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1. Introduction

Boundary layers associated with slightly viscous incompressible fluid flow equipped with the phys-
ical no-slip no-penetration boundary condition are of great importance. From the physical point of
view, in the absence of body force, it is the vorticity generated by the boundary layer and later ad-
vected into the main stream that drive the flow (see for instance the classical treatise by Schlichting
[1] and the references therein). Indeed, many physical phenomena cannot be explained in a satisfac-
tory fashion without accounting for boundary-layer effects (D’Alembert’s paradox is one). From the
mathematical point of view, the boundary-layer problem is a serious challenge since the slightly
viscous fluid equation, the Navier–Stokes system at small viscosity, can be viewed as a singular

* Corresponding author. Fax: +1 (850) 644 4053.
E-mail addresses: dhan@math.fsu.edu (D. Han), alm24@psu.edu (A.L. Mazzucato), niuniudj@gmail.com (D. Niu),

wxm@math.fsu.edu (X. Wang).
1 Supported in part by National Science Foundation grant DMS-1008852.
2 Supported in part by National Science Foundation grants DMS-1009713 and DMS-1009714.
3 Supported in part by National Youth grant, China (No. 11001184).
4 Supported in part by National Science Foundation grant DMS-1008852, a COFRA award from FSU, and a 111 project from

the Chinese Ministry of Education at Fudan University.
0022-0396/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2012.02.012

http://dx.doi.org/10.1016/j.jde.2012.02.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:dhan@math.fsu.edu
mailto:alm24@psu.edu
mailto:niuniudj@gmail.com
mailto:wxm@math.fsu.edu
http://dx.doi.org/10.1016/j.jde.2012.02.012


JID:YJDEQ AID:6807 /FLA [m1G; v 1.62; Prn:7/03/2012; 8:53] P.2 (1-27)

2 D. Han et al. / J. Differential Equations ••• (••••) •••–•••
Fig. 1. Cross-section on the circular pipe.

perturbation of the Euler system that governs the flow of inviscid fluids (see for instance the book by
Oleinik and Samokhin [2] and the review paper by E [3]).

Moreover, the leading-order singular behavior governed by the so-called Prandtl equation [4,2] may
be ill-posed (see the recent work by Guo and Nguyen [5], Gérard-Varet and Dormy [6], Grenier [7],
and E and Engquist [8]). Even if the Prandtl boundary-layer system is well-posed, one still needs to
verify a spectral constraint on the Prandtl solution to ensure the convergence as was pointed out
in [9]. The verification of such kind of spectral constraint may not be straightforward and it is still
unknown if the classical Oleinik profile (as presented in her classical treatise [2], see also Xin and
Zhang [10]) that leads to a well-posed Prandtl system satisfies the spectral constraint.

The well-posedness of the Prandtl system is already a challenge (see the works cited above). Our
knowledge on the validity on the Prandtl boundary-layer theory under Dirichlet boundary condition
is extremely limited and the validity itself remains a major conundrum. In fact, the validity of the
Prandtl theory is listed as one of the 8 main open problems in mathematical theories for boundary
layer in the book by Oleinik and Samokhin [2]. Besides various cases where the Navier–Stokes system
reduces to the trivial linear heat equation (either in half-space, or in a channel, or in a disk), the
only known results on the validity of Prandtl theory are either for analytical data in half-space due
to Caflisch and Sammartino [11], or channel flow with uniform injection and suction at the bound-
ary by Temam and Wang [12,13], or a special class of plane-parallel flow introduced in [14] with
the boundary-layer behavior carefully investigated by Mazzucato, Niu and Wang [15]. Therefore, it is
worthwhile to identify special type of flows for which the Prandtl theory may be rigorously validated.

In this work, we investigate the validity of Prandtl boundary-layer theory associated with a spe-
cial type of parallel pipe flow introduced in [14]. In this case we assume that the fluids occupy an
infinitely long pipe with circular cross-section of radius 1, and with the x-axis being the axis of the
pipe. We impose that the flow is parallel to the axis of the pipe all the time (therefore no component
of the velocity in the radial direction), and the flow is periodic in x with period L for simplicity. The
classical Poiseuille flow is a special case of our ansatz provided we identify the mean pressure gradi-
ent as part of the (periodic in x) body force. Hence the spatial domain is Q = Ω × [0, L], where Ω =
{(r, φ) | 0 � r � 1, φ ∈ [0,2π ]} is the unit disk and L is the horizontal period in the cylindrical coor-
dinates with φ being the azimuthal angle and r being the distance to the axis of the pipe (see Fig. 1).

Throughout the paper, we will denote the solution of the Navier–Stokes system with viscosity
coefficient ν by uν , satisfying the following system of equations:

∂tuν + (
uν · ∇)

uν + ∇pν = ν�uν + f, x ∈ Q , T > 0, (1.1)

uν�t=0(x) = u0(x), x ∈ Q , (1.2)

uν(t) = β(t), on ∂ Q , (1.3)

where � is the (scalar) Laplace operator, uν is the fluid velocity, pν is the fluid pressure, f are external
body forces, and β is the azimuthal velocity at the boundary. The solution of the Euler system will be
denoted by u0, satisfying the system:

∂tu0 + (
u0 · ∇)

u0 + ∇p0 = 0, x ∈ Q , T > 0, (1.4)

u0(x,0) = u0(x), x ∈ Q , (1.5)

u0 · n = 0, on ∂ Q , (1.6)
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where n is the unit outer normal to ∂ Q . For simplicity, we take the same initial condition for both
uν and u0, which we have denoted by u0. This choice can be relaxed.

The special type of parallel pipe flow that we investigate in this manuscript satisfies the following
ansatz for the Navier–Stokes solution:

uν = uν
φ(t, r)eφ + uν

x (t, r, φ)ex, pν = pν(t, r), (1.7)

where uν, pν are the velocity and pressure field respectively, and eφ , ex , er are the unit vector in the
azimuthal direction, x direction, and radial direction respectively.

Observe that such flow satisfying the incompressibility condition automatically, and the Navier–
Stokes system (1.1) with viscosity ν , external body force f and the boundary shear velocity β reduces
to the following weakly nonlinear system under the ansatz (1.7)

−(
uν

φ

)2 + r∂r pν = 0,

∂t uν
φ = ν

r
∂r

(
r∂ruν

φ

) − ν

r2
uν

φ + f1(t, r),

∂t uν
x + uν

φ

r
∂φuν

x = ν

r
∂r

(
r∂ruν

x

) + ν

r2
∂φφuν

x + f2(t, r, φ), (1.8)

with the following boundary and initial data

uν
∣∣
r=1 = β := βφ(t)eφ + βx(t, φ)ex,

uν is periodic in x direction,

uν
∣∣
t=0 = u0 := a(r)eφ + b(r, φ)ex. (1.9)

It is remarkable that the pressure term pν can be uniquely (up to a constant) recovered from the
first equation in system (1.8). Therefore the second equation and third equation of (1.8) form a closed
weakly coupled parabolic system, written in Cartesian coordinates as the following:

∂tuν
v − ν�v uν

v = F1,

∂t uν
x + (

uν
v · ∇v

)
uν

x − ν�v uν
x = F2, (1.10)

with the same boundary and initial conditions as (1.9). It follows in particular that the ansatz (1.7) is
preserved by the evolution of the flow.

Here uν
v = (−uφ sin φ, uφ cosφ), F1 = (− f1(t, r) sin φ, f1(t, r) cos φ), uν = (uν

v , uν
x ), F2 = f2(t, r, φ),

�v = ∂x1x1 + ∂x2x2 , ∇v = (∂x1 , ∂x2 ).
Similar to the ansatz (1.7), we also assume

u0 = u0
φ(t, r)eφ + u0

x(t, r, φ)ex, p0 = p0(t, r). (1.11)

Then the Euler system (1.4) reduces to the following system:

−(
u0

φ

)2 + r∂r p0 = 0,

∂t u0
φ = f1,

∂t u0
x + u0

φ
∂φu0

x = f2, (1.12)

r
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with initial condition

u0
∣∣
t=0 = a(r)eφ + b(r, φ)ex. (1.13)

We observe that the no-penetration condition at the walls for the Euler solution is automatically
satisfied in this case.

Due to the disparity of boundary conditions between the reduced Navier–Stokes system (1.8) and
the reduced Euler system (1.12), a boundary layer must exist outside of which the flow is expected
to be well approximated by the Euler solution u0. Inside the layer, a flow corrector is needed, which
approximates uν − u0. At leading order, the corrector θ0 is formally governed by the Prandtl-type
equation (2.4) (see the next section for a formal derivation). The goal of this manuscript is to inves-
tigate the mathematical validity of the Prandtl-type approximation for this special type of flow in a
pipe. More precisely, we investigate whether uν − u0 − θ0 converges to zero in various norms. Our
main result is the rigorous verification of the Prandtl theory in the sense of the following theorem.

