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1.0 INTRODUCTION

The effect of plasticity on the rate of growth of fatigue cracks is

significant for a wide range of" problems associated with the damage tolerance

assessment of aerospace structures. The range of problems includes crack

growth from cold worked fastener holes, crack growth through plasticity due to

local notch stresses, crack driving force for thermal gradient fields and

welding residual strain fields, small flaw growth in high nominal stress

•1V . fields, and numerous related problems. These problems have, of course, been

analyzed using a variety of approximate analytical or numerical procedures.

However, as will be summarized within this report, many of these earlier

modeling approaches have involved errors which may significantly affect the

predicted fatigue crack growth life of the structure. The current research

has resulted in some new and critical insights into this class of problems,

while providing a basis for improved modeling of these problems.

The current research makes use of the boundary integral equation (BIE)

method, as modified to account exactly for the elastic crack problem. The '
0%" usual BIE formulation for elastic problems reduces the numerical problem to

one of modeling the boundary data, while preserving the complete interior

solution of the field equations. In the elastic fracture mechanics problem,

the Green's function approach is used wherein the BIE is modified to account

for the presence of a stress free crack at an arbitrary location within the

structure. The use of the Green's function for the crack eliminates the need

to model the boundary of the crack, and provides a complete mathematical

description of the elastic strain field within the body, due to the crack.

•-, 5* t
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This clearly contrasts with the finite element method which requires that the
-. . .. i

crack surface and the interior strains be modeled with some set of

interpolation functions. 
V.

A7 The BIE method has been successfully modified to account for

elastoplastic response by a number of investigators. However, extension of

the fracture mechanics model with the Green's function approach has not been

& previously demonstrated. In order to account for elastoplastic response with .

the BIE method one must numerically model the interior plastic strain field.

In all other ways the elastoplasticity solution uses the standard elastic BIE .

formulation. The current work reports on the successful extension of the

special Green's function formulation for the fracture mechanics problem to the

elastoplasticity formulation. Not only has the work resulted in accurate

models of crack tip plasticity for a reference problem, but it has shown some

p important new analytical and numerical results for cracks growing in plastic

strain fields.

The second year of the contract effort focussed on the crack extension
* problem. In the elastic case, a direct solution method for fracture mechanics

weight functions was established. The elastoplastic problem considered the

extension of the elastic crack into its prior plastic wake. The effects of

crack tip overloads on retardation or acceleration through closure and

residual stress effects are included. In addition, the elastoplastic BIE

formulation was more fully exploited for problems of crack growth in residual

strain fields such as weldments.

Some work addressed improvements in a new flat crack BIE formulation for

3D fracture mechanics analysis. The majority of the work on this task was .%..

funded by the Internal Research Panel of Southwest Research. However, some

analytical formulations, derived from the BIE relations, were achieved under

, - , . - . ., -. -. --. , .' , ,. " -, .- . . . . - - . . ,- -



the current Air Force contract. A report on this 3D formulation completes the

technical presentation.
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2.0 RESEARCH OBJECTIVES

Generally speaking, advanced aerospace structures have been designed for

damage tolerance considerations using elastic fracture mechanics models.

Problems associated with residual plastic strains at notches, cold worked 
--%

fastener holes, weld residual strains, and thermal gradient loading have been

* modeled using elastic superposition methods along with elastic fracture

mechanics models. Crack tip plasticity is involved in all fatigue crack

growth problems. Crack tip plasticity dominates the problem of predicting

crack growth under spectrum loading conditions where acceleration and

retardation effects are important. Finally, the small flaw problem, wherein

crack growth rate is apparently accelerated relative to the large flaw

problem, cannot be currently explained by elastic fracture mechanics

considerations. ""

The development of improved models for the crack growth problem for the

full range of these problems is crucial to improved damage tolerance

assessment for advanced aerospace structures. The overall objective for the

current research is to provide a new basis for making damage tolerance

assessments through numerical modeling of crack tip behavior, including the

effects of plastic or other residual strains. The elastoplastic BIE method is

the basis for the current effort.

The first goal of the originally proposed program was to extend an

existing planar elastic fracture mechanics analysis based on the BIE

methodology to the analysis of plastic zones around cracks. The second

proposed goal was to establish fundamental results for crack tip elastoplastic

• _behavior, based on a numerical and analytical study of the elastoplastic BIE

formulation. The third proposed goal was to establish the credibility of the .'

P-M& liw P '. -a'



W, P. 7. 7, 1 -,1. " . . . - o

5

elastoplastic BIE formulation relative to the finite element method for

refined numerical analysis of the nonlinear fracture mechanics problem, and to

apply the capability to important problems of fatigue crack growth modeling

for advanced aerospace structures. The goal for the second year of the effort

was to extend the research to the problem of modeling crack extension under °I

elastoplastic conditions.

This report summarizes key findings of the current research effort. The

next section summarizes the basic two-dimensional elastoplastic formulation

and applications. Included in this work are the preliminary applications of

the new method to crack extension into prior plastic zones. The next section

reports on the use of the new BIE formulation for elastic crack extension.

This new result allows for the direct computation of crack weight functions.

The last section reports on some recent work, for the 3D BIE fracture

mechanics formulation. Some contrast with the 2D formulation is noted.

Further work on the 3D problem is expected in the subsequent research program.,

60.
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3.0 ELASTOPLASTIC FRACTURE MECHANICS MODELING

3.1 Review of the Mathematics

A complete treatment of the elastic formulation for the Green's function 1.4

BIE model for cracked planar problems is given by Snyder and Cruse [1] and

Cruse [2]. The full development of the elastoplastic solution is given by .

Cruse and Polch [3]. The following summarizes these developments. --

The basic BIE formulation for a crack problem, as illustrated in Figure

F "1, is given as follows

Cu(P) + T. (P,Q)ui(Q)ds + fT.i(P, )ui(Q)ds
1 ,0(1) - .

* * /0
: fUi(PQ)ti(Q)ds + JU..(P,Q)t.i(Q)dss i r 31 / 1l;l:.'

ms

In (1) the ui, ti terms are the boundary displacement and traction vectors for

*' '. the modeled problem. The kernel functions (or influence functions) U. *,

Tij*, are mathematical entities giving the displacement and traction that are

computed on S, T for the problem of an infinite body loaded at p(x), P(X)t by

a set of unit point loads in each coordinate direction. The star on the

kernel functions denotes the addition to the point load solution of the terms

necessary to provide for a traction free crack at a specified location and

orientation in the geometry.

The use of a Green's function for special geometries is well developed in p

potential theory, as discussed by Greenberg [4]. In the current application

we seek to obtain fracture mechanics solutions for the case of traction free ..

tLower case p(x)is an; interior point; upper case P(x) is a boundary point.

-' . .*-, ,?

* .. '....,*--*.? ( . . '. °.. (A. :-. .- d|.~. .~. -. . ~.
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A cracks in finite planar bodies. The term with ti(Q) for Qer in (1) is ...

therefore zero, as shown. The use of the cracked body Green's function

results in the traction kernel also being zero on the crack, viz.

TJ .*(PQ) = O,Q Er, also as shown in (1).

Thus, (1) constitutes the constraint equation that must be satisfied by

ui, ti on the uncracked portion of the surface. This equation can be reduced

to solvable, algebraic form through the use of suitable approximations to the

boundary data ui, ti. In the current application we use the approximation of
t. .. '. .

piecewise linear interpolations of ui, ti as developed by Cruse [2].

The form of (1) for the interior displacement provides a means of direct

computation of interior strains, stresses, and stress intensity factors.

Simply stated, the interior quantities depend on the totality of boundary data .-,. -

for ui, ti through integration of these quantities together with appropriate

kernel functions for the cracked plane. "

Introduction of inelastic strains (e.g., residual strains due to welding,

thermal gradient strains, elastoplastic strains) i to the BIE formulation tt

results in a modification to (1)

' Ciu(P) + IT (PQ)ui(Q)ds :U (P,Q)ti(Q)ds

(2)

(< A > j-

The addition of the volumetric (area in 2D) integral in (2) is seen as a IN

correction term to the elastic BIE, (1). The kernel function * in this

new integral consists of derivatives of the elastic displacement kernel Ui.,-

and its form differs for plane stress or plane strain [5]. .

ttThe dots on the variables denote an increment in the variable.

.-,.C. .
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Equation (2) no longer provides a direct means for computing the boundary

Adata, except when ij (q) is specified. Th'us, for elastoplastic response, an

additional relationship is needed to compute the plastic strains for (2). The

appropriate equation is the interior strain distribution, as written by Cruse

and Poich [13]

i. (p) jSki (p,Q)tk(Q)ds + JDk (PQ)uk(Q)ds
S S

.A (3)

(A> jm m

Equation (3) computes the interior total strain increment in "terms of the

boundary data and the interior anelastic strain increment. For elastoplastic

!A

Ssolutions, the unknown data 6j, i? A are solved for incrementally and

equations (2), (3) are coupled on an iterative basis. The interior inelastic

strains are modeled as piecewise constant over AA. area segments in the

current study. The full solution algorithm for the elastoplastic case is

given in Figure 2. The yield criterion has to be satisfied, giving the amount

of total strain that is plastic at each load level. The use of iteration as

opposed to a tangent modulus formulation allows us to precompute all of the

* elastic kernel functions, to invert one of these, and to perform all of the

ensuing numerics as matrix multiplications.

3.2 Stress Intensity Factor Computations

The structure of (3) has been investigated by Cruse and Polch [3] for

interior points approaching the crack tip. It was found that, for the

"IJ. .

~ '. ~ elastoplastic case where the crack tip strains can exhibit a singularity up to

1/o (where P is the distance from the crack tip), eq. (3) still results in

, convergent integrals in (2), (3). However, the actual strength of the plastic

:.:. ..,.-, .

• : boundary dta and.............................................................-.'
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strain singularity is a function of the work hardening (see Hutchinson [61) -1/

and can only be inferred from the resulting strain distributions after

satisfying the flow rule implicit in (3).

