireme	nts (P) Disposal Site Information			
H&A Address: 465 Med								Τ			Plaga identify below legation of				
Suite 2200, Boston, MA 02129 ALPHAQuote #:							1							applicable disposal facilities.	
H&A Phone: 617.680.	2293	Turn-Around Tim	е	A LOW TO	Section Section									Disposal Facility	
H&A Fax:		s	standard	Due Date											
H&A Email: jthibault@	haleyaldrich.com	Rush (only if pre a	approved)	# of Days			Note: Select State from manu & identify criteria								
These samples have been	n previously analyzed by	Alpha		" or bujo										Sample Eiltration	-
Other project specific re	equirements/comments														0
Sample submitted for 2017 NPDES RGP permit application; please follow appropriate testing methods and minimum detecti levels as required by EPA. Please specify Metals or TAL.						um detection	260 and SIM	8270 and SIN	524 and SIM)	(625 and SIM				Done Lab to do Preservation Lab to do	t a I B o
							s (8	Cs (s (f	Cs				(Please Specify below)	t
ALPHA Lab ID	Ca	male ID	Coll	lection Sample Sampler's			lõ	Š	ğ	Ŋ,					t L
(Lab Use Only) San		npie ID	Date	Time	Matrix	Initials	1.	S S	-	S				Sample Specific Comments	e
12903 - 01	B115S_04192017		4/19/2017	1405	Ag	MID	X	X	X	V	-				40
02	TB 04192017		4/19/2017	1200	An	MID	×	1	X	1		+		Take	10
						INIOD	-	-	6	1	<u> </u>	+		1 1203	2
in state in the state							-	-	-	-					-
							-	<u> </u>	-	-					_
									-			+			_
a construction of the second sec								<u> </u>							-
									-						_
Preservative Code:	Container Code	14/												12 TOTAL	
A = None B = HCl C = HNO	P = Plastic A = Amber Glass	Westboro: Certific Mansfield: Certific	ation No: MA935 ation No: MA015	: MA935 : MA015 Preservative		tainer Type	V	A	V	A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time c	lock
$D = H_2SO_4$ E = NaOH	G = Glass B = Bacteria Cup					reservative	B	A	H	H				will not start until any ambiguitie are resolved. Alpha Analytical's services under this Chain of Custo	es dv
F = MeOH G = NaHSO	O = Other	A Belinquisped By: Date/Time					Receiv	ed By	:			Date/T	ime	shall be performed in accordance with	
$H = Na_2S_2O_3$	E = Encore	Maddala	the	4/19/2017 Mr W			A				4/1	9/17/	6/3-	 terms and conditions within Blanke Service Agreement# 2015-18 Alph 	t
K/E = Zn Ac/NaOH	D = BOD Bottle	Mauth	4 rate 163		974	1.10	110 11				9/11	11.2) Analytical by and between Haley &	a	
D = Other		THURLOR	THURSON MIGHT 100 11					in all					an	Aldrich, Inc., its subsidiaries and	
Document ID: 20455 Rev 1 (1/2	28/2016)	the family of a		inth (13-12	au				-	710	111 ()	00	- Analytical.	