Theorem 1. Under appropriate smoothness and compatibility assumptions on the initial and boundary data,
we have, for some constant c independent of the viscosity ν ,

∥∥uν − u0 − θ0
∥∥

L∞(0,T ;L2(Ω))
� cν

3
4 , (1.14)∥∥uν − u0 − θ0

∥∥
L∞(0,T ;H1(Ω))

� cν
1
4 , (1.15)∥∥uν − u0 − θ0

∥∥
L∞(Ω×[0,T ]) � cν

1
2 , (1.16)∥∥pν − p0

∥∥
L∞(Ω×[0,T ]) � cν

1
2 , (1.17)∥∥pν − p0

∥∥
L∞(0,T ;H1(Ω))

� cν
1
4 . (1.18)

Flows with the special symmetry (1.7) were first investigated in [14], where the convergence in
the L∞(L2) norm of the viscous solution uν to the inviscid solution u0 as ν → 0 was established via
a Kato–Hopf-type approach without referring to the Prandtl theory. The simpler case of planar flows
was analyzed in detail in [16,17]. Mazzucato and Taylor [18] have recently carried out an analysis of
the boundary layer using semiclassical techniques and layer potentials. This approach does not rely
on the Prandtl theory as well and does not require any type of compatibility conditions between the
initial and boundary data. However, it yields only convergence in L∞(L p) with p ∈ [1,+∞] and does
not provide any estimate on normal gradients at the boundary. Convergence in L∞(L2) and L2(H1)

norm was formally derived and announced in [9].
We believe that the result presented here is the first rigorous result on the validity of the Prandtl

boundary-layer theory for the Navier–Stokes system in a nonlinear setting in a domain with curved
boundaries. The curvature effect can be discerned from the pressure estimates which is different from
the flat boundary case (see for instance [19,15]). Another important difference with respect to the flat
case is the need here to impose first-order compatibility conditions in order to derive uniform in time
bounds on the H1 norm of the error. Only zero-order compatibility among the data should be needed
for zero-order correctors. We plan to explore this point further in future work.

The curved boundary also motivated us to further develop certain classical anisotropic estimates
and embeddings. (See Temam and Wang [13,20] for this idea applied to boundary layer associated
with the linear and nonlinear Navier–Stokes equations with Dirichlet boundary conditions with flat
boundary.) In particular, a novel coupled boundary layer and interior domain approach is developed
in order to derive the L∞(H1) estimate in our curved geometry. This approach allows us to easily
handle the singularity at r = 0 in (1.8). At the same time, it is not convenient to work in Cartesian
coordinates near the boundary, as highlighted for instance by the particular simple form that the
compatibility conditions between the initial data ad the boundary data take in cylindrical coordinates
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(see Eq. (B.4) and the discussion in Appendix B). The derivation of decay rates for the correctors is
also more amenable in cylindrical coordinates.

We would like to point out that the validity of the Prandtl theory presented here is strictly under
the assumption of the parallel pipe flow symmetry (1.7). It is likely that flows with symmetry (1.7) are
unstable under generic three-dimensional perturbation. Therefore, it is quite possible that the Prandtl
theory is invalid in the more general setting.

We also remark that there exist abundant literature on boundary-layer analysis as well as the
related vanishing viscosity limit problem associated with the Navier–Stokes system equipped with
different (non-Dirichlet) boundary conditions. For instance, for the case of Navier-slip (and the simpler
free-slip) boundary condition, there are many interesting works on the related vanishing viscosity
limit as well as the analysis of the (secondly) boundary layer. (See for example [21–34] among many
others.) However it is beyond the scope of this paper to survey results associated with various kinds
of boundary conditions (non-no-slip no-penetration).

The rest of the paper is organized as follows. We provide a formal derivation of the Prandtl-
type equation for the leading-order corrector θ0 utilizing the Prandtl-type ansatz in Section 2. The
well-posedness of the Prandtl-type boundary-layer system as well as appropriate decay properties is
briefly discussed in Appendix A. An approximate solution to the reduced Navier–Stokes system (1.8)
is constructed in the second part of Section 2 utilizing the inviscid solution u0 and the leading-
order boundary-layer-type corrector θ0. The validity of the approximation proposed in Section 2
is rigorously established in Section 3 under various norms. Higher-order asymptotic expansions are
considered in Section 4. The regularity of solutions to Euler equations as well as the compatibility con-
ditions needed to ensure the smoothness of the Navier–Stokes system are mentioned in Appendix B.

2. Prandtl-type equation and approximate solution

2.1. Prandtl-type equation for the corrector

According to the Prandtl boundary-layer theory as proposed in [4], the viscous solution and the
inviscid solution are close to each other outside a boundary layer of thickness proportional to

√
ν .

Moreover, the viscous solution must make a sharp transition to the inviscid main flow at the boundary
within the boundary layer because of the no-slip boundary no-penetration condition of the viscous
flow. Therefore, we postulate that the solution to the Navier–Stokes system can be approximated by

uν(t, r, φ) ≈ u0(t, r, φ) + θ0
(

t,
1 − r√

ν
,φ

)
, (2.1)

pν(t, r, φ) ≈ p0(t, r) + q0
(

t,
1 − r√

ν

)
, (2.2)

where u0(t, r, φ) = u0
φ(t, r)eφ + u0

x(t, r, φ)ex is the inviscid solution to the Euler system, and the

(boundary-layer-type) corrector θ0(t, 1−r√
ν

,φ) = θ0
φ(t, 1−r√

ν
)eφ + θ0

x (t, 1−r√
ν

,φ)ex, thanks to our flow

ansatz (1.7).
Introducing the stretched variable Z = 1−r√

ν
, we notice that the corrector must satisfy the following

matching conditions

θ0 → 0 as Z → ∞, θ0(t, ·, φ)|Z=0 = β(t, φ) − u0(t,1, φ). (2.3)

It is then convenient to work with the following domain for the corrector θ0:

Ω∞ := [0,2π ] × [0,∞).
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Introducing (2.1) and (2.2) into (1.8) and (1.9), utilizing the Euler equation (1.12) and keeping the
leading-order terms in ν , we deduce the following Prandtl-type equation for the leading order of the
boundary-layer profile (corrector) θ0:

∂tθ
0
φ − ∂Z Z θ0

φ = 0,

∂tθ
0
x + θ0

φ∂φu0
x(t,1, φ) + θ0

φ∂φθ0
x + u0

φ(t,1)∂φθ0
x = ∂Z Z θ0

x ,(
θ0
φ, θ0

x

)∣∣
Z=0 = (

βφ(t) − u0
φ(t,1),βx(t, φ) − u0

x(t,1, φ)
)
,(

θ0
φ, θ0

x

)∣∣
Z=∞ = 0,

(
θ0
φ, θ0

x

)∣∣
t=0 = (0,0). (2.4)

The well-posedness of the system is trivial. The decay, as Z → ∞, of the solution can be derived
in a straightforward manner just as in the case of the linearized compressible Navier–Stokes system
studied by Xin and Yanagisawa [33], assuming appropriate compatibility conditions between the initial
and boundary data. These are discussed in Appendix B. Decay estimates as well as the main idea of
the proof are presented in Appendix A.

It is also easy to realize that the leading-order correction q0 to the pressure term satisfies

∂Z q0 ≡ 0, (2.5)

and hence we can conveniently set

q0 ≡ 0. (2.6)

2.2. Approximate solution

With the leading-order corrector θ0 and the inviscid solution u0 in hand, we are now in a position
to construct an approximate solution to the Navier–Stokes system (1.8) with the given ansatz (1.7).

As in Temam and Wang [13,20] and Mazzucato, Niu and Wang [15], we introduce a cut-off function
to ensure that the approximate Navier–Stokes solution ũapp , given below, satisfies the same boundary
conditions as the true Navier–Stokes solution uν . Let ρ(r) be a smooth function defined on [0,1] such
that

ρ(r) =
{

1, r ∈ [ 1
2 ,1],

0, r ∈ [0, 1
4 ]. (2.7)

Because of (1.7), the approximate solution to the Navier–Stokes equation must have the form:

ũapp = ũapp
φ (t, r)eφ + ũapp

x (t, r, φ)ex, (2.8)

ũapp
φ (t, r) = u0

φ(t, r) + ρ(r)θ0
φ

(
t,

1 − r√
ν

)
, (2.8a)

ũapp
x (t, r, φ) = u0

x(t, r, φ) + ρ(r)θ0
x

(
t,

1 − r√
ν

,φ

)
. (2.8b)

In view of (2.6), we take the pressure associated with the approximate velocity to be:

papp = p0. (2.9)
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It is straightforward to verify that the approximate solution ũapp constructed above satisfies the
Navier–Stokes system with (small) extra body force:

−(
ũapp

φ

)2 + r∂r papp = A,

∂t ũapp
φ − ν

r
∂r

(
r∂r ũapp

φ

) + ν

r2
ũapp

φ = B + C + f1,

∂t ũapp
x + ũapp

φ

r
∂φ ũapp

x − ν

r
∂r

(
r∂r ũapp

x
) − ν

r2
∂φφ ũapp

x = D + E + F + f2, (2.10)

where the (small) extra body forces are given by

A = −(
ρθ0

φ

)2 − 2ρu0
φθ0

φ,

B = ν

[
−1

r
∂r

(
r∂ru0

φ

) + 1

r2
u0

φ − 1

r
ρ ′(r)θ0

φ + 1

r2
ρθ0

φ − ρ ′′(r)θ0
φ

]
,

C = √
ν

[
1

r
ρ∂Z θ0

φ + 2ρ ′(r)∂Z θ0
φ

]
,

D = ρ

(
ρ

r
− 1

)
θ0
φ∂φθ0

x +
(u0

φ(t, r)

r
− u0

φ(t,1)

)
ρ∂φθ0

x +
(

1

r
∂φu0

x(t, r, φ) − ∂φu0
x(t,1, φ)

)
ρθ0

φ,

E = −ν

[
1

r
∂r

(
r∂ru0

x

) + 1

r
ρ ′(r)θ0

x + ρ ′′(r)θ0
x + 1

r2
∂φφu0

x + 1

r2
ρ∂φφθ0

x

]
,

F = √
ν

[
2ρ ′(r)∂Z θ0

x + 1

r
ρ∂Z θ0

x

]
. (2.11)

This approximate solution satisfies the desired boundary and initial conditions in the sense that

ũapp
∣∣
r=1 = βφ(t)eφ + βx(t, φ)ex,

ũapp
∣∣
t=0 = a(r)eφ + b(r, φ)ex. (2.12)

3. Error estimates and convergence rates

We are now ready to prove our main result, that is, estimates on the error uν − ũapp . We observe
that the convergence of ũapp to uν also implies the convergence of uν − u0 − θ0 to zero due to the
choice of the cut-off function ρ in (2.7) and the decay property of the boundary-layer function θ0.