The elastic stress intensity factor computation for the BIE formulation

using the cracked Green's function results directly from the elastic version

of (3). As shown by Snyder and Cruse [1], the kernels in the two boundary

integrals in (3) are explicitly dependent on the inverse-square root of the

distance of p(x) from the crack tips (+/-a). Further, for the nonsingular

distribution of inelastic strains in (3), the volumetric kernel has the same

explicit dependence. Thus, for nonsingular, inelastic strains we obtain the

following direct, path independent evaluation of the elastic stress intensity

* - factors

(KIKI1 ) -f R I'IIM(Q)ui(Q)ds + J L I'I (Q)ti(Q)ds

- ;'. [ M.i' ,(q). ijA(q)dA

L A''

The first two terms in (4) are those previously used by Snyder and Cruse

[1) and by Stern, et al. [7]. These are path independent integrals which

. ,provide a simple quadrature for computing KI, KII from any solution for ui, ti

on a path around the crack, but excluding the crack. . .

Equation (4) states that nonsingular, inelastic strains modify the

elastic KI, KII values in an equally simple sense of quadrature when these

quantities are specified in the volume (area). Some examples of this

quadrature for a notch plasticity problem will be discussed below. . .

In developing eq. (4), it was assumed that the inelastic strains were

nonsingular, thus neglecting the crack tip elastoplastic effects. The .

: .°. .. .. . . . .. . .. . . . .. . . . . . . . .
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additional terms, reflecting the higher order singular behavior, are

represented by the incremental elastoplastic strain portion of eq. (3)

C e P(p) 2J. 0: * C ) (q)dA
<A> j IM

P
-- (5)p"

+ Eitmj QtmP(P)

As discussed by Cruse and Polch [3], eq. (5) is dimensionally homogeneous for

any physical singularity in plastic strain increment as p(x) /-a, but the

order of the singularity is not directly solvable from (5).

A considerable number of technologically important problems to the

aerospace industry are associated with the use of linear elastic fracture

mechanics parameters (i.e., KI, KII) for problems of limited or localized

plasticity. These include predicting KI for cracks which are undergoing

cyclic plasticity resulting in crack closure effects on spectrum crack growth,

and cracks growing in the plastic zone of a bolthole subject to high loading
rol.4

or prestressing.

The present research seeks to shed light on some of these problems by

'* presenting a stress intensity factor computation algorithm that can directly

h - and unambiguously model these kinds of limited plasticity effects. For such

problems, the solution given in (4) is to be used. The two boundary data ..- .

integrals in (4) reflect the plastic strain distribution of the crack tip, as

well as other anelastic strains through the volume integral in (2). Secondly,-, .

the prior plasticity of a notch will affect KI, K,1 through the volume

integral of those nonsingular strains in (4). The resulting values of K KiI

are the plasticity corrected elastic stress intensity factors which define the

strength of the elastic singularity which dominates the plastic singularity.

I 4':,"."--'',-I, --4'.¢. . . .-. --'.- "..' . ."-,. ''.,-, .,.-...-. - -. -... .- ..'. . .. . .. .-. -. .- .. .- .. .-.-. -.-.-. --...
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The use of this approach is obviously limited to crack tip plastic zones which ,

are contained within the field of the elastic singularity.

3.3 Numerical Solution Algorithm tan

Application of the appropriate interpolations to the data in eqs. (2) and

U. (3) reduces the integrals to algebraic form. In general, the boundary

solution involves an equal number of known (applied) boundary data and unknown

data. Letting the unknown data be given by {}, the product of the known data

and its coefficient matrix terms by {}, and the coefficient of the piecewise

constant plastic strains by [E], we obtain from (2)

{Pi
[A] xl j} [E]{' p }  (6)

Similarly, taking [S] and [D] to be the elastic coefficient arrays of

the boundary data, and [G] to be the elastic coefficient array for the

.K .[ plastic strain, then eq. (3) becomes

S { T} : [S]t [DI{u} + [G]{ p  (7)

The strain superscripts in (6) and (7) refer to total (elastic plus plastic)

and plastic values, while the dots imply that all of the variables are to be

interpreted in terms of their incremental evaluation. ""-'

The present BEM algorithm makes use of the Huber-Mises-Hencky yield

condition and associated flow rule. Elastic, perfectly plastic material p.
."% % %

response was modeled throughout this study, but the code allows for a multi- '..

piecewise-linear definition of a general stress-strain curve.

Following the approach adopted in the ADINA code, each increment in total

strain is divided into subincrements (Bathe [8]). The number of subincrements .. ,

- - --- - -

* . .o.. %
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is selected to minimize the error in the deviatoric stress change within the

strain increment. The stress increment for a given iterate of increment in

plastic strain is then obtained by an Euler forward integration of the flow

rule, according to .'.,

"CURRENT LOAD

fo ~ a } EP T
LCURRENT I oPREV IdS (8) .LOAD LOAD ET(_

EPREV LOAD

'..°o

In eq. (8), the elastoplastic matrix relating the subincrements in stress

and total strain is given for plane strain by-. ~. °-° o.

S .S
do.. 2G[6 6 + 6 6 n dT (9)Ij im jn 1 - 2v mn ij 2J2 (1 + H/3G) mn ..

%..

The current state of deviatoric stress, Sij , and second invariant of

deviatoric stress, J2, is updated within the subincremental integration of

(8). The tangent modulus, H, is taken as the slope of the effective stress- .

effective plastic strain curve, at the current level of effective stress.

Figure 2 summarizes the current iteration algorithm for the solution of

eqs. (6,7). The coefficient arrays [A], [S], and [D] depend solely on the

" elastic constants of the material and the boundary shape. Thus, they are

computed once and stored. The [A] matrix is inverted prior to storage. The SI..

interior arrays [E] and [G] are also dependent solely on the elastic constants

and the interior element modeling. These are also computed once and stored. . .'

Note again that only that portion of the interior expected to be inelastic

-A: -- °-

'-.'Z .
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need be modeled. The expense of generating [E] and [G] for crack problems

dictates that such limited volumetric modeling be employed.

In the first iteration at a given load step, the plastic strain increment

in Figure 2 is taken from the last load step. The boundary solution then

responds, in an elastic manner, to the increase in loading. Estimated

interior total strains are then calculated. Based on the new total strain
,VV

increment, the interior stresses and plastic strains are computed based on

satisfying the yield condition through eq. (8). The plastic strain increment V-.

is then updated in both eqs. (6,7) for a recalculation of the boundary and

interior solutions. - .,

Absolute convergence of the strain solution within each element is

required for the iteration process used. That is, the maximum difference

between successive iterates of the plastic strain correction term (second term

on the right hand side of eq. (6)) is not allowed to exceed a user-specified

tolerance. This tolerance has been selected on the basis of its ability to

relate directly to the amount of the displacement increment. A number of

numerical experiments with tolerances ranging over 10-6 to 10- 9 were conducted

to test the sensitivity of the results to this value. It was found that the

errors in the displacements, for a simple uniform stress test case, were of

the order of the tolerances specified. A decrease in the tolerance by an

order of magnitude generally resulted in a doubling of the number of

iterations required to achieve convergence. A value of 1O- 7 was used for the -2s '"

notch problem and a value of 10-9 was used for the fracture mechanics problem,

in order to account for the higher strain gradient. V

3.4 Numerical Results

The computer program has been verified on two example problems. The

first is a plate with perforations, previously solved by Haward and Owen [9]

"." ?Is - -
'5*

* 55% ~ 5. . ~ 5 .. % % : ,55 ."
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using finite elements and resolved by Telles [10] using the BEM. This example

served the basic purpose of validating the current code and provided a basis

for some numerical experimentation. The second problem is a fracture

mechanics problem of a center cracked plate loaded in tension. The plastic

9 strain results are compared to ADINA results using a singular finite element

model.

The geometry for the first problem is shown in Figure 3. Plane strain

conditions are applied for all three of the analyses and the material is taken

to be elastic-perfectly plastic. The appropriate constants are E = 42. x

10"MN/m2 , a = 105. MN/mv, = 0.33. The one loading condition considered

was uniaxial tension, applied by prescribing displacements at the edges of the

plate section. The piecewise linear plastic strain BEM mesh of Telles is

shown in Figure 3; the FEM quadratic isoparametric element mesh used by Haward

and Owen is shown in Figure 4. The current BEM mesh, using piecewise constant

plastic strains, is shown in Figure 5.

Figure 6 plots the numerical results in terms of the amount of force

required versus the applied displacements. Table 1 summarizes the numerical

force-displacement data. All three model results show excellent agreement,

given the disparity in modeling strategies. The predicted limit load for the

. current study differs from the other two by less than 2%. The difference is

attributed to the use of constant strain elements. Limit load is obtained

A when the centroidal value of stress in the last ligament element yields, a

condition that will occur below the load for yielding the last physical

ligament ahead of the notch. The plastic zones are shown in Figure 7 for

various load levels.

The current BEM code was tested for a range of load increments in a

deliberate attempt to create numerical instability. The numerical results

-'o-S. *<
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Table 1.

Numerical Results of the Polystyrene Plate Problem

PCP - Uniaxial Stretch '

Load Case Load % Displacement Force a- (x 10-z) F/(a+d)', ~a+d . -".

(A x10 -3 ) (F) [%]

1 .50 4.5 10.3576 1.50 34.525

2 .55 4.95 11.3259 1.65 37.753

3 .60 5.4 12.2459 1.80 40.820

4 .65 5.85 13.1047 1.951 43.682

5 .70 6.3 13.8412 2.10 46.137 '.

6 .75 6.75 14.4610 2.25 48.203

7 .80 7.2 14.7765 2.40 49.255

8 .85 7.65 14.9091 2.55 49.697

9 .80 8.1 15.0009 2.70 50.003

10 .95 8.55 15.0650 2.85 50.217 .