For the purpose of convergence analysis, we introduce the error solution uerr = uν − ũapp , with
associated pressure perr = pν − papp . (We recall that, due to the symmetry of the flow, the pressure
appears only in the equations for the cross-sectional components of the velocity, which are linear.)
The error solution satisfies the following system of equations:

(
uerr

φ

)2 + 2uerr
φ ũapp

φ − r∂r perr = A, (3.1a)

∂t uerr
φ − ν

r
∂r

(
r∂ruerr

φ

) + ν

r2
uerr

φ = −B − C, (3.1b)

∂t uerr
x + uν

φ
∂φuerr

x + uerr
φ

∂φ ũapp
x − ν

∂r
(
r∂ruerr

x

) − ν
2
∂φφuerr

x = −D − E − F , (3.1c)

r r r r
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where the body forcing terms A through F are given in (2.11), and the boundary conditions and initial
data are specified as:

uerr
∣∣
r=1 = 0,

uerr
∣∣
t=0 = 0. (3.2)

Our goal in this section is to show that uerr, perr converge to zero in different norms as ν tends to
zero. More precisely, we aim at proving the following result.

Theorem 2. Suppose the initial data u0 , the boundary data β , and the external forces F are given as in Propo-
sition 11. Then there exist positive constants c independent of ν, such that for any solution uν of the system
(1.8)–(1.9),

∥∥uν − ũapp
∥∥

L∞(0,T ;L2(Ω))
� cν

3
4 , (3.3)

∥∥uν − ũapp
∥∥

L2(0,T ;H1(Ω))
� cν

1
4 , (3.4)

∥∥uν − ũapp
∥∥

L∞(0,T ;H1(Ω))
� cν

1
4 , (3.5)

∥∥uν − ũapp
∥∥

L∞(Ω×[0,T ]) � cν
1
2 , (3.6)

∥∥pν − p0
∥∥

L∞(Ω×[0,T ]) � cν
1
2 , (3.7)

∥∥pν − p0
∥∥

L∞(0,T ;H1(Ω))
� cν

1
4 . (3.8)

Our main result, Theorem 1, follows from the theorem above and the decay property of the
boundary-layer corrector θ0, once a choice of cut-off function ρ has been made.

In view of the estimate

∥∥θ0
∥∥

L∞(0,T ;L2(Ω))
≈ cν

1
4 ,

and (3.3), by the triangle inequality we can derive sharp convergence rates in viscosity as an imme-
diate corollary of Theorem 2.

Corollary 3. Under the hypotheses of Theorem 2, the following optimal convergence rate holds:

c1ν
1
4 �

∥∥uν − u0
∥∥

L∞(0,T ;L2(Ω))
� c2ν

1
4 , (3.9)

where c1 and c2 are positive constants, independent of ν.

The proof of Theorem 2 consists of several parts. We first show that the extra body force terms are
small. The L∞(L2) and L2(H1) estimates then follow directly. Estimates in L∞(Ω ×[0, T ]) are derived,
instead, via the maximum principle and the anisotropic embedding theorem. The L∞(H1) estimate
requires a different approach, which entails two distinct bounds, one near boundary, the other in the
interior, obtained by introducing a further cut-off function. The convergence of the pressure follows
from the convergence of the velocity field.



JID:YJDEQ AID:6807 /FLA [m1G; v 1.62; Prn:7/03/2012; 8:53] P.9 (1-27)

D. Han et al. / J. Differential Equations ••• (••••) •••–••• 9
3.1. Smallness of the extra body forcing terms

We first verify that the extra body forcing terms A–F in the right-hand side of the equations
in (3.1) are all small in some appropriate sense. Here and below, with a slight abuse of notation,
c denotes a generic constant, independent of the viscosity ν , which may change from line to line.
Also, we set 〈Z〉 = √

1 + Z 2.

Lemma 4. Suppose the initial data u0 , the boundary data β , and the forces F are given as in Proposition 11 in
Appendix B. Then the following estimates for A–F given in (2.11) hold:

∥∥∥∥ A

r2

∥∥∥∥
L∞(0,T ;L1(Ω))

� cν
1
2 , (3.10a)

∥∥∥∥ A

r

∥∥∥∥
L∞(0,T ;L2(Ω))

� cν
1
4 , (3.10b)

‖B + C‖L∞(0,T ;L2(Ω)) � cν
3
4 , (3.10c)

‖D + E + F‖L∞(0,T ;L2(Ω)) � cν
3
4 , (3.10d)∥∥∂φ(D + E + F )

∥∥
L∞(0,T ;L2(Ω))

� cν
3
4 , (3.10e)

‖B + C‖L∞(Ω×[0,T ]) � cν
1
2 , (3.10f)

‖D + E + F‖L∞(Ω×[0,T ]) � cν
1
2 , (3.10g)

‖B + C‖L∞(0,T ;L2(Ω ′)) � cν, (3.10h)

‖D + E + F‖L∞(0,T ;L2(Ω ′)) � cν, (3.10i)

for any subset Ω ′ of Ω such that the closure Ω ′ ⊂ Ω .

Proof. We first observe that inequality (3.10a) follows from the estimate:

∥∥∥∥ A

r2

∥∥∥∥
L1(Ω)

=
1∫

1
4

(ρθ0
φ)2 + 2|ρu0

φθ0
φ |

r2
r dr

� c
(
1 + ∥∥u0

φ

∥∥
L∞(Ω)

) 1∫
1
4

(
θ0
φ

(
t,

1 − r√
ν

))2

+
∣∣∣∣θ0

φ

(
t,

1 − r√
ν

)∣∣∣∣dr

� cν
1
2
(
1 + ∥∥u0

φ

∥∥
L∞(Ω)

) ∞∫
0

(
θ0
φ(t, Z)

)2 + ∣∣θ0
φ(t, Z)

∣∣dZ

� cν
1
2 , (3.11)

where we have utilized the regularity and decay properties of the corrector θ0
φ and the fact that

the term A contains the cut-off function ρ . (See Lemma 9 and Remark 6 in Appendix A for further
details.) Estimate (3.10b) is deduced in the similar fashion. The constants c in (3.10a) and (3.10b)
depend on the norms of ‖u0‖H2(Ω) , ‖F‖L∞(0,T ;H2(Ω)) and ‖β‖L∞(0,T ;H2(Ω)) .
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We now turn to estimates ‖B + C‖L∞(0,T ;L2(Ω)) and ‖E + F‖L∞(0,T ;L2(Ω)) . Making the change of

variable Z = 1−r√
ν

in computing ‖θ0
φ‖L2(Ω∞) yields a factor of ν

1
4 in the bounds below, which follow

from similar arguments as before:

‖B‖L∞(0,T ;L2(Ω)) � cν
∥∥�

(
u0

φeφ

)∥∥
L∞(0,T ;L2(Ω))

+ cν
5
4
∥∥θ0

φ

∥∥
L∞(0,T ;L2(0,∞))

,

‖C‖L∞(0,T ;L2(Ω)) � cν
3
4
∥∥∂Z θ0

φ

∥∥
L∞(0,T ;L2(0,∞))

,

‖E‖L∞(0,T ;L2(Ω)) � cν
∥∥�u0

x

∥∥
L∞(0,T ;L2(Ω))

+ cν
5
4
(∥∥θ0

x

∥∥
L∞(0,T ;L2(0,∞))

+ ∥∥∂φφθ0
x

∥∥
L∞(0,T ;L2(0,∞))

)
,

‖F‖L∞(0,T ;L2(Ω)) � cν
3
4
∥∥∂Z θ0

φ

∥∥
L∞(0,T ;L2(0,∞))

. (3.12)

These in turn give immediately (3.10c) and (3.10d).
To estimate the norm of D , we decompose D into three parts D = I1 + I2 + I3, with

‖I1‖2
L2(Ω)

=
∥∥∥∥ρ

(
ρ

r
− 1

)(
θ0
φ

)
∂φθ0

x

∥∥∥∥
2

L2(Ω)

=
2π∫
0

1∫
0

ρ2
(

ρ

r
− 1

)2(
θ0
φ

)2(
∂φθ0

x

)2
r dr dφ

� c

2π∫
0

( 1
2∫

1
4

(
θ0
φ

)2(
∂φθ0

x

)2
r dr +

1∫
1
2

(r − 1)2(θ0
φ

)2(
∂φθ0

x

)2
r dr

)
dφ

� c

2π∫
0

3
4
√

ν∫
1

2
√

ν

ν
3
2
(
θ0
φ

)2(
∂φθ0

x

)2
Z 2 dZ dφ + +c

2π∫
0

1
2
√

ν∫
0

ν
3
2
(
θ0
φ

)2(
∂φθ0

x

)2
Z 2 dZ dφ

� cν
3
2
∥∥θ0

φ

∥∥2
L∞(0,+∞)

∥∥〈Z〉∂φθ0
x

∥∥2
L2(Ω∞)

, (3.13)

and

‖I2‖2
L2(Ω)

=
∥∥∥∥ρ

(u0
φ(t, r)

r
− u0

φ(t,1)

)
∂φθ0

x

∥∥∥∥
2

L2(Ω)

=
2π∫
0

1∫
0

[
ρ

(u0
φ(t, r)

r
− u0

φ(t,1)

)
∂φθ0

x

]2

r dr dφ

=
2π∫
0

1∫
0

[
ρ

r − 1

r

(
∂ru0

φ(t, ξ) − u0
φ(t,1)

)
∂φθ0

x

]2

r dr dφ

� cν
3
2
(∥∥u0

φ

∥∥
L∞(Ω)

+ ∥∥∂ru0
φ

∥∥
L∞(Ω)

)2∥∥〈Z〉∂φθ0
x

∥∥2
L2(Ω∞)

, (3.14)

and finally
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‖I3‖2
L2(Ω)

=
∥∥∥∥ρ

(
∂φu0

x(t, r, φ)

r
− ∂φu0

x(t,1, φ)

)
θ0
φ

∥∥∥∥
2

L2(Ω)

=
2π∫
0

1∫
0

[
ρ

(
∂φu0

x(t, r, φ)

r
− ∂φu0

x(t,1, φ)

)
θ0
φ

]2

r dr dφ

=
2π∫
0

1∫
0

[
ρ

r − 1

r

(
∂rφu0

x(t, ξ,φ) − ∂φu0
x(t,1, φ)

)
θ0
φ

]2

r dr dφ,

� cν
3
2
(∥∥∂φu0

x

∥∥
L∞(Ω)

+ ∥∥∂rφu0
x

∥∥
L∞(Ω)

)2∥∥〈Z〉θ0
φ

∥∥2
L2(0,+∞)

. (3.15)

We remark that we have imposed enough regularity to ensure the validity of the computations above
(see Lemmas 9, 10 and 12 in Appendices A and B). Inequalities (3.10c) and (3.10d) then follow from
(3.12)–(3.15) with constants c depending on ‖u0‖H4(Ω) , ‖F‖L∞(0,T ;H4(Ω)) , ‖β‖L∞(0,T ;H4(Ω)) .

Estimates (3.10h) and (3.10i) contain only the forcing terms C , D and F . We suppose that Ω ′ ⊂
B(0, σ ) with B(0, σ ) being a ball of radius σ < 1. We discuss in detail how to bound the first term
in C , all other terms can be bounded in a similar fashion:

∥∥∥∥1

r
ρ∂Z θ0

φ

∥∥∥∥
2

L2(Ω ′)
� c

σ∫
0

(
∂Z θ0

φ

(
t,

1 − r√
ν

))2

dr

� cν
1
2

1 − σ

σ∫
0

1 − r√
ν

(
∂Z θ0

φ

(
t,

1 − r√
ν

))2

dr

= cν

1√
ν∫

1−σ√
ν

Z
(
∂Z θ0

φ

)2
dZ � cν

∥∥〈Z〉∂Z θ0
φ

∥∥2
L2(0,∞)

. (3.16)

Finally, (3.10f) is a direct consequence of the estimates for the corrector θ0 contained in Lemmas 9
and 10, as well as the regularity of solutions to the Euler equations stated in Lemma 12. The constant
c here depends on ‖u0‖H4(Ω) , ‖F‖L∞(0,T ;H4(Ω)) , ‖β‖L∞(0,T ;H4(Ω)) . One can derive (3.10g) similarly to
(3.10d) employing the L∞ norm instead. The constant c in (3.10g) depends, however, on more regular
data in H7(Ω), see Lemma 10. �
Remark 1. It is mentioned that the interior estimates can be improved up to any order of ν for terms
C , D , F . However, the interior estimates (3.10h) and (3.10i) are optimal because of the appearance of
�u0

φ and �u0
x in terms B and E .

Remark 2. We did not try to optimize the regularity condition we imposed on the data u0, F and β ,
because the boundary layer exists even if the data is assumed smooth.

3.2. The L∞(L2) and L2(H1) convergence

We recall that the error solution uerr = uν − ũapp , perr = pν − p0 satisfies the system (3.1)–(3.2).
It will be convenient here to work in Cartesian rather than cylindrical coordinates. We observe that

Eqs. (3.1b), (3.1c) together with the initial–boundary conditions (3.2) form a closed weakly coupled
parabolic system which can be rewritten in Cartesian coordinates as
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∂tverr
v − ν�v verr

v = g2, (3.17a)

∂t verr
3 + (

uν
v · ∇v

)
verr

3 − ν�v verr
3 = g3, (3.17b)

where verr ≡ uerr in Cartesian coordinates, that is,

verr(t, x1, x2) = (
verr

1 , verr
2 , verr

3

) := uerr
r er + uerr

φ eφ + uerr
x ex

with

verr
1 (t, x1, x2) = −uerr

φ sinφ,

verr
2 (t, x1, x2) = uerr

φ cosφ,

verr
3 (t, x1, x2) = uerr

x ,

verr
v = verr

1 ex1 + verr
2 ex2 = uerr

r er + uerr
φ eφ,

together with homogeneous initial and boundary conditions

verr
∣∣
r=1 = 0,

verr
∣∣
t=0 = 0. (3.18)

The forcing terms g2, g3 are given by

g2 = −(B + C)

(
− x2√

x2
1 + x2

2

,
x1√

x2
1 + x2

2

)
,

g3 = −(D + E + F ) − (
verr

v · ∇v
)
ũapp

x . (3.19)

We notice that the cross-sectional component verr
v satisfies a two-component (scalar) heat equa-

tion (3.17a). Therefore standard energy estimates and the maximum principle together with the
estimates (3.10c) and (3.10f) in Lemma 4 yield

∥∥verr
v

∥∥
L∞(0,T ;L2(Ω))

� cν
3
4 ,∥∥verr

v

∥∥
L2(0,T ;H1(Ω))

� cν
1
4 ,∥∥verr

v

∥∥
L∞(0,T ;H1(Ω))

� cν
1
4 ,∥∥verr

v

∥∥
L∞(Ω×[0,T ]) � cν

1
2 . (3.20)

For later use, we also derive an interior estimate on ‖verr
v ‖L∞(0,T ;L2(Ω ′)) for Ω ′ � Ω . Let η(r) be

a smooth function with compact support in Ω . Multiplying Eq. (3.17a) by η2verr
v and integrating the

resulting equations by parts leads to

1

2

d

dt

∥∥ηverr
v

∥∥2
L2(Ω)

+ ν
∥∥η∇v verr

v

∥∥2
L2(Ω)

� c‖B + C‖L2(Ω ′)
∥∥ηverr

v

∥∥
L2(Ω)

− ν

∫
Ω

∇v verr
v · (2η∇vη) · verr

v dx

� cν
∥∥ηverr

v

∥∥
2 + cν

7
4
∥∥η∇v verr

v

∥∥
2 , (3.21)
L (Ω) L (Ω)
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where we have employed (3.10h) in Lemma 4 and the L∞(L2) estimate in (3.20). Applying first
Cauchy’s inequality, and then Grönwall’s inequality, we then obtain

∥∥ηverr
v

∥∥
L∞(0,T ;L2(Ω))

+ ν
1
2
∥∥η∇v verr

v

∥∥
L2(0,T ;L2(Ω))

� cν. (3.22)

We now notice that the last term in g3 can be rewritten as:

(
verr

v · ∇v
)
ũapp

x = uerr
φ

r
∂φ ũapp

x .

We then conclude again from the definition of uapp given in (2.8), the decay properties of the corrector
θ0 found in Appendix A, and the regularity of solutions to the Euler system in Lemma 12, that

∥∥∥∥1

r
∂φ ũapp

x

∥∥∥∥
L∞(Ω×[0,T ])

� c, (3.23)

with a constant c depending on ‖u0‖H3(Ω) , ‖F‖L∞(0,T ;H3(Ω)) , and ‖β‖L∞(0,T ;H3(Ω)) , but independent
of ν . Therefore one has the following uniform estimates by (3.20) and (3.23):

∥∥(
verr

v · ∇v
)
ũapp

x

∥∥
L∞(Ω×[0,T ]) � cν

1
2 . (3.24)

Applying the same energy argument to Eq. (3.17b) gives

∥∥verr
3

∥∥
L∞(0,T ;L2(Ω))

� cν
3
4 ,∥∥verr

3

∥∥
L2(0,T ;H1(Ω))

� cν
1
4 ,∥∥verr

3

∥∥
L∞(0,T ;L2(Ω ′)) � cν, (3.25)

by inequalities (3.10d), (3.10i) in Lemma 4 and estimates (3.20), (3.22), (3.24).

3.3. Uniform in space and time convergence

We begin by observing that the uniform convergence of the tangential component verr
v has been

already derived in the previous subsection via the maximum principle. Similar uniform estimates on
verr

3 can be derived via maximum principle as well since verr
3 satisfies a (scalar) advection–diffusion

equation with source term. For this purpose, we define the differential operator L by

L = ∂t + uν
v · ∇v − ν�.

A simple calculation shows that

L
(

verr
3

)
� L

( t∫
0

∥∥g3(s)
∥∥

L∞(Ω)
ds

)
, and verr

3 �
t∫

0

∥∥g3(s)
∥∥

L∞(Ω)
ds, on PΩ

where PΩ is the parabolic boundary of the domain Ω × [0, T ]. Then the comparison principle for
linear parabolic equations (see e.g. [35]) implies that verr

3 �
∫ t

0 ‖g3‖L∞(Ω) ds in Ω × [0, T ]. Similarly,

we have verr
3 � − ∫ t

0 ‖g3‖L∞(Ω) ds. One then concludes from estimates (3.10g), (3.20) and (3.23) that
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∥∥verr
3

∥∥
L∞(Ω×[0,T ]) �

∣∣∣∣∣
t∫

0

‖g3‖L∞(Ω) ds

∣∣∣∣∣ � T ‖g3‖L∞(Ω×[0,T ]) � cν
1
2 , (3.26)

with a constant c depending on T , ‖u0‖H7(Ω) , ‖F‖L∞(0,T ;H7(Ω)) , and ‖β‖L∞(0,T ;H7(Ω)) .