11 1.00 9.0 15.1112 3.00 50.371 ;.

12 1.05 9.45 15.1412 3.15 50.471 -".-.]',,

13 1.10 9.9 15.1412 3.30 50.471

ftp

.IV

The ultimate strength 50.471 MN/m2

a, d defined in Figure 2

.
i

ft :. ".¢-ft

:.[.. .. . . .. . ... . . . ' .-. . .' , -, "'



22

.......... ..

-w-

/ ELEMENTS YIELDED AT
LOAD FACTOR:

m - 0.565 -

- 0.630 .i7
S. - 0.730

... 0.780
-0.825

\' \1

U U

Figure 7. Growth of the Plastic Zone-

.. . . . . .. . .



23

plotted in Figure 6 were generated using an incrementation scheme resulting in .. '.

a single element yielding at a time. The BEM results required about twenty

iterations per load step to fully converge. The worst case was one load step

to the maximum displacement. The solution converged in 45 iterations and .ke :

agreed with the other limit load results within 0.2%. The maximum deviationP-.
. %

in calculated plastic strains was 10% in the last element to yield.

The second example is a center-cracked plate loaded in tension. The

total width of the plate is 8 units, with a crack size of 2 units. One .0

quarter of the geometry was modeled using ADINA, as shown in Figures 8 and

9. Extremely fine resolution of the crack tip elements was taken in order to

minimize the error in the finite element solution. The elastic stress IS

* intensity factor for this finite element model, using the crack opening

displacement at the quarter-point node, was in error relative to handbook

" values by about 2%.

The BEM mesh corresponding to the local finite element scale is shown in

Figure 10. The elastic BEM stress intensity factor results were

indistinguishable from the handbook results. The FEM/BEM meshes were selected ',

so as to provide about three decades of plotting data in terms of crack tip

distance. The maximum size of the plastic zone was limited solely for

convenience in the current study.

Plane strain conditions were used for both of the models. The elastoplastic
material constants used were E:2.037-105MN/m2, oy:3.452.102MN/m2  and v0O27

The ADINA crack tip model used quadratic, isoparametric finite elements .t,

with nine interior strain integration points. The BEM model used constant

strain triangles throughout. As noted above, both meshes were identical in
V.,,,

the crack tip region. The ADINA model used one layer of collapsed quadratic

* ,elements adjacent to the crack tip. This approach induces a (1/r) type of

i



.i .40

IL

. . .. . . . . . . .



- ~ ~. - h.P. h~b. - .4 .*.-------- 4 4 4

.4. 4 4

25 bU-.-..

.4 , ~.

41** ~p
-. 4...,

.4%

* 4/

I -~

* 4%

I

4 . ~4*.~

4'. .4,

p .4...

4-

b

-~

-. 4
.4-....4-

-. * 4'..

4'
4.

.4%.

.4.44

I-.

4..

Figure 9. Finite Element Modeling of the Crack Tip F 4

Vicinity with Singular Elements (i/a O.OO~)

'--4
4 444 4*.4 4

4..

............- . -. .

................ ~~****4-*** ~ 44 '.~ 4. ~4* 444444*



X,..

CRC

'6%

-l w 

V ."

a .0.

Fiue1. Itra lsi tri lmnsfrteBudr

Inega EqainMdln4fteCac i iiiy(,a 001



27
'. _-n,

singularity in the displacement gradient within this first layer of

elements. No singularity modeling is used in the BEN plastic strain ,', 2&

distribution.

Loading history was identical for both models and spans the range of load

factors of 0.0310 to 0.2075. A value of 1.0 corresponds to yielding of the

whole plate. A total of 68 load steps was used for both models. The load

steps satisfy the conditions of Larsson and Carlsson [11]. Simply stated,

.1these conditions require that at most one element becomes plastic at each load
" "increment, and that the load increment should be smaller than 1% of the load

corresponding to K =a -/a. The range of load factors has been chosen as

* *'.Imax y

the range to go from yielding the innermost element to yielding the outermost
°*'.'

element.

ADINA failed to converge for the first step until the stiffness

reformulation (BFGS) procedure was used. After the first load step (requiring

., 20 iterations) the ADINA algorithm with reformulation generally converged with

4' five iterations. The BEM algorithm, using elastic "stiffnesses," converged in

*. ten to fifty increments at each load step with the higher numbers occurring at

the higher load levels. The total computer time for the two models was

essentially the same, although the BEM calculations are cheaper per load

- .' step. A higher final load level or cyclic loading would yield a benefit to

the BEM model, even though the current BEM code is not yet optimized for these '.

• calculations.

The crack tip plastic strain distribution results are shown in Figure 11 .

'- for two of the computed load levels. The data are taken from points

, " distributed near, but not on, a line at an angle of about 850 to the plane of ..-

the crack. This angle corresponds o the line of maximum equivalent elastic

strain. The jaggedness of the curves is mostly due to the use of triangular
'A

.... °. ,

"~~~~~~..2.::-..-".'....v. ,..... ........-. ... ...... v -.. ...... -...-.... -........
:---'' .-' ~ '- -.: .. .L. L.L -.'" ¢ .4 :v .. 4; .- . .4 - .4-. . 4- . -v - .v 5.24 1 L D A-,
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elements, as well as to the points having different angular locations. The

data is plotted in terms of the centroidal value of plastic strain. The -

innermost row of finite elements has three sampling points radially, which .- o

, ., accounts for the smaller radius plotted for these results. The numerical

I ~. results from ADINA show a tendency for a spurious peak in plastic strain

increments in the second row of elements. This peak is no doubt induced by . ..

the lack of a singularity-transition element in the current study.

It is significant to find that the numerical results are in such good

agreement. This confirms the accuracy of the BEM algorithm for piecewise

constant plastic strains. The BEM results do not show the strength of the ..

plastic singularity as strongly in the first row of elements as do the finite

element results, with the imbedded 1/r singularity in displacement gradient.

However, both sets of results strongly indicate that the plastic strain for

localized plasticity possesses the same 1/r singularity that is associated

with fully developed plasticity for the case of zero strain hardening.

Clearly, the presence of the underlying elastic singularity field plays an ,

important role in enhancing the modeling accuracy for crack tip plasticity.

Figures 12 and 13 show the progressive development of the plastic zone up " "
4

to the maximum modeled load. It is to be emphasized that the current study

*- was intended to confirm the accuracy of the new BEM algorithm for

elastoplastic fracture mechanics analysis, and not study extensive plasticity

response at the crack tip. For this reason the current results were not

carried beyond the load level shown. There is no inherent limit to the load

level that can be modeled with this BEM algorithm.

3.5 Crack Extension.

4 - The numerical implementation of the elastoplastic fracture mechanics ..

algorithm in this section report focuses on problems for which the plasticity

*44.4.0.*•-,..
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modified, stress intensity factor in eq. (4) is useful. in matrix form, this

becomes

<,1 R> fujl <L> ftj (M>{f} (10)
+....

These problems consist of elastic cracks in the presence of plastic strains

due to welding and to yielding of notches.

The first problem was selected to validate the stress intensity factor

- algorithm for prior plasticity for any residual or thermal strain field. The

,, geometry selected is a simple tension specimen with the boundary and internal

mesh shown in Figure 14. The mesh arrangement was selected solely for conve-

- nience, as it is used as a portion of a later mesh. The specimen was loaded

to 110% of the yield stress for a bilinear material response. This induced a

uniform plastic strain throughout the specimen.

The next step in the validation of eq. (10) was to introduce a crack,

done along the bottom of the mesh as shown. The residual boundary solution

corresponding to the residual internal strains is computed for the cracked

case by eq. (6). Next, the internal strains for the residual boundary and

internal variables are computed from eq. (7). In the case of the test

problem, eq. (6) produced the uniform displacements compatible with uniform

residual strains; eq. (7) computed internal strains equal to the residual

strains.

The elastic stress intensity factor for the problem was then computed J..

* for the residual boundary terms computed from eq. (6). If there were further

changes in the residual strains due to unloading plasticity, these would

modify the elastic strain intensity factory through the appropriate term in

eq. (10). As required for this simple case, the residual stress intensity
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factor was zero. The residual values in the first and third terms in eq. (10)

cancel each other to within computer accuracy.

Figure 15 shows the residual stress in a large plate containing a simu-

lated weld bead. The weld is simulated by a narrow (b/W = 1/400) strip of

material with plastic strains equivalent to 100 ksi elastic strains in an

infinite sheet. Both plane strain and plane stress solutions were use-. The

plastic strains simulate the behavior of material which is heated to yielding

in a confined region, and then allowed to cool. The slight accommodation of

the plate to equilibrate the residual, welding stresses is seen in Figure 15.

The BIE/CRX analysis was used to obtain K-solutions for various central
1 p

' 
. . -

crack sizes for cracks transverse to the weld bead. The only reason for this

configuration is to be able to compare the numerical results to an exact solu-

tion for the residual stresses in Figure 15.

U The approach taken is to solve eq. (6) to establish the boundary solution

corresponding to the residual strains. Two triangles were used to integrate

the plastic strains in eq. (6,10); a single quadrilaterial element would also

I- suffice.

The results of K(al are comDared to the analytical results using an

influence function approach [12] in Figure 16. The agreement is essentially

. exact, as expected. The volume integral in eq. (10) contributes the bulk of

the K-solution, as the boundary displacements associated with the weld plastic "-S.

strains are very localized.

The algorithm in eq. (10) is therefore seen to be a very powerful solu-

tion for residual plastic strains for geometries without known Green's func-

tions or influence functions. Further, by slight reformulations of the volume

."- terms, other volumetric strains such as thermal strains or body force strains

can be analyzed in the same manner.

. .:?:.-,?
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V?'

An important engineering application of this approach is the calculation

of K(a) for cracks at notches (holes, fillets, etc.) which have plastic ,

strains due to overloads, or cold working. To simulate this problem, a bolt A

hole specimen was modeled as shown in Figure 17. The plate was loaded in

plane strain to 80% of the net section plane strain yield stress (Fty 55.8 -.

ksi). Figure 18 shows the progressive development of the plastic strain, -

computed by the BIE/CRX program with zero crack length.

An elastic crack was then simulated for a/R = 0.05, 0.50. The

solution, as before, requires an equilibrium adjustment to account for the ..

crack in the boundary solution (6), and a K-calculation from eq. (10). In

this case, the boundary terms in (10) contributed a significant portion of the

solution.

Table 2 presents the elastic and plasticity-modified stress intensity

factors for the two crack lengths. The approach used is to calculate K(a)

from eq. (10) at no load. Table 2 gives the values of K(a) at no load and

full load through an addition of the elastic result to the no load solution.

The results clearly demonstrate how notch plasticity causes substantial crack

closure (K(a) < 0), thereby reducing the stress intensity factors at full

'.2 load. Such retardation effects due to residual stress have been previously

modeled with influence function approaches [13,14]. *

?1.
'.•
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Table 2
K1Stress Intensity Factor Results oa-ra

a/R = 0.05 a/R = 0.5

Elastic 'r J,
- Max. load 3.411 2.070 -t- i-

- Zero load 0 0

Plastic (Full Crack Surface
Unloading)

- Max. load 0.843a 1 .78 7a
- Zero load -2.568b 0.283 b

Note a: Maximum load values (elastically) : Elastic Zero load values

b: Negative values of KI imply crack closure at positive load

The final example considers the effect of crack tip plasticity on crack

closure. The selected plane strain problem, shown in Figure 10, was

*w previously used to validate the BIE/CRX algorithm for elasto-perfectly-plastic

crack tip behavior. The plastic strain distribution for this analysis is

shown in Figure 11, where a load level of one is net section yield, in plane

strain.

The plastic strains in Figure 11 clearly indicate the inverse-crack-tip-

distance singular behavior expected from the perfect plasticity solution

[15]. As discussed in [3], such a plastic strain singularity does not lead to

a convergent volume integral for eq. (4). At the maximum applied load (LFi .-~ ..

0.2075), the elastic stress intensity factor is given by: ,..

1.08 (11)

.-/ . a

with o : 11,579 psi and a 100 inches. Use of the full plastic strains from

the perfect-plasticity solution at this load level gives an apparent strength

.[*] of the elastic singularity (K

IA

"; ..

- :-.
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." KI
K _ 1.167 (12)

| ,

The increase in K I  using eq. (4) substantially exceeds the effect of crack ,

tip plasticity on crack driving force that would be predicted using a crack

size equal to the physical size plus the plastic zone size. Denoting the

plastic zone size by rp we obtain
• ., * ....-

K 2
1-

r -

a2i 0.03 (3

*Then the effective crack tip stress intensity factor would be estimated as 0

iK a+reff P 1.015 (14)

a'" a a 2

" .

Thus, we conclude that the singularity contribution to eq. (4) is, in fact,

unbounded and the result in (12) is not meaningful.

The unloaded solution to the same crack problem involves reversal of the

crack tip plasticity. Figure 19 compares the loaded and unloaded transverse
P

plastic strain (c ) distributions along the line of maximum equivalent stress.
y

The unloaded plastic strain distribution is much less singular and we compute,
at zero load

PK= 1.015 (15)

as compared to the value 0.015 estimated in (14). This large result still

indicates that the residual strain singularity is still too strong to be

f neglected in using eq. (4)."..

%a.

plati srai (.)ditriuton aongth lne f axmu eqivlet tres.,]]'-a
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While the magnitude of (15) is not meaningful, eq. (4) can be used to

indicate the relative effect of the residual strains on retardation of crack

growth. The approach is the same as used in the notch problem discussed

WL above. That is, the crack is extended elastically into the residual strain

* K.
field, and K1  is recomputed. The result, in Figure 20, is given as

The plot shows almost an instantaneous change of K* at no load to a

negative value. This result confirms the expectation of a retardation effect

of crack tip plasticity on subsequent cyclic stress intensity factor. The

.eak effect is at 0.27, corresponding roughly to some estimates of the
. ... rp r

plane strain plastic zone size the extent of the retardation zone

sE. is .-

p
" Thus, we conclude that the volume integral in eq. (4) is substantially

nonconvergent for the crack problem. The correction would be to delete from

the plastic strains those due to the singularity alone. It is expected that

the remaining plastic strains can be used to compute an effective stress

intensity factor which accounts for contained plasticity effects.

- O o

PeP

2 1-..
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p.

4.0 GENERAL SOLUTION PROCEDURE FOR FRACTURE MECHANICS
WEIGHT FUNCTION EVALUATION

4.1 Weight Functions

The weight function method is based on Rice's [16] interpretation of .%.

Bueckner's [173 original paper. The weight function for a crack problem is

generally taken to be the normalized rate of change of surface displacements

with respect to crack size for a reference state of loading. As shown by Rice -

[161, this weight function acts as a Green's function for the crack problem.

That is, the solution to any fracture mechanics problem for the same geometry

€( but different loading conditions can be obtained from the weight function for

the reference set of loading conditions. The manner in which this is done

* will be reviewed in greater detail later in this paper, but the process ,..

involves an integration of the uncracked stress field times the weight

function to arrive at the crack tip stress intensity factor for those imposed

stresses.

The singular advantage of the weight function method is efficiency of

computation of the crack tip stress intensity factor for a variety of crack

sizes and loading conditions. Crack size effects such as finite width effects

on stress intensity factor, or size effects where crack size changes the

applied loads (stiffness effects), need to be included in the weight function.

The new method reported herein addresses the computational problem of gener- "
4. "*""~%.""

ating weight functions in a direct and efficient manner, while providing for

the first time a general method for the mixed-mode problem.

4.2 Numerical Methods for Evaluating Weight Functions

The weight function method discussed herein excludes the related, Green's

function method for stress intensity factor evaluation. In the Green's

function method, many of which are given in Rooke and Cartwright [18], the
A. '.*
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stress intensity factor for the reference problem is given in generalized

I terms as the response to a point load on the crack surface. The point load

solution is then integrated as a weighted integral of the applied tractions.

While the Green's function and weight function methodologies are closely

. ~ related, the computational approaches for the two methods are distinct. The

current paper focuses on the numerical evaluation of surface displacement

derivative evaluation to establish the weight function. The approach is based

on the boundary element method for two-dimensional fracture mechanics, as

first developed by Snyder and Cruse [1], enhanced and corrected by Cruse [21,

and most recently used for elastoplastic fracture mechanics modeling by Cruse

and Polch [3]. In these reports the general BEM is implemented with augmented

boundary integral equation kernels which explicitly include the presence of a

stress free crack.

Most numerical methods for the development of weight functions are based

on the boundary integral equation, Besuner [19], or finite element methods, K '.

Parks [20]. The boundary integral equation solutions (now referred to

*generally as boundary element methods) have been based upon numerical differ-

entiation of the numerical results. That is, the crack surface displacement

,J - numerical solutions are obtained for two slightly different crack lengths.

The finite element method was modified by Parks [20] to include in the virtual

work principle an explicit derivative with respect to crack size. This

." permitted the FEM-based approach to be more efficient than numerical differ-

entiation. This approach has been exploited to a great extent by Sha and Yang

[211.

.~- A second approach to the numerical problem is that proposed originally by I.,

Paris, McMeeking and Tada [221. In this method, the weight function is

computed for the problem of cracked body subject to the elastic singularity

- ".%. **°\
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tractions on a small circular path surrounding the crack tip. While most of

the results were obtained using the FEM, Cartwright and Rooke [23] used the -

BEM to obtain very satisfying numerical results. Others, e.g., Grandt [24]

and Petroski and Achenbach [25], have developed very efficient means of .,.-

estimating weight functions for a limited number of specific geometries.

4.3 Formulation

A general purpose numerical evaluation of crack surface weight functions -

has been developed based on a novel use of a specialized boundary element I

formulation of the two-dimensional fracture mechanics problem. The following

* sections will present two-dimensional brief definition of crack surface weight ,.--

functions, their use, and some of their potential limitations, followed by a

review of the new method. The basic references for these discussions are Rice

[16] for the weight functions, and Cruse [2] for the boundary element

method. The general weight function approach of Bortman and Banks-Sills (26]

will be followed.

4.3.1 Crack Surface Weight Function

Consider two solutions for the specified geometry. We will call

solution state -(2) as the unknown solution, and solution state -(1) as the

reference state. Both solutions consist of stress and strain variables on the

* interior of the body, and tractions and displacements on the surface. The

reciprocal work done by the stresses of solution -(2) on the strains of the

reference state is given by* .%

W 2 t2. u dS + u dV (16)2 ii ij 2 1 dS 2 o J iu V-VS V 1

* s -u -"

-A *Superscripts should not be confused with powers in this section. -[

-,2...---C-- -.-.. . . .

iL-- .'- ? " " -.. "•- ." " -"o " ..- .° ,-" .-°4 - -" - ". " • 4" -.". ' 2.- -. ." ." '- . ' -' - - - "- - - - - -"~ -*
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The boundary integral consists of the tractions t2. and the displacements u1

1 1.. "-...

for the two solutions; f2 is the body force term.

Consider next the virtual extension of the crack for the

reciprocal problem. The tractions that are released ahead of the crack in."

alp (16) are singular with the usual inverse square-root behavior. The

displacement term in (16) is proportional to the square root of crack tip

distance. A reciprocal energy release rate can be computed in terms of the

mixed-mode stress intensity factors (KI, KII) for the two solutions. Letting I.