Remark 3. An alternative proof of uniform bounds in L∞(Ω ×[0, T ]) is based on the use of anisotropic
Sobolev-type embedding (see for instance [20,13] for the case of flat boundary). In the case, as our
setting, of curved boundaries, the main idea is to perform separate estimates, one valid next to the
boundary, the other in the interior. Near the boundary, curvilinear coordinates allow to generalize
the flat case result (see Lemma 5 below, which is a counterpart of Remark 4.2 in [20]). Away from
the boundary, on the other hand, we expect to employ a direct energy estimate due to the absence
of the boundary layer. This alternative approach has the advantage that it can handle systems where
the maximum principle may be invalid. This dual approach will be utilized to derive L∞(H1) esti-
mates.

Lemma 5. Suppose the domain Ω is an annulus, i.e., Ω = {(r, θ) | 0 < R1 < r < R2, θ ∈ (0,2π)}. Then for
any function u ∈ H1(Ω) satisfying either u|r=R1 = 0 or u|r=R2 = 0, there exists a constant C depending only
on R1 such that

‖u‖L∞(Ω) � c

(
‖u‖

1
2
L2(Ω)

∥∥∥∥∂u

∂r

∥∥∥∥
1
2

L2(Ω)

+
∥∥∥∥∂u

∂r

∥∥∥∥
1
2

L2(Ω)

∥∥∥∥∂u

∂θ

∥∥∥∥
1
2

L2(Ω)

+ ‖u‖
1
2
L2(Ω)

∥∥∥∥ ∂2u

∂r∂θ

∥∥∥∥
1
2

L2(Ω)

)
. (3.27)

The proof is straightforward via Agmon-type embedding in the azimuthal direction together with
embedding (interpolation) in the radial direction. Generalization to general curvilinear coordinates as
well as high dimension can be considered as well.

3.4. Convergence in L∞(H1)

The goal of this section is to derive L∞(H1) estimate for verr
3 , given that an L∞(H1) estimate of

verr
v was already obtained in (3.20). This estimate is the most interesting given that it involves normal

gradients of the error solution.
We employ again the two-step approach described above: first, we derive an estimate near the

boundary based on the better control we have on tangential derivatives even in the presence of a
boundary layer; second, we derive a standard interior energy estimate away from the boundary layer.
In order to separate the boundary layer from the interior, we introduce a further cut-off function ψ(r)
with an appropriately chosen support in Ω (to be specified below).

Let us denote w = ψuerr
x = ψverr

3 . Then w satisfies the following equation written in polar coordi-
nates:

∂t w + uν
φ

r
∂φ w − ν

r
∂r(r∂r w) − ν

r2
∂φφ w

= −ψuerr
φ

r
∂φ ũapp

x − ψ(D + E + F ) − νuerr
x �vψ − 2νψ ′(r)∂ruerr

x , (3.28)

with homogeneous initial and boundary conditions

w|r=1 = 0,

w|t=0 = 0.
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3.4.1. Estimate near the boundary
To emphasize that this is a construction near the boundary, we will write ψb(r) for ψ(r) and wb

for w in (3.28). We take ψb(r) to be a smooth function defined on [0,1] such that

ψb(r) =
{

1, r ∈ [ 1
2 ,1],

0, r ∈ [0, 1
3 ]. (3.29)

First, we multiply Eq. (3.28) by −∂φφ wb · r and then integrate in r and φ, in light of estimate
(3.10e) in Lemma 4,

1

2

d

dt
‖∂φ wb‖2

L2(Ω)
+ ν‖∂φr wb‖2

L2(Ω)
+ ν

∥∥∥∥∂φφ wb

r

∥∥∥∥
2

L2(Ω)

� c
(‖ψb∂φ D‖L2(Ω) + ‖ψb∂φ E‖L2(Ω) + ‖ψb∂φ F‖L2(Ω)

+ (∥∥�u0
x

∥∥
L∞(Ω)

+ ∥∥∂φφθ0
x

∥∥
L∞(Ω∞)

)∥∥ψuerr
φ

∥∥
L2(Ω)

)‖∂φ wb‖L2(Ω)

+ (
ν
∥∥uerr

x �vψb
∥∥

L2(Ω)
+ 2ν

∥∥ψ ′
b(r)∂ruerr

x

∥∥
L2(Ω)

)∥∥∥∥∂φφ wb

r

∥∥∥∥
L2(Ω)

� cν
3
4 ‖∂φ wb‖L2(Ω) + cν

∥∥∥∥∂φφ wb

r

∥∥∥∥
L2(Ω)

. (3.30)

Then it follows from Grönwall’s inequality and estimate (3.25) that

‖∂φ wb‖L∞(0,T ;L2(Ω)) + √
ν

(
‖∂φr wb‖L2(0,T ;L2(Ω)) +

∥∥∥∥∂φφ wb

r

∥∥∥∥
L2(0,T ;L2(Ω))

)
� cν

3
4 . (3.31)

In order to obtain an estimate for ∂r wb , we multiply by − 1
r ∂r(r∂r wb) · r on both sides of Eq. (3.28)

and integrate it by parts

1

2

d

dt
‖∂r wb‖2

L2(Ω)
+ ν

∥∥∥∥1

r
∂r(r∂r wb)

∥∥∥∥
2

L2(Ω)

+ ν

∥∥∥∥∂rφ wb

r

∥∥∥∥
2

L2(Ω)

� c
((∥∥uerr

φ

∥∥
L∞(Ω)

+ ∥∥ũapp
φ

∥∥
L∞(Ω)

)‖∂φ wb‖L2(Ω) + ν
∥∥uerr

x

∥∥
L2(Ω)

+ ν
∥∥ψ ′

b(r)∂ruerr
x

∥∥
L2(Ω)

+ ∥∥ψb(D + E + F )
∥∥

L2(Ω)

+ ∥∥∂φ ũapp
x

∥∥
L∞(Ω)

∥∥ψbuerr
φ

∥∥
L2(Ω)

)∥∥∥∥1

r
∂r(r∂r wb)

∥∥∥∥
L2(Ω)

+ cν‖∂φ wb‖L2(Ω)

∥∥∥∥∂rφ wb

r

∥∥∥∥
L2(Ω)

. (3.32)

Young’s inequality and Grönwall’s inequality then yield

‖∂r wb‖L∞(0,T ;L2(Ω)) + √
ν

∥∥∥∥1

r
∂r(r∂r wb)

∥∥∥∥
L2(0,T ;L2(Ω))

+ √
ν

∥∥∥∥∂rφ wb

r

∥∥∥∥
L2(0,T ;L2(Ω))

� cν
1
4 , (3.33)

where we have used estimates (3.23) and (3.31).
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3.4.2. Interior estimate
We now turn to the estimates in the interior of Ω . To this end, we let ψi(r) = 1 − ψb(r) so that

ψi(r) =
{

1, r ∈ [0, 1
2 ],

0, r ∈ [ 2
3 ,1]. (3.34)

We rewrite Eq. (3.28) in Cartesian coordinates as

∂t wi + (
uν

h · ∇v
)

wi − ν�v wi

= −ψi(D + E + F ) − νverr
3 �vψi − 2νψ ′

i (r)∂r verr
3 − ((

ψiv
err
v

) · ∇v
)
ũapp

x , (3.35)

with homogeneous initial and boundary conditions.
Multiplying (3.35) by wi and integrating the resulting equation over Ω gives

1

2

d

dt
‖wi‖2

L2(Ω)
+ ν‖∇v wi‖2

L2(Ω)

�
∥∥ψi(D + E + F )

∥∥
L2(Ω)

‖wi‖L2(Ω) + cν
∥∥verr

3

∥∥
H1(Ω)

‖wi‖L2(Ω)

+ c

∥∥∥∥∂φ ũapp
x

r

∥∥∥∥
L∞(Ω)

∥∥ψiu
err
φ

∥∥
L2(Ω)

‖wi‖L2(Ω). (3.36)

By utilizing the estimates (3.10i), (3.22), (3.25), and the tangential estimate on the approximate solu-
tion (3.23), we deduce that

‖wi‖L∞(0,T ;L2(Ω)) + ν
1
2 ‖∇v wi‖L2(0,T ;L2(Ω)) � cν. (3.37)

In particular,

‖∇v wi‖L2(0,T ;L2(Ω)) � cν
1
2 . (3.38)

Furthermore, by multiplying Eq. (3.35) by −�v wi and integrating over the domain Ω , one has that

1

2

d

dt
‖∇v wi‖2

L2(Ω)
+ ν‖�v wi‖2

L2(Ω)

�
∥∥ψi(D + E + F )

∥∥
L2(Ω)

‖�v wi‖L2(Ω) + ν
∥∥verr

3

∥∥
H1(Ω)

‖�v wi‖L2(Ω)

+ c

∥∥∥∥∂φ ũapp
x

r

∥∥∥∥
L∞(Ω)

∥∥ψiu
err
φ

∥∥
L2(Ω)

‖�v wi‖L2(Ω) +
∫
Ω

(
uν

v · ∇v
)

wi�v wi dx. (3.39)

We now recall that ũapp
v = ũapp

φ eφ , that ∇v · uapp
v = 0, and that uν = verr + ũapp . Consequently, all

terms in the right-hand side of Eq. (3.39) except the last one can be estimated in the same way as in
(3.36)–(3.37). We deal with the last term as follows:

∫
Ω

(
uν

v · ∇v
)

wi�v wi dx

=
∫ (

verr
v · ∇v

)
wi�v wi dx +

∫ (
ũapp

v · ∇v
)

wi�v wi dx
Ω Ω
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� cν
1
2 ‖∇v wi‖L2(Ω)‖�v wi‖L2(Ω) −

∫
Ω

(∇v ũapp
v · ∇v wi

) · ∇v wi dx

� c‖∇v wi‖2
L2(Ω)

+ ν

4
‖�v wi‖2

L2(Ω)
+ ∥∥∇v ũapp

v

∥∥
L∞(Ω ′)‖∇v wi‖2

L2(Ω)

� c
(∥∥u0

φeφ

∥∥
H2+s(Ω)

+ ∥∥Z∂Z θ0
φ

∥∥
L∞(0,∞)

)‖∇v wi‖2
L2(Ω)

+ c‖∇v wi‖2
L2(Ω)

+ ν

4
‖�v wi‖2

L2(Ω)
,

(3.40)

where Ω ′ = {r � 2
3 } by the definition of the cut-off function (3.34). By introducing (3.40) back

into (3.39), applying Young’s inequality, integrating in time t , we finally obtain, utilizing (3.38),

‖∇v w‖L∞(0,T ;L2(Ω)) � cν
1
2 . (3.41)

Combining estimates (3.25), (3.31), (3.33) and (3.41) gives the desired estimate

∥∥verr
3

∥∥
L∞(0,T ;H1(Ω))

� cν
1
4 . (3.42)

Remark 4. An alternative way of deriving the L∞(H1) estimate is to include higher-order terms in the
asymptotic expansion (2.1)–(2.2). We address this point in Section 4.

3.5. Convergence of the pressure

We first recall the following calculus formula for a vector function u = v(r)eφ

∇uv =
(−∂r v sinφer − v

r cosφeφ

∂r v cosφer − v
r sinφeφ

)
. (3.43)

Then it follows directly from Eq. (3.1a) that

∥∥∂r perr
∥∥

L2(Ω)
�

∥∥∥∥ (uerr
φ )2

r

∥∥∥∥
L2(Ω)

+
∥∥∥∥2uerr

φ ũapp
φ

r

∥∥∥∥
L2(Ω)

+
∥∥∥∥ A

r

∥∥∥∥
L2(Ω)

�
(∥∥uerr

φ

∥∥
L∞(Ω)

+ 2
∥∥ũapp

φ

∥∥
L∞(Ω)

)∥∥∥∥uerr
φ

r

∥∥∥∥
L2(Ω)

+ cν
1
4

� c
∥∥∇v verr

h

∥∥
L2(Ω)

+ cν
1
4 � cν

1
4 (3.44)

where we used the estimates (3.10b) and (3.20) as well as the calculus identity above.
Next, we integrate Eq. (3.1a) to find that, assuming perr(1) = 0

−perr =
1∫

r

(uerr
φ )2

s
+ 2uerr

φ ũapp
φ

s
− A

s
ds. (3.45)

Therefore estimates (3.10a) and (3.20) yield

∥∥perr
∥∥

L∞(Ω)
�

∥∥∥∥uerr
φ

s

∥∥∥∥
2

L2(Ω)

+ c

(∥∥∥∥u0
φ

r

∥∥∥∥
L∞(Ω)

+ ∥∥θ0
φ

∥∥
L∞(0,+∞)

)∥∥uerr
φ

∥∥ + c

∥∥∥∥ A

s2

∥∥∥∥
L1(Ω)

�
∥∥∇v verr

h

∥∥2
L2(Ω)

+ c1ν
1
2 + c2ν

1
2 � cν

1
2 . (3.46)
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4. Improved convergence rate

We ask whether the rates of convergence in viscosity presented in our main theorem, Theorem 1,
are optimal. A heuristic argument using the order of the expansion in ν indicates that some of the
rates are suboptimal. Optimal rate of convergence can be deduced by formally expanding the Nevier–
Stokes solution to higher orders as it is classically done (see for instance [12,15,33] among others).
However, expanding to higher order requires correspondingly more stringent compatibility conditions
between the initial and boundary data, as discussed in Appendix B. Below, we present an asymptotic
expansion up to the first order (which is the next order) to illustrate the point and for the sake of
simplicity.

4.1. Formal asymptotics

Similarly to (2.1) and (2.2), we now assume that the approximate Navier–Stokes solution has the
form:

uapp,1(t, r, φ) := uou(t, r) + uc
(

t,
1 − r√

ν
,φ

)
, (4.1)

papp,1(t, r) := p0(t, r) + √
νp1(t, r) + √

νq1
(

t,
1 − r√

ν

)
, (4.2)

where

• uou(t, r, φ) = u0(t, r) + √
νu1(t, r) is the outer solution, valid in Ω;

• uc(t, 1−r√
ν

,φ) = θ0(t, 1−r√
ν

,φ) + √
νθ1(t, 1−r√

ν
,φ) is the corresponding boundary-layer solution,

which is valid in Ω∞ .

In terms of the stretched coordinate Z = 1−r√
ν

the corrector satisfies the following matching conditions

θ i → 0 as Z → ∞, (4.3)

where i = 0,1.
The equations satisfied by the outer solutions and correctors can be easily derived by keeping only

terms with the same order in ν:

1. The leading order u0(t, r, φ) = (0, u0
φ(t, r), u0

x(t, r, φ)) satisfies reduced Euler equation (1.12) with
initial data (1.13).

2. The first order of outer solution u1(t, r, φ) = (u1
φ(t, r), u1

x(t, r, φ)) satisfies the following equations

−2u0
φu1

φ + r∂r p1 = 0,

∂t u1
φ = 0,

∂t u1
x + u0

φ

r
∂φu1

x + u1
φ

r
∂φu0

x = 0,(
u1

φ, u1
x

)∣∣
t=0 = (0,0). (4.4)

Since (u1
φ, u1

x) satisfies transport equations with homogeneous initial data, it follows that

(u1
φ, u1

x) ≡ 0, and consequently, we can take p1 = 0 for convenience.

3. The leading order of the boundary-layer profile θ0(t, Z , φ) satisfies system (2.4) in Section 2.
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4. The first order of the boundary-layer profile θ1(t, Z , φ) = (0, θ1
φ, θ1

x ) satisfies the following system:

(
θ0
φ

)2 + 2u0
φ(t,1)θ0

φ = −∂Z q1,

∂tθ
1
φ = ∂Z Z θ1

φ − ∂Z θ0
φ,

∂tθ
1
x + u0

φ(t,1)∂φθ1
x + θ0

φ∂φθ1
x − ∂Z Z θ1

x

= −θ1
φ∂φθ0

x − θ1
φ∂φu0

x(t,1, φ) + Zθ0
φ

(
∂φ∂ru0

x(t,1, φ) − ∂φu0
x(t,1, φ)

)
+ Z

(
∂ru0

φ(t,1) − u0
φ(t,1)

)
∂φθ0

x − Zθ0
φ∂φθ0

x − ∂Z θ0
x ,

(
θ1
φ, θ1

x

)∣∣
Z=0 = (0,0),(

θ1
φ, θ1

x

)∣∣
Z=∞ = 0,

(
θ1
φ, θ1

x

)∣∣
t=0 = 0. (4.5)

The existence, regularity, and decay properties of solutions to system (4.5) can be derived in a
manner similar to that for the system satisfied by the zeroth-order expansion under higher regular-
ity assumptions and higher compatibility conditions between the initial data and boundary data, as
illustrated in Appendix A.

4.2. Approximate solution

The formal expansion uapp,1 presented in the previous subsection cannot be directly used to ac-
commodate for the fact that the decay properties of the corrector arise in an infinite domain. As in
Section 2, we remedy this point by introducing a truncation factor in the radial direction. We then
define a truncated approximation ũapp,1(t, r, φ) = (ũapp,1

φ (t, r), ũapp,1
x (t, r, φ)) with

ũapp,1
φ (t, r) := u0

φ(t, r) + ρ(r)
(
θ0
φ + √

νθ1
φ

)(
t,

1 − r√
ν

)
,

ũapp,1
x (t, r, φ) := u0

x(t, r, φ) + ρ(r)
(
θ0

x + √
νθ1

x

)(
t,

1 − r√
ν

,φ

)
,

p̃app(t, r) = p0(t, r) + √
νq1

(
t,

1 − r√
ν

)
, (4.6)

where ρ is defined in Section 2.
Then ũapp,1 satisfies the following system

−(
ũapp,1

φ

)2 + r∂r p̃app,1 = Â,

∂t ũapp,1
φ − ν

r
∂r

(
r∂r ũapp,1

φ

) + ν

r2
ũapp,1

φ = f1 + B̂ + Ĉ + G,

∂t ũapp,1
x + ũapp,1

φ

r
∂φ ũapp,1

x − ν

r
∂r

(
r∂r ũapp,1

x
) − ν

r2
∂φφ ũapp,1

x = f2 + D̂ + Ê + F̂ + H, (4.7)

where Â, B̂ , Ĉ , G , D̂, Ê , F̂ and H are given by
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Â = (
r − ρ2)(θ0

φ

)2 + 2θ0
φ

(
ru0

φ(t,1) − u0
φ

) − 2
√

ν
(
u0

φ + ρθ0
φ

)
θ1
φ − νρ2(θ1

φ

)2
,

B̂ = ν

[
−1

r
∂r

(
r∂ru0

φ

) + 1

r2
u0

φ − 1

r
ρ ′(r)θ0

φ + 1

r2
ρθ0

φ − ρ ′′(r)θ0
φ + ρ

r
∂Z θ1

φ + 2ρ ′(r)∂Z θ1
φ

]
,

Ĉ = √
ν

[
ρ

(
1

r
− 1

)
∂Z θ0

φ + 2ρ ′(r)∂Z θ0
φ

]
,

G = ν
3
2

[
ρ

r2
θ1
φ − ρ ′(r)

r
θ1
φ − ρ ′′(r)θ1

φ

]
,

D̂ = ρ

[
∂φu0

x

r
− ∂φu0

x(t,1, φ) + √
ν Z

(
∂rφu0

x(t,1, φ) − ∂φu0
x(t,1, φ)