H E/(1 - )or plane strain and H E for plane stress, we obtain

1 2
1 2 1 2 au at. 1

I (K1 K + K Ki) r t2 i dS + u. dS (17)
H I I II ii i iaa Sa3a

t u

The boundary has been divided into that part for specified tractions (St ) andt

that for specified displacements (S u). The body force term in (17) has been

*, dropped only for simplicity at this point. Since state -(2) is general, we

can compute equation (17) for another general (and independent) solution. The

reciprocal strain energy release rate in (17) then gives |.,.,

.IKI ) 3 au1 t2 1 (18) -

- (K1 K K ft
3  dS + . -u 1 dS

H I I I I St i B-a d S -a- i . --
SS

t u

Combining equations (17) and (18) we can solve for the stress intensity

factors for the arbitrary problems in terms of the solution of the reference

problem

.V - .- .
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1 ts 2

au at

1 H 2 i I
K K I t dS + - u. ds

St i)a S•
a u. Z t

1 H 2 1 t Ua
K I - dS u dS (19b)

2()SS a 1 i + "'

ds' u] dS.:.:

i a aa 1

St Su

+where (K)2 : 12 K 2 K 0 (20) " '

~~ KI I Kt u..

..-, In the case of symmetric loading, equation (20) reduces to'$

1 2

2 , ,r 2"at. 1 (21)

1," H t2 u t I

K K t dS + u . dS 19b)

I1 1 i aa aa 1

2K S S ." .

a U at ... +

*'. This is the same form as developed by Rice [16] except for the introduction of "'"

-+ "',•mixed boundary conditions. The solution approach using weight functions is

K-. t -o'O. "

normally given for Su: 0 such that
K2. a  2 1

-.,2: -H 2 +l : t.h.dS (22) ;i

2KS S

where hi(S) is the weight function. For the mixed boundary value problem, no

11
au. at.,,simpl wH t ft io ca be wrte dow an th ul omoeuto (21)

Ihas to be used. "'.
T is t s for a v d R 1 cf..

m b d c T s

nomlygvnfo uhta
. ' ' P ' " , .. . " - . " , " - . " - . " - " . . " , . " - - , . . - , , . + ' . - ' - , , , . ' - ' ' ' , . , ' . , ' , , , ' . , . - ' , . - ' ' , " x , ' ' ' , , , - - • , . ,.u , • .

"- - "-g 2 H 2 au.- 2' '-1.-.-" 4 -- . < : l ' , l ', ,"" ,P . -,', ' i " , " """" " " .. . . .. - -" - ', " -" - . ,
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Thus, for the general weight function method, one needs an

efficient means for solving the reference geometry fracture mechanics problem,

subject to any fixed displacement or compliant boundary conditions, to obtain

, ,,. the rate of change in boundary displacements and tractions, and the crack tip

stress intensity factors. The fracture mechanics BEM provides the most direct

and efficient means for providing this data in the appropriate manner. ..

4.3.2 Boundary Integral Equation Formulation

The boundary element formulation of the two-dimensional fracture _J

mechanics problem is restated for completeness in a shortened notation

"*' ?;- "-

u/2+ rTudS fUtdS (23)
S S

where the physical variables are the boundary displacement and traction

I vectors, u, t. The kernel functions U, T in (23) are the displacement and

traction (on S) solutions to the elasticity problem for the infinite plane

subject to a point force loading; these functions are known as fundamental

. solutions in the BEM. The asterisk on each of the fundamental solutions

denotes further that they represent the solution for the point load in an

infinite plane, containing a single, traction free crack of length 2a. The

surface S in (2 4 ) does not include the crack surface, as these boundary condi-

"" ' tions are automatically satisfied by the special Green's function or funda-

mental solution used in this formulation.

The weight function method requires the solution in terms of the -

rate of change of the boundary conditions, as a function of crack length.

" ~ Differentiation of (23) with respect to crack length is completely straight-

forward, due to the explicit dependence on crack length of the kernels of the

integral operators. Thus, we obtain the following boundary identity
-S.%

- o."•

-5 .'
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auu t au Ua- *a dS - U dS T- u dS + - t dS (24)
@ a S 3 3aS a at U

The boundary has been denoted as S S + St to denote the notions of both

Ze displacement and traction boundary conditions on portions of the surface. In

general, the mixed boundary conditions involve somewhat more complexity than

is denoted by this notation, but the terms in (24) convey the essential notion

of the algorithm.

Letting the vector x correspond to the unknown boundary conditions

* [(both traction and displacement components), and y the known boundary condi-

tions, a symbolic form of (24) may be written

au/?a
[ i[A] '"/a = [Ajfx) = dB/da](y) (25) -,'-

p Equation (25) is obtained from (24) by the imposition of a boundary interpola-

o *r tion system. In the current application, the boundary data is assumed to vary

in a piecewise linear fashion, with x, y representing nodal variables.

Equation (25) is very similar to the discrete form of the BIE (23)

which is solved to obtain the unknown boundary conditions for the reference

problem. Specifically, A is identically the same as for the boundary value

problem. The right-hand-side of (25) is made up of the derivative of the B
S . .. ..

terms with respect to the crack length, and y is the totality of boundary data

from the solution of the reference problem, equation (23).

Thus, the algorithm for the solution of (25) consists of

1. setting up the discrete form of (23) to obtain A, -K'.-.

2. storing A for later use,

3. solving for the unknown boundary data,

<.,, -~.- . .
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4. computing the elements of [dB/da],

II 5. solving (25) using the entirety of the boundary conditions

The solution to (25) consists of the change in all non-specified

boundary conditions, except along the crack surface. This is so because the
J- .-

- special Green's function used for the fracture mechanics solution automati- I

cally satisfies the crack surface conditions, and the crack surface is elimi-

Si nated from (23). The complete solution therefore requires an additional step

before the full weight function can be defined.

The BEM is based on the so-called Somigliana identity for the

interior solution variable, which in this case is the displacement variable.

The derivative of the interior displacements corresponding to the boundary |

solution to (23) is given by

au/a T'udS u dS + a tdS (26)
S S S S

. Equation (26) is equally true for interior points or crack surface points,

* although care must be exercised in the evaluation of the kernel functions for

crack surface points. The numerical solution of (26) completes the weight

S.function description, in a formal way. That is, by specifying a suitable num-

-.ber of crack surface locations, the analyst is given a complete description of

" the rate of boundary condition change with respect to crack length, as needed

in equation (21). However, the term from (26) for the point at the crack tip

is singular and requires special treatment, as discussed in the next section.

4.3.3 Crack Tip Stress Intensity Factor "

One of the very important features of the fracture mechanics BIE .1

solution is direct access to a very accurate and generic algorithm for eval-

uating the crack tip stress intensity factors for mixed mode response. This

.:- ,y<.... .
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algorithm has been previously discussed and requires only that the following

integrals be evaluated for some path in the cracked body

K R u dS + f L t dS (27)KIII S IU S I .%

The complete traction and displacement solution needs to be specified on some

' path, and the original surface (excluding the crack surface) is usually

-'* -. selected. However, as discussed in Cruse [27], the algorithm is independent

of path and has successfully been used as a post-processing algorithm even for _-

4 "-finite element models.

The weight function algorithm also involves the direct computation

. of a crack tip singularity. Taking the free term in (26) to be evaluated near

t "he crack tip, it has been found that the kernels contain an explicit, square-

root singularity. As in the development of (27) we take the integral identity

(26) for points near the crack tips (either end of the crack), multiply by the 4

square root of crack tip distance and proceed, in the limit, to the crack tip.

A non-singular form of (26) is then obtained

Lim -r : TudS Ut dS (28)
r-O 8a ,1

S S

where T r Lim -r T Lim rU (28a)
r r Ba ' r-O 3a

These terms are directly related to the stress intensity factors found in

(27), but are derived from a completely independent basis. Thus, they provide

.°*• .a validation of equation (25) by comparison to the results from equation (27). ,.

Having the explicit, limiting singularity strength provides the analyst with a

complete description of the weight function for the reference problem.

• -. •
N '' . °

• % - - °.
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*. 4.4 Applications

The applications given in this paper are limited to validation examples

for the computational algorithm that has been developed. No effort to compute

* stress intensity factors from the BEM-developed weight functions will be

given, as these are covered adequately in the references given. The following

sections will present a brief description of the computational implementation

°. .[ of the BEM-weight function algorithm, two numerical examples of interest, and .•-

some conclusions based on the work done to date.

4.4.1 Programming

The BIE (23) is first formulated, making direct use of the defined

boundary conditions to assemble the matrix for the unknown boundary data. The

, right hand side vector is assembled from the product of the kernel functions

and the specified boundary data. The coefficient matrix is stored on tape for ,.

later recall, and the system of equations is solved by reduction. The full 4

. ,.. set of boundary data is then completed and the coefficient matrix recalled.
"The new right hand side vector is formed from the matrices resulting from

differentiation of the standard kernels, with respect to crack length, times

the full set of boundary data for the reference problem. Re-reduction of the -

same matrix then results in the set of boundary data corresponding to rates of

* .. change with respect to crack length. Mixed boundary conditions and mixed-mode

'" cracking problems are handled directly.

The next step is to compute the crack tip terms at one or both of

the crack tips and the rate of change of crack surface displacements with -

.* "- respect to crack length. The same matrices as used for the boundary terms

above are computed for the points located on the crack surface. These points

are inout as percentages of crack length, and are taken to be on the top sur- .

", face of the crack for symmetric problems.

:--

,"" '.'" °" "" "' . ". • ', .: .,,,?... -< ..'.,'.,'.-',k • "o. .--.-: -: .
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4.4.2 Numerical Examoles

Two example reference problem calculations are presented which I

illustrate the essential numerical capabilities of the weight function o

calculation procedure. The first is more in the way of a validation example,

as the problem considered is a simple square plate with a central crack,

Figure 21. The plate is loaded in simple tension transverse to the crack as

shown; this loading results in Mode I response of the crack. The crack sizes

range from a/W = 0.01 to 0.5.