)]
θ0
φ

+ ρ(r)

[u0
φ

r
− u0

φ(t,1) + √
ν Z

(
∂ru0

φ(t,1) − u0
φ(t,1)

)]
∂φθ0

x

+ ρ(r)

(
ρ

r
− 1 − √

ν Z

)
θ0
φ∂φθ0

x ,

Ê = √
ν

[
ρ

(
ρ

r
− 1

)(
θ0
φ∂φθ1

x + θ1
φ∂φθ0

x

) + ρ

(
1

r
− 1

)
∂Z θ0

x + 2ρ ′∂Z θ0
x

+ ρ

(
∂φu0

x

r
− ∂φu0

x(t,1, φ)

)
θ1
φ + ρ

(u0
φ

r
− u0

φ(t,1)

)
∂φθ1

x

]
,

H = ν

[
−1

r
∂r

(
r∂ru0

x

) −
(

ρ ′

r
+ ρ ′′

)
θ0

x +
(

ρ

r
+ 2ρ ′

)
∂Z θ1

x + ρ2

r
θ1
φ∂φθ1

x − 1

r2
∂φφu0

x − ρ

r2
∂φφθ0

x

]
,

F̂ = ν
3
2

[
−ρ ′

r
θ1

x − ρ ′′θ1
x − ρ

r2
∂φφθ1

x

]
. (4.8)

The corresponding boundary conditions and initial data are imposed as

ũapp,1
∣∣
t=0 = (

0,a(r),b(r, φ)
)
,

ũapp,1
∣∣
r=1 = (

0, βφ(t),βx(t, φ)
)
.

4.3. Convergence

We define again an error solution ûerr(t, r, φ) := (ûerr
φ (t, r), ûerr

x (t, r, φ)) and p̂err , where

ûerr
φ (t, r) = uν

φ(t, r) − ũapp,1
φ (t, r),

ûerr
x (t, r, φ) = uν

x (t, r, φ) − ũapp,1
x (t, r, φ),

p̂err = pν(t, r) − p̃app,1(t, r). (4.9)

Then the error solution satisfies the following system

(
ûerr

φ

)2 + 2ûerr
φ ũapp,1

φ − r∂r p̂err = Â,

∂t ûerr
φ − ν

∂r
(
r∂r ûerr

φ

) + ν
2

ûerr
φ = −B̂ − Ĉ − G,
r r
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∂t ûerr
x + uν

φ

r
∂φ ûerr

x + ûerr
φ

r
∂φ ũapp,1

x − ν

r
∂r

(
r∂r ûerr

x

) − ν

r2
∂φφ ûerr

x

= −(D̂ + Ê + F̂ + H), (4.10)

with corresponding boundary and initial conditions

ûerr
∣∣
r=1 = 0,

ûerr
∣∣
t=0 = 0. (4.11)

One can verify that the extra body force terms B̂, . . . , F̂ are small in the following sense:

‖B̂ + Ĉ + G‖L∞(0,T ;L2(Ω)) � cν,

‖D̂ + Ê + F̂ + H‖L∞(0,T ;L2(Ω)) � cν,

‖B̂ + Ĉ + G‖L∞(0,T ;L∞(Ω)) � cν,

‖D̂ + Ê + F̂ + H‖L∞(0,T ;L∞(Ω)) � cν. (4.12)

Utilizing the new expansion (4.1) and applying exactly the same technique as in the proof of
Theorem 2, we are able to improve the convergence rate of Theorem 2 as follows:

Theorem 6. Assume that the initial data a(r), b(r, φ) and the boundary data (βφ,βx) satisfy appropriate
high-order compatibility conditions as described in Appendix B. In addition, we assume that u0 ∈ Hm(Ω),
β ∈ H2(0, T ; Hm(Ω)), m � 9. Then we have that

∥∥uν − u0 − ρ(r)
(
θ0 + √

νθ1)∥∥
L∞(0,T ;H1(Ω))

�O
(
ν

1
2
)
, (4.13)∥∥uν − u0 − ρ(r)

(
θ0 + √

νθ1)∥∥
L∞((0,T )×Ω)

�O(ν), (4.14)

where the cut-off function ρ(r) is defined in Section 2.

Remark 5. Estimate (4.14) is sharper than the corresponding result for plane-parallel flows (inequality
(6.13) in Theorem 6.1 of [15]), since we employ here the maximum principle instead of the anisotropic
Sobolev embedding, and we impose more compatibility and regularity conditions on the data. There-
fore we can reach optimal convergence rates in viscosity.

As a corollary, we deduce the following optimal convergence rates for the zeroth-order approxi-
mation.

Corollary 7. Under the same assumption as Theorem 6, we have

c3ν
1
4 �

∥∥uν − u0 − ρ(r)θ0
∥∥

L∞(0,T ;H1)
� c4ν

1
4 ,

c5ν
1
2 �

∥∥uν − u0 − ρ(r)θ0
∥∥

L∞(Ω×[0,T ]) � c6ν
1
2 ,

where c3 , c4 , c5 and c6 are generic constants depending on u0 and β but independent of viscosity ν .
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Appendix A. Corrector estimates

In this appendix, we discuss the decay properties and the regularity of the correctors θ0 and θ1

governed by the Prandtl-type equations (2.4) and (4.5) respectively. For this purpose, we introduce
the following general Prandtl-type boundary-layer problem for a corrector-like function θ over the
domain Ω∞:

∂tθ + a(t, Z)∂φθ − ∂Z Z θ = h(t, φ, Z) in Ω∞ × [0, T ],
θ |Z=0 = 0, θ |Z=∞ = 0,

θ |t=0 = 0, (A.1)

where a(t, Z) and h(t, φ, Z) are given functions with the following regularity:

∂k
t a ∈ L∞(

Ω∞ × [0, T ]), 〈Z〉l∂k
t ∂

p
φ h ∈ C

(
0, T ; L2(Ω∞)

)
for k + p � n, k = 0,1, (A.2)

where 〈Z〉 = √
1 + Z 2, l, n, and m are given positive integers.

Moreover, we impose the following compatibility conditions on the data in problem (A.1):

∂k
t h(0, φ, Z) = 0, k = 0,1. (A.3)

Then one can modify the approach in Xin and Yanagisawa [33, Theorem 4.1] to obtain the following
result.

Proposition 8. Assume conditions (A.2)–(A.3) hold. Then the Prandtl-type boundary-layer equation (A.1) has
a unique solution such that

〈Z〉l∂
α1
φ ∂

α2
Z θ ∈ C

(
0, T ; L2(Ω∞)

)
, for α1 +

[
α2 + 1

2

]
� n − 1, α2 � 2, (A.4)

and

〈Z〉l∂k
t ∂

p
φ θ ∈ C

(
0, T ; L2(Ω∞)

)
, for k + p � n − 1, k = 0,1. (A.5)

In addition,

∂k
t θ(0, φ, Z) = 0, k = 0,1. (A.6)

We now apply Proposition 8 to Eq. (2.4). First, we notice that the m-th order compatibility condi-
tions (B.2) on the data in Eqs. (1.9)–(1.10) imply the following compatibility conditions on the data in
Eq. (2.4):
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∂
p
t

(
β − u0

∣∣
r=1

)∣∣
t=0 = 0, p = 0,1, . . . , [m/2], (A.7)

where [z] denoted the greatest integer in z. Now, define jφ = [β0(t) − u0
φ(t,1)]e−Z 2

. Then one finds

that θ1 = θ0
φ − jφ , where θ0

φ is defined below Eq. (2.2), satisfies Eq. (A.1) with a(t, Z) = 0 and

h(t, Z) = −[
β ′

0(t) − ∂t u0
φ(t,1)

]
e−Z 2 + [

β0(t) − u0
φ(t,1)

](
4Z 2 − 2

)
e−Z 2

.

It is easy to verify that conditions (A.2)–(A.3) are satisfied with p = 0 if we assume m � 4. Therefore
the conclusion of Proposition 8 holds for θ1. Then it follows that

〈Z〉l∂α
Z θ1 ∈ L∞([0, T ] × [0,+∞)

)
, α = 0,1,

from the interpolation inequality

∥∥θ(t, Z)
∥∥

L∞
t (L∞(0,+∞))

� K‖θ‖
1
2
L∞

t (L2(0,+∞))
‖θ‖

1
2
L∞

t (H1(0,+∞))
.

The lemma below then follows from the definition of θ1 given above.

Lemma 9. Under the same conditions as in Proposition 11 with m � 4, θ0
φ ∈ ⋂[m/2]

j=0 C j([0, T ];
Hm−2 j(0,+∞)) and

〈Z〉l∂α
Z θ0

φ ∈ C
(
0, T ; L2(0,+∞)

)
, α � 2, (A.8)

〈Z〉l∂α
Z θ0

φ ∈ L∞([0, T ] × [0,+∞)
)
, α = 0,1, (A.9)

and

∂k
t θ0

φ

∣∣
t=0 = 0, k = 0,1. (A.10)

Remark 6. An alternative way of deriving L∞ estimate in time and space for θ0
φ is to use a comparison

principle of parabolic equation (see e.g. [15]). In fact, one can show that ∂tθ
0
φ ∈ L∞([0, T ] × [0,+∞))

by the same method. Moreover, by integrating Eq. (A.1) one finds that θ0
φ ∈ L∞(0, T ; L1(Ω∞)).