The smallest crack size is essentially equal to the infinite plate

problem. The computer code calculated stress intensity factors for each case;

for the short crack case the accuracy to the infinite plate result was to five S

significant figures. Figure 22 plots the normalized crack opening displace-

ment derivative results for the four cases. It is seen that in all cases the

resulting distribution is quite smooth over most of the crack; the finite

V width effect is seen for the cases of a/w > 0.1. The normalized crack tip

singular behavior is also seen in Figure 22 to be essentially identical for

each of the cases. The stress intensity factor computed for the crack opening

displacements, using equation (28), was essentially identical to the

K previously exploited algorithm based on internal stresses, equation (27).

Figure 23 shows the BEM mesh for the second reference problem

considered in this study. The problem is a plate with a central hole and an

edge crack from the hole. The mesh was established in a manner that repre-

sented mixed boundary conditions, as the left-hand side is taken as a plane of

simulated symmetry.

The crack is taken to be located at the horizontal symmetry line,

extending from the edge of the crack. It is to be re-emphasized that the BEM

algorithm being used does not model the surface of the crack, as this surface -

C _A-.A
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is.,±±i±,' .acoute hef W f he t

- is explicitly and exactly accounted for in the formulation of the integral

i equations. The plate is taken to be sixteen units long, with a width of eight

units and a hole radius of two units.

Figure 24 plots the computed stress intensity factors for five

. crack sizes (a/R = 1.5, 1, 0.5, 0.25, and 0.05). The stress concentration

factor for the hole is computed to be 3.59 versus the value of 3.54 from

Peterson [15]. The stress intensity factor for an infinitesimally short edge "*

crack at the hole is then given by -. ,.

K 1.12KT /ia (29)
T

- The value of normalized stress intensity factor in Figure 24 for

aiR 0, therefore, is 3.98. The stress intensity factor is seen to decrease

with increasing crack size for short crack lengths due to the effect of the

stress gradient. For longer crack lengths, the values are seen to begin to

"' rise, as would be expected due to finite width effect. The second curve in

L.. Figure 24 simply normalizes the stress intensity factor such that the value at '...

a/R : 0 is zero.

Figures 25 and 26 present the numerical results for the normalized

weight function for the Mode I reference problem. The results in Figure 25

are essentially of the same shape as in Figure 22, although the zero intercept ,*

is elevated due to the free edge effect. Also the order of the curves is

affected by a/R. Figure 26 normalizes these results by the numerical results

for the center cracked panel (a/W = 0). The case for a/R = 0.05 clearly shows

the influence of the free edge effort for short 3racks while the others begin

to look more like the results for a center cracked panel of crack length equal

-- 4
I ."r .-
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to (a + R) The singular behavior of all of these solutions is essentially

identical to the center cracked results, in the normalized presentations of P

Figures 22 and 26. J.

,-

-. ~-. %
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' "5.0 BURIED CRACK ANALYSIS WITH AN ADVANCED TRACTION BIE ALGORITHM

5.1 Introduction

The algorithm for analysis of buried cracks of arbitrary shape, presented

C7 in this section, is a part of a bigger code. The ultimate goal of the

principal code is a solution of an arbitrary surface crack problem. The

alternating boundary traction method (Nishioka and Atluri [28]) is used to : -
this end. Both the literature and our experience show the efficiency and good

" - convergence properties of the alternating method. The accuracy of the

solution of a buried crack problem, being the main part of the alternating

method algorithm, plays the most important role in the accuracy of the overall

results.

The problem of a buried crack with arbitrary geometry has not been solved

N satisfactorily. Nishioka and Atluri [28] used a solution based on Jacobi

potential functions for the elliptical planar geometry and polynomial -

loading. Weaver [29] used a dislocation model to solve the problem for the"-

case of the rectangular crack. Using the same dislocation method, Bui (30]

presented a solution for an arbitrary geometry, but with poor accuracy. The

accuracy of Bui's method has been improved by Putot [31], albeit with certain

artifices. The current work, reported herein, removes these limitations and

deficiencies by a successful combination of quite well known numerical

techniques.

5.2 Mathematical Statement of the Problem

The problem of a loaded crack in an infinite three-dimensional body can

be mathematically described by a set of integral equations of the first kind ....

for relative crack opening displacements vi  in terms of crack surface

" ..i tractions Oi3"

.,--;-
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.%'r a- 
.

a

C3 3 (P) 2 dS (a,B=1,2)

v r

'" SI 1  ( ,2 V2, '2
" 13(P) 4(-)f [1-0 + (1-) 2  dS (30)

>3r r 

c".2 (P) v4, \ 2 [ L .r + ((-v) 2d1-v 1 2 )r S

where

3
r2(p,Q) : (xi(P) - xi(Q)) 2 ; v. v. (Q)

*-4

<r> denotes integration over r in the Cauchy Principal Value sense. - ,

This well-known set of equations (Weaver (29]), Bui (30], Cruse [27])is

herein called the Traction Boundary Integral Equation. The Greek subscripts

apply to the in-plane directions defined by the normal direction, X3. This

set of equations is derived from the Somigliana identity for the internal

stresses in a body with the crack (Cruse [27]). An important feature of this

representation of the physical problem is that it decreases the dimensionality

of the problem from three to two, the equations extending only over the two-

dimensional crack surface.

SU u p e u f.ce) . ,

'-" vi = u i (upper surface) - ui (lower surface) = u

f...,,..;,-, ,- ..- v ..-....- ..-..- ,....-, .. :-.-.. -.- -.. -,.,--<-..... . . . . ...-.-.-. '-"- -- - ' -..-.-.. .-.-----.-
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, An important aspect of the set of equations (30) is the presence of

principal value integrals. The evaluation of principal value integrals

usually involves special treatment of exclusion circles for singularity.

Proper handling of this practical problem requires continuity of displacement

gradients (crack surface strains) between the elements. If the continuity
.4--. ..

. - condition is not satisfied, certain artifices have to be used to contain the

error (Putot [31]).

5.3 Current Numerical Method

In the current numerical method, we use a finite element interpolation

scheme for the unknown displacement discontinuities at the crack surface, and

* 'their derivatives. In the following, we will use the term "displacements" for

"displacement discontinuities" for brevity. The finite element interpolations 4.-

produce undesirable discontinuities of displacement derivatives at boundariesV..

of the elements unless higher order derivatives are used as nodal quantities.

A special interpolation procedure is used to remedy the problem. We
-, 4%"

model the displacement field on the crack surface using quadratic 8-noded .

isoparametric elements, and the displacement gradient field using linear, 4-

[ '[" noded isoparametric elements. The relationship between these two

interpolations is established by the following schemes.

The interpolation of the displacement discontinuity field on a crack is -

given by the relation

k k k kvi(P) IAui(P) Nk(p)Aui N v. (31) VI

3. 3. "..2.

where

k = 1,n

P = point on the crack surface % %

n number of nodes of 8-noded element meshes

..° - . . ..



,•. -,67

:'a

We will call the displacement interpolation mesh using the 8-noded element the

N-mesh in the following discussion. Differentiation of vi with respect to the

global variable x will provide the in-plane displacement gradient field

(p) _(p) aNk k
v. (P -P : -(P) v. (aI=1,2) (32)

i~a ax ax1
a a

This field will be, in general, discontinuous at the element boundaries (as

the stresses and strains are in standard finite elements).

To find a continuous displacement gradient field corresponding to the

original displacement field, we will create a new mesh of linear 4-noded

isoparametric elements, referred to as the M-mesh. This new mesh will

interpolate displacement gradients on crack surface according to the following

v . ( P ) : M J ( P )v . -43 3 . .
(33)a

- 1a i,,a

• -where

=* j : 1 ,m -,

O.

m number of nodes of 4-noded element mesh a""

SThe nodes of the M-mesh will coincide with those of the N-mesh and with the

centers of 8-noded elements in a manner shown in Figure 27.
a ., .. :::-

We will find the nodal values of displacement gradients by minimizing the

N difference between the two interpolations, (32) and (33). The difference

between the interpolations on the whole crack surface (indices k,j running -

through all nodes of the crack model) can be written in shorter form

. as E. where
la4

k : I,n
3N Nk  k j =,1'

E. (P) =M(p)v 1,m(34)ax aa I : 1,3

a : 1,2

a,-,. - . -•,• . . - * . . . .~ - * . -. . . . . .. . . . . . . . . . . . . . .. .. .-

.t, ,i , V ,f 1' . ," .* " . ." ." - ," , " " • . . " " - . .", . . " " . " -...... '. . . . .
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Using the Galerkin weighted residual process, with the same weighting .J.

functions as the displacement gradient interpolation shape functions, we h.

obtain the following %

*f E-Mr dS 0 r 1,m (35)
S

Substitution of equation (5) results in

"3N" k Mr dS f Mjv. JMrdS r=1,m (35a)ax 1 '"

S. S

or

ks MjMrdS v. r L MrdS v.k r:1,m (35b)
S S a 

4

The matrix representation of equation (35b) takes on the following form

[MMIv I (NMI fv} (36)
iI,.

where

[IMMI = square matrix of dimensions 6m x 6m with MM. f M3 MrdS

2N rd

(NMI rectangular matrix of dimension 6m x 3n with NM S f MrdS

{v.}: column vector of nodal displacement gradients
L 1,a (dimension 6m x 1)

Ivj column vector of nodal displacements
" (dimension 3n x 1)

**~*%**~****- S *.S. * * *~..* ** 4** *~ . . - .- .
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* "Matrix MM has the same structure as the finite element consistent mass matrix;

clearly, MM is positive definite. Nodal values of the displacement gradients

are then calculated by

{v [MM-1 ] [NM] {vi} (37)

This process very closely resembles global stress smoothing used sometimes in "

the finite element method, Hinton and Campbell (32]. Since MM is positive

definite and has a strongly dominant diagonal, its inversion does not present

any problems. In short, the global relationship between nodal displacement... ,. .,,.