We now similarly define jx = [βx(t, φ)− u0
x(t,1, φ)]e−Z 2

and θ2 = θ0
x − jx , where θ0

x is also defined
below Eq. (2.2). Then one easily verifies that θ2 satisfies Eq. (A.1) with

a(t, Z) = θ0
φ + u0

φ(t,1), (A.11)

h(t, φ, Z) = −θ0
φ∂φu0

x(t,1, φ) + [
βx(t, φ) − u0

x(t,1, φ)
](

4Z 2 − 2
)
e−Z 2

− a
[
∂φβx(t, φ) − ∂φu0

x(t,1, φ)
]
e−Z 2 − [

∂tβx(t, φ) − ∂t u0
x(t,1, φ)

]
e−Z 2

. (A.12)

It follows that h ∈ C1(0, T ; Hm−2) given the regularity of the data, that of the Euler solution u0, and
the regularity of θ0

φ , we established above. Therefore conditions (A.2)–(A.3) are satisfied with n = m−2
and p � m −2 by Lemma 9, Remark 6 and compatibility condition (A.7), if we assume m � 7. We thus
have the following lemma.
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Lemma 10. Under the same condition as Proposition 11 with m � 7, one has

〈Z〉l∂
α1
φ ∂

α2
Z θ ∈ C

(
0, T ; L2(Ω∞)

)
, for α1 +

[
α2 + 1

2

]
� 4, 0 � α2 � 2, (A.13)

〈Z〉l∂
α1
φ ∂

α2
Z θ0

x ∈ L∞(
Ω∞ × [0, T ]), 0 � α1 � 2, 0 � α2 � 1, (A.14)

〈Z〉l∂k
t ∂

p
φ θ0

x ∈ C
(
0, T ; L2(Ω∞)

)
, for p �m − 3, k = 0,1, (A.15)

and

∂k
t θ0

x

∣∣
t=0 = 0, k = 0,1. (A.16)

We note that estimate (A.14) follows from (A.13) and the following anisotropic Sobolev embedding
result for the domain Ω∞ , which can be derived in the same way as Lemma 5

‖θ‖L∞(Ω∞) � C
(‖θ‖

1
2
L2‖∂φθ‖

1
2
L2 + ‖∂Z θ‖

1
2
L2‖∂φθ‖

1
2
L2 + ‖θ‖

1
2
L2‖∂φ Z θ‖

1
2
L2

)
. (A.17)

Finally, we notice that conclusions of Lemmas 9 and 10 apply to θ1
φ and θ1

x , as long as we impose
m � 9.

Appendix B. Compatibility condition and regularity

To analyze the boundary layer for the pipe flows under consideration, we need to assume that the
initial data, boundary conditions and body forcing term in (1.9)–(1.10) satisfy appropriate compatibil-
ity conditions so that the viscous solution is sufficiently regular.

Following Xin and Yanagisawa [33] (see also Temam [36]), we define the p-Cauchy data of (1.9)
and (1.10) inductively by

∂0
t uν

∣∣
t=0 = u0,

∂
p
t uν

v

∣∣
t=0 = (

ν�v∂
p−1
t uν

v + ∂
p−1
t F1

)∣∣
t=0,

∂
p
t uν

x

∣∣
t=0 =

(
−

p−1∑
s=0

(
p − 1

s

)
∂ s

t uν
v · ∇v∂

p−1−s
t uν

x + ν�v∂
p−1
t uν

x + ∂
p−1
t F2

)∣∣∣∣
t=0

. (B.1)

Then β , u0, F = (F1, F2) are said to satisfy the compatibility condition of order m for the initial–
boundary value problem (1.9)–(1.10) for any ν > 0 if

∂
p
t uν

∣∣
t=0, r=1 = ∂

p
t β

∣∣
t=0, p = 0,1, . . . ,m, for any ν > 0. (B.2)

These compatibility conditions prevent the formation of an initial layer in the Navier–Stokes equation
(1.8)–(1.9) due to the possible mismatch of the boundary and initial data. The zeroth-order compati-
bility condition simply takes the form:

a(1) = βφ(0), b(1, φ) = βx(0, φ), (B.3)

and the first-order compatibility conditions are given by:



JID:YJDEQ AID:6807 /FLA [m1G; v 1.62; Prn:7/03/2012; 8:53] P.25 (1-27)

D. Han et al. / J. Differential Equations ••• (••••) •••–••• 25
∂tβφ(0) = ν
(
a′(1) + a′′(1) − a(1)

) + f1(0,1),

∂tβx(0, φ) = ν
(
∂rb(1, φ) + ∂rrb(1, φ) + ∂φφb(1, φ)

) − a(1)∂φb(1, φ) + f2(0,1, φ). (B.4)

We notice that the first-order compatibility condition involves the viscosity ν . This undesirable de-
pendence, however, can be eliminated if we impose that ∂rb(1, φ) + ∂rrb(1, φ) + ∂φφb(1, φ) = 0 and
∂tβx(0, φ) = −a(1)∂φb(1, φ) + f2(0,1, φ).

Since we are working in a domain that is periodic in the x direction, we employ the following
Sobolev spaces for m ∈ Z+:

Hm(Q ) = {
f ∈ L2(Q ), Dα f ∈ L2(Q ), |α| �m,

f periodic in the x direction and the azimuthal direction φ
}
.

We denote the subspace of functions in Hm(Q ) that are constant in x by Hm(Ω). We also use Hm(Q )

to denote (Hm(Q ))3 for vector functions. Concerning the existence and regularity of the solution uν

to the initial–boundary value problem (1.9)–(1.10) for fixed ν , the following result is classical (see [37,
p. 219] and [36], for instance).

Proposition 11. Let ν > 0 be a constant. Let m be an integer. Suppose the forces and boundary data are
smooth, F, β ∈ C∞(Ω ×[0, T ]), and the initial data u0 ∈ Hm(Ω) satisfies the compatibility condition of order
[m/2] for the initial–boundary value problem (1.9)–(1.10). Then there exists a unique solution uν in the space⋂[m/2]

j=0 C j([0, T ]; Hm−2 j(Ω)).

Remark 7. The requirement F,β ∈ C∞(Ω × [0, T ]) is purely for the ease of simplifying notation. In
fact, the same conclusion holds under much less regularity on F and β . We refer to [36] for details.

The solution of (1.12)–(1.13) can be obtained by solving an ordinary differential equation and a
transport equation. Therefore the well-posedness of u0 is readily established. For example, if u0 ∈
Hm(Q ), and F ∈ C(0, T ; Hm(Q )), then u0 ∈ C(0, T ; Hm(Q )). (See Temam [38] for results concerning
the existence of smooth solution to the full Euler equations.) Since we are also working in cylindrical
coordinates, we gather the regularity of solutions to the Euler equation in cylindrical coordinates in
the following lemma.

Lemma 12. Suppose u0 ∈ Hm(Q ), F ∈ C(0, T ; Hm(Q )) with m � 4. Then one has, in polar coordinates:

u0
φ, ∂ru0

φ,
u0

φ

r
,

(
−1

r
∂r

(
r∂ru0

φ

) + u0
φ

r2

)
∈ L∞([0, T ] × Ω

)
, (B.5)

u0
x , ∂ru0

x , ∂φu0
x , ∂rφu0

x ,

(
1

r
∂r

(
r∂ru0

x

) + ∂φφu0
x

r2

)
∈ L∞([0, T ] × Ω

)
. (B.6)

Proof. Recall the ansatz (1.11):

u0 = u0
φ(t, r)eφ + u0

x(t, r, φ)ex = (−u0
φ sinφ, u0

φ cosφ, u0
x

)
. (B.7)

Noticing that u0 is independent of variable x, one concludes by Sobolev embedding that

u0,∇u0,�u0 ∈ L∞([0, T ] × Ω
)
. (B.8)

Then (B.6) follows directly, given that
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∂

∂r
= x1

r

∂

∂x1
+ x2

r

∂

∂x2
,

∂

∂φ
= −x2

∂

∂x1
+ x1

∂

∂x2
,

and using the fact Ω is bounded.

Next, the bound (− 1
r ∂r(r∂ru0

φ) + u0
φ

r2 ) ∈ L∞([0, T ] × Ω) follows, since

�
(
u0

φ sinφ
) =

(
1

r
∂r

(
r∂ru0

φ

) − u0
φ

r2

)
sinφ ∈ L∞([0, T ] × Ω

)
.

In order to deduce ∂ru0
φ,

u0
φ

r ∈ L∞([0, T ] × Ω), we differentiate u0
φ sin φ and u0

φ cosφ with respect
to x1 and x2 respectively. One has

∂x1

(
u0

φ sinφ
) =

(
∂ru0

φ − u0
φ

r

)
cosφ sinφ ∈ L∞([0, T ] × Ω

)
, (B.9)

∂x2

(
u0

φ sinφ
) = ∂ru0

φ(sinφ)2 + u0
φ

r
(cosφ)2 ∈ L∞([0, T ] × Ω

)
, (B.10)

∂x1

(
u0

φ cosφ
) = ∂ru0

φ(cosφ)2 + u0
φ

r
(sinφ)2 ∈ L∞([0, T ] × Ω

)
. (B.11)

It follows from (B.9) that (∂ru0
φ − u0

φ

r ) ∈ L∞([0, T ] × Ω). On the other hand, the addition of (B.10) and

(B.11) implies ∂ru0
φ + u0

φ

r ∈ L∞([0, T ] × Ω). Therefore, one obtains ∂ru0
φ,

u0
φ

r ∈ L∞([0, T ] × Ω). �
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