.| gradients and displacements can be written as

{v,,.} [MM {v}:

(38)

where IMNM] 6m x 3n [MM- 1 ] [NM]

The numerical solution of the traction BIE, equation (30), uses the

collocation method to form the equivalent system of algebraic equations for

the unknowns. Since the displacement mesh contains n nodes with three unknown

components of displacements each, we take these nodal locations as collocation

' "points.

. .The continuous representation of displacement gradients given by (38)

allows for very easy and natural treatment of the principal value integrals

appearing in (30). It can be easily proven that the basic component of all

integrals in (30) vanishes as the radius of an exclusion circle r around the

source point P goes down to zero, viz.

rh(PQ) i = 1,3

I (P) Lim V (Q) dS(Q) = 0 a - 1,2 (39)
,c'- 0 r r (PQ) = 1,2

~ .....

,-. *:. .- . ...
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Discretization of the set of equations (30) with the interpolation scheme

?...

(33) at n collocation points gives the following system of equations

i = 1,3
[vvl :; {13} Z =,2 (40)

, '% %

where

[VV] - 3n x 6m array of coefficients D.-.-

-.* {v. }- 6m x 1 column vector of unknown displacement gradientsiP.,
Iv %,.I

{13} - 3n x 1 column vector of known surface stresses (tractions)

This underdetermined system cannot be solved directly for the displacement

". gradients. To reduce the number of unknowns, we use relation (38), thus

changing the unknowns to displacements. We obtain ?..

[VV [NM [v { (-41)

1VV- 10131
. , - . '

'* or

] [VK] {vi} =10131 (42)'I,-

where
• 

,% . .. ,

[V K j3 3  [ v v2 I "

-- ,,, % . " .%- ' .* ]%" %"°"
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is the final array of coefficients. System (42) has 3n displacement

components as unknowns and 3n equations formuiated at n nodes of the .

displacement mesh. It can be solved by any convenient numerical technique

after application of displacement boundary conditions (43) at the contour of

crack surface

. 0 (i 1,3;k node numbers) (43)

The structure of the system of equation (42) shows that (for the current -

formulation for plane cracks) the problem may be separated into two separate

systems of equations. Crack opening displacements are not coupled through the

equations with in-plane displacements; thus the system effectively splits into

two separate systems of equations

i =.. 1 ..

1 A Xy i 1 1,2 (43a)

#.%~
[VK VI fa~ Io3  (143b)

This property allows for greater efficiency of numerical solution-systems of

equations for separate sub-problems are smaller than the full system. The

decoupling of the system is used in the computer implementation of the

'A method. After solution of system (42) the displacement gradients at m nodes

of the linear element mesh can be obtained using equation (38).

Stresses at any location of the infinite body due to crack loading

(except for the crack surface itself) can then be obtained using formula (44)

a.i(P) S- S (PQ)v (Q)dS(Q) (44) "....

%. ." . . .
• . ,,.- .:

w '° 4"" W' 
"
.°'. °w"''"°'" " .' .-'.a ." .' W" ,( .' " °' ".'".'"." . '° "-"'.".- .- . .. "°- .. ;'"-" -" °" ." '" '" -"-" ".%.".- .. .- .-- •-"'-" ". -.- " '' -%-.



. =,- ,, -- ,.. . -, - : . : : - -- : : -.- ,. . --. 4 -.- . . -- ,- * .. :.. .. -.

73

The kernel S is given in Cruse (33]. To calculate integral (44), we use
1 ia

the displacement interpolation (31) on the N-mesh. Integral (44) presents no

particular problems, since it is a proper one. Higher order numerical "'

integration is only necessary when the source point p is located close to the

crack surface.

Stress intensity factors at nodes of crack front are calculated using the
formulas of Bui [30]:

" Kd (45)

vyE
8(I2) (46)-.... v I  

E

- . I 8( I 2 d . -

v EIIIIII -4(1-v) d (7)

where v1 is an opening displacement, VII - an in-plane displacement component

normal to the crack front, and v I  - an in-plane displacement tangent to the

crack front. The above displacements are for the nodes closest to the crack

. front, their distance to the crack front being d.

5.4 Results of Computations Using Original Algorithm

The computational algorithm presented in the preceding section was used a,-.-

to solve the problem of the penny shaped crack under two kinds of loads: I.

* . constant pressure and constant shear. Three different meshes were used

(Figure 28). All the meshes used quarter point element modeling for the

displacements close to the crack front (which results in O(Vr) variation of

" -,the displacements as a function of distance r to crack front). It is

. . . . . . . . . . . ...... . .
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important to point out, though, that the associated displacement gradient M- '- J

mesh did not have the () singularity. The resulting crack opening ..

VrV

displacement patterns in the radial direction along with the exact Sneddon ..

-a-

[34] and Segedin [36] solutions are given in Figure 29 (z displacement due to

7 pressure loading) and Figure 30 (x displacement due to xz shear loading).

It is clear from the figures that the results depend very strongly on the

mesh used and exhibit a strong oscillatory character. The accuracy of results

is clearly unacceptable (17% to 25% error in all stress concentration factors,

. similar order of magnitude for maximum displacement errors). It is

,.' interesting to observe, relatively, that the best results were obtained for

the most uniform mesh: the smoothest of the three displacement variations and

17% error in stress concentration factors.

Stresses in the crack plane were calculated for all three solutions.

Consistently, they showed the same order of accuracy as the crack opening

displacements. Again, the best results were obtained for the uniform mesh;

the errors displayed the same behavior as crack opening displacements - the

- biggest errors were nearest crack front, the smallest away from the crack.. . ., ., . .. . .

One very clear feature of all results was observed: consistently low-2" '°'. .,

. displacements and stresses (as compared with exact solutions). The reason for

- [this behavior was ascribed to finite (not zero) compliance of crack front.

One way of assuring more physically appropriate behavior of the numerical

system was to implement the singularity of displacement gradients in the

vicinity of crack front. Intuitive reasoning would suggest this as a way of

building in more compliance at the crack front, increasing the overall level

of displacements and stresses.

a'W. -I-

a.- *-.- 7.'a**a% .*j]~~V
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5.5 Analysis of Method's Equations Using Exact Solution

Poor results of the method provoked extensive investigations of the

sources of errors. The simplest check of the numerical accuracy consisted in
40

.. the substitution of the obtained displacements into the system (42) and

calculation of the right hand sides. It revealed no apparent numerical

problem.

Further investigation into the problem used a known (Sneddon [34])

solution for a penny shaped crack to check the accuracy of various matrices

used in the numerical method. First, the accuracy of the interpolation matrix

." MNM was checked by post-multiplying it by exact displacement pattern to obtain

"semi-exact" pattern of displacement gradients (48)

{vi,}se= [MNMI{vi}exact (48)

. Comparison of the semi-exact displacement gradients with exact ones

predictably showed the biggest errors, on the order of 10%, at the nodes

closest to the crack front. Errors at the very boundary were obviously

incomparable (the exact solution being infinite while the semi-exact is

finite) due to the simple linear displacement gradient assumption used.

Errors elsewhere on the crack surface were small ((5%), indicating the

adequacy of the displacement gradient model for the regions without

singularity. Overall, the results of this test showed the local importance of

singularity model of the crack front.

The second test, on the accuracy of traction BIE matrix VV (equation

(40)), consisted of subs~i.utinz Doth the exact and semi-exact displacement

gradient patterns into ea7:tirl a checking resultant right hand I

sides. Since the exazt sc , - *r.inite on the crack front, a very large

. . . .. . . . . I.. " °



79

number was used instead for the nodes on the boundary. This test revealed the

global importance of crack front singularity as all of the equations displayed

very large right hand sides (consistent with the large number used for .

infinity at the crack front). %

Ensuing rigorous analysis of the system of equations (43-43b) proved that

in fact the influence of the crack front displacement gradients was present in

all of the equations of the system. Even though the equations corresponding

to collocation points on the crack boundary were deleted as a part of

accounting for boundary conditions, the information about the magnitude of

crack front displacement was present throughout the system. The experiment

with the semi-exact displacement gradients showed comparable order of errors

of right-hand sides as displacement gradients themselves. The most important

conclusion of this test was the global importance of crack front singularity

modeling.

5.6 Crack Front Singularity Implementation

It is very well known that displacement gradients are singular at the

crack front much as the stresses are singular ahead of the crack (order of

singularity O( -)) This kind of singularity may be modeled effectively by

so-called quarter-point elements, quadratic isoparametric finite elements with

mid-side nodes moved to a quarter side length location. In the current

. application, these elements may be used only for displacement modeling since

the nodal variables for these elements are displacements and the singularity %. %

is desired in displacement gradients. For modeling of the displacement

gradients, the explicit singularity had to be used in conjunction with

" -slightly modified linear shape functions.

If we consider a one-dimensional quarter point element, the displacement

derivative singularity has the form (Henshell and Shaw [36]).

•7 -
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.* .' , .X

," "du - A + B (49) _'"'e u A

dr Fi C
This expansion allows for very accurate modeling of the displacement gradient

pattern resulting from the elliptical displacement distribution. The same

variation of displacement gradients was thus assumed for both pairs of 4-noded
* .W. 9-.

elements. The resulting shape functions for these elements had the form given

in eqs. (50) and (51):

Element adjacent to crack front:

2 (1 2 + ) -

2 +~

.-, M2(12 : (1-&1)(1- /17

(50)

3 1 2 (1

Element of the second row:

2
2 12 2 5-3 1 2 2

1 1/-: 2&2:

22 (1- 3& 2

w

(51) "

. . - -

-33 2  . ..,..._,

M3~ ~ ~ /5 3 2 ( :)-'*'
4 1 2 )  :3 1 (I-I2 -.

2F -L
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In the above, an assumotion is used that the quarter point elements are

employed for the first row of elements adjacent to crack front. Since the

shape functions (50) are unbounded and both sets are nonlinear, the standard

-' s Galerkin procedure for calculation of nodal displacement gradients was proven

,. to be ineffective and the collocation method was used instead (only on quarter

point elements).

The effectiveness of the new, mixed method for displacement gradient

interpolation was tested on the mesh of Figure 31. The elliptical

displacement pattern was imposed on the nodes of the mesh and the resulting

displacement gradients were calculated using standard (non-singular) and new,

i ixed method. The plots of the results of both methods, along with the exact

and unsmoothed N-mesh distributions, are presented in Figure 32. The typical

behavior of the interpolation schemes is clearly more visible in Figure 33,

where it is shown blown up on two elements closest to the crack front. The .

results clearly indicate the improved accuracy of displacement gradient

modeling of the new mixed method over the previous, linear only method. The

deficiency of the standard F.E. modeling of displacement gradients is also .-.

obvious from the plot, due to the discontinuities at element boundaries.

.,- Additional improvement in this displacement gradient modeling is offered

by the use of transition elements (Labeyrie and Chauchot (37]). The approach

is based on focusing the singularities of a few elements, starting from the

quarter point element, on a single location, by moving their mid-side nodes to

suitable positions (Figure 34). Use of transition elements allows for a

better modeling of displacement gradients by N-mesh alone, resulting in a

better approximation by M-mesh. Our study of the transition elements showed

that the better displacement gradient modeling capability of these elements

stems from the presence of the nonlinear term in the geometry mapping.

o . - - A

• ..* ..
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*" Nonuniformity of geometry mapping allows for nonlinear displacement gradients,

enabling a more accurate fitting of the crack front displacement gradient

singularity. (Standard, exactly mid-side, quadratic elements map geometry in

a linear fashion. As a result, exactly linear variation of displacement

gradients is possible).

The results of the computations for the previous model, modified slightly

to produce transition elements, are presented on Figure 35. They show

important improvements over the previous model (without transition) Figure

32. The basic difference between two N-mesh models is significantly reduced

* :.., discontinuity of displacement derivatives on element boundaries. Resulting ". *

gains in the M-mesh interpolation accuracy reach 50%. The test clearly

substantiates the usefulness of transition elements.

The use of the new shape functions for displacement gradient modeling

results in a change in the nodal variables for the boundary. Instead of being

displacement derivatives at these locations, the new degrees of freedom are V...

actually the coefficients A in the expansion (49):

v" v d = lim 'r v. (r) (52) '.

-. 2,a r-'O

- where r is the crack front distance

This property allows for calculation of stress concentration factors from

boundary unknowns instead of displace.ients at quarter point locations

(V3  coso V3  sino),' KI  12, (53) "..
I 28(1-v 2 )

-4

(V coso + V sino)
-. MI 1,1 2,2(5)

,K 12 (,.54)- %

! -- - NA -

". o . . . . . . . . . . ... . . . .. ...
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(V2 ico
se + V s in e )

K 2,1 4 1 2 2" (55)III - -%(i%)

5.7 Directions of Further Work on Traction BIE

Due to the lack of numerical results for the singularity model in the

traction BIE, it is difficult to formulate definitive conclusions. The

analysis of the exact solution and the results of the much improved V11

displacement gradient modeling seem to indicate the possibility of substantial

gains in the stress intensity factor accuracy. A little less certain is the

impact of the singularity on the overall level of displacements. It is

difficult to estimate the effect of the singularity on the oscillatory I
character of displacement results. The use of the collocation method for the

formulation of system of equations from the original integral equation may be

* responsible for this phenomenon. In this case, use of the weighted residual

.approach (Galerkin scheme) may be necessary to remove the oscillations. The

use of the Rayleigh-Ritz procedure (which is normally equivalent to the
%%%

* Galerkin scheme) suggested by Bui (30), in conjunction with singularity

L ,modeling, is impossible, due to the appearance of the (1) term in the four-
r . . -

" fold integral resulting from the method. This term will result from

two (-!) terms appearing in explicitly formulated singularities of shape

functions.

Further work in the development of the method will require studies in the

method's capacity for modeling more complex cases. This capability is

essential for the use of the algorithm as a part of alternating method. The

more complex loading will probably necessitate the use of Galerkin scheme,

since the collocation method carries no information about the interpolation of

.- loads, into the final system of equations. There are also indications, Hanson

and Phillips £38], that the Galerkin scheme will yield a more tractable set of

equations.

, ., A. . . :
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6.0 PROGRAM ACCOMPLISHMENTS AND CONCLUSIONS

The principal goal of the sponsored research was the development and

exploitation of the boundary-integral equation method for fracture mechanics

analysis of two-dimensional problems with crack tip plasticity. The

formulation approach used was quite unique and was based on a special BIE '

formulation which explicitly accounts for the presence of the crack in

satisfying boundary conditions and, for the elastic problem, satisfying the

internal equilibrium conditions. Elastoplastic behavior was successfully

added to this special fracture mechanics modeling capability with positive

benefits in terms of numerical and theoretical results.

New theoretical developments were achieved as a direct result of the use

of a BIE formulation approach. Finite element methods begin with an

. approximation of the total field equations for the problem; BIE does not.

Because the BIE formulation makes direct use of relations that satisfy the

*" elastic field behavior, even for the numerical solution results, certain field

results are directly and exactly accounted for:

1. The analytical formulation established limits on the strength of the

plastic strain increment singularity. In finite element modeling, one can

deduce only the limits on strain energy. The BIE result confirmed that the

plastic strain increment must satisfy the conditions of singularity previously

adduced to plasticity theory, based on nonlinear elastic modeling.

2. The analytical result demonstrated that the plastic singularity

behavior derives from a singular eigenval'ae problem of a unique form, for the

plastic field near the crack tip. At this point, the solution to this

singularity formulation is imbedded in the numerical algorithm, as an

: */j analytical solution does not seem possib'."%.! " )_. ," ,
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3. A new result was achieved for the direct calculation of elastic

stress intensity factors for cracks influenced by nonsingular inelastic

strains. These problems include residual strain due to welding or

-.. elastoplastic notch behavior, thermal strains, etc. The new result shows that

extremely accurate stress intensity factor calculations can be made which

" directly account for these volumetric strain distributions. Published

numerical results were generated for plastic notches and for a simplified

welding problem.

4. As a result of 3., potentially very important insight has been

'd achieved into the behavior of crack extension into prior plastic zones, due to

cyclic loading of the crack. In particular, it was proven analytically and

confirmed numerically that the elastic singularity applies for the effect of
all prior crack tip plasticity on a crack which has slightly extended into e

this prior crack tip plasticity. This result explains why certain residual

S.. stress retardation models apply to the fatigue crack overload problem. In

fact, results obtained using the new code, derived since the close of the

current contract, show that the effects of closure and retardation share a

dual role on reducing crack driving force; they are essentially two versions

of the.same phenomenon.

5. The last major analytical result for the 2D problems was the

demonstration that the new BIE code could be used as a direct means for

calculation of two-dimensional crack weight functions for problems with

completely arbitrary geometries, boundary conditions, and internal strain

distributions. The new algorithm was demonstrated for several te3t problems

and shows accuracy comparable to the best numerical models available.

OR 6. Finally, the results of the research will appear in several archival

journal articles and have been presented in a variety of technical symposia.

* The following lists the artiules and presentations:

.. 'S'S - 'S. ..
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1. "Fracture Mechanics," T.A. Cruse, Boundary Element Methods in
Mechanics, book in series Computational Methods in Mechanics, edited by D.E.
Beskos, Elsevier Science Publishers B.V., Amsterdam, to be published.pb

2. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 1: Formulation," T.A. Cruse and E.Z.Polch, International Journal for

* Numerical Methods in Engineering, vol. 23, pp. 429-437 (1986).

3. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 2: Numerical Results," T.A. Cruse and E.Z. Polch, International Journal,
for Numerical Methods in Engineering, vol. 23, pp. 439-452 (1986).

, • %. '*.

ft.. 4. "Advanced Algorithms for Fracture Mechanics in Two and Three
Dimensions," T.A. Cruse and E.Z. Polch, 2nd International Conference on
Variational Methods in Engineering, Southampton, England, July 17-19, 1985.

5. "BIE Analysis of Crack Tip Plastic Zones," T.A. Cruse and E.Z. Polch,
Proc. of AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics, and
Materials Conference, Orlando, Florida, April 15-17, 1985, AIAA, New York.

, 6. "Application of an Elastoplastic Boundary Element Method to Some '
Fracture Mechanics Problems," T.A. Cruse and E.Z. Polch, Engineering
Mechanics, vol. 23, No. 6, pp. 1085-1096 (1986).

7. "A General Solution Procedure for Fracture Mechanics Weight Function
Evaluation Based on the Boundary Element Method," T.A. Cruse, submitted to
Computational Mechanics: An International Journal.

8. "Buried Crack Analysis with an Advanced Traction BIE Algorithm," E.Z.
S- Polch, T.A. Cruse, and C.-J. Huang, Advanced Topics in Boundary Element

Analysis, Ed. by T.A. Cruse, A.B. Pifko, and H. Armen, AMD - Vol. 72, (Proc.
*, of Symposium at ASME Winter Annual Meeting, Miami Beach, Florida, November 17- ..

22, 1985), pp. 173-188, ASME, New York (1985).

The results developed to date are now being used in a systematic study of

cyclic crack extension. In particular, these results will be used to guide .%.'

the modeling and interpretation of data for the current AFOSR sponsored

research into small crack behavior, Contract F49620-84-C-0042. It appears

.- clear to us that the behavior of fatigue cracks contains much new information

that we are now able to deduce through the unique modeling approach associated

with the BIE methodology. '.'

The principal focus of the ongoing work is the interaction of prior

plasticity with the current crack driving force. Simplified means for

.-, accounting for this interaction are needed in order to do systematic studies

ft -~' ft ',ftt -
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of three-dimensional surface cracks. The insight gained and algorithms'- .#, a

Pdeveloped in the first two year program form a strong basis for the continued -. !

study of the fatigue crack growth problem. 
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