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Outline

Reading in time series (ts) data.
Exploratory tools for ts data.
Box-Jenkins Methodology for linear time series.

Figure : George E.P. Box
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The Nature of Linear TS Data for Box-Jenkins

The data need to be:
Continuous

Or, be count data that can be approximated by continuous data

eg. Monthly sunspot counts

Regularly spaced
eg. daily, weekly, quarterly, monthly, annually
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Time Series Packages Available on CRAN

We will be using the astsa package written by David Stoffer and
the stats package.
See Time Series Analysis and Its Applications: With R Examples
by Shumway and Stoffer.
Many other time series packages are available in CRAN for
estimating linear ts models.
A comprehensive link to ts analysis (not just linear ts analysis) can
be found here:
http:
//cran.r-project.org/web/views/TimeSeries.html
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Reading ts data in R

co2dat= read.table("C:/R-seminar/co2-monthly.txt",
header=T)

co2dat[1:15,]
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Creating ts data in R

co2=
ts(co2dat$interpolated,frequency=12,start=c(1958,3))
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Creating ts data in R

Sometimes the time series data set that you have may have been
collected at regular intervals that were less than one year,eg.
monthly or quarterly.
In this case, you can specify the number of times that data was
collected per year by using the frequency parameter in the ts()
function.
For monthly ts data, set frequency=12; for quarterly ts data, you
set frequency=4.

You can also specify the first year that the data was collected, and
the first interval in that year by using the start parameter in the
ts() function.
For example, if the first data point corresponds to the second
quarter of 1986, you would set start=c(1986,2).
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Plotting ts data in R:

plot(co2,xlab=’Year’,ylab=’Parts per million’, main=’Mean Monthly
Carbon Dioxide at Mauna Loa’)

Time
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Monthly C02 at Mauna Loa
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Time Series Data in the News:
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Assumption Needed for Box-Jenkins Model Fitting:

Need (weakly) stationary ts: (i) constant mean, (ii) covariance is a
function of lag only.
Note: (ii) implies that variance is a constant also.
Graphically, we look for constant mean and constant variance.

If constant mean and variance are observed, we proceed with
model fitting.
Otherwise, we explore transformations of the ts such as
differencing and fit models to the transformed data.
We first explore fitting a class of models known as Integrated
autoregressive moving average models (ARIMA(p,d ,q)).
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Simulating ARIMA(p,d ,q) Processes in R

Suppose we want to simulate from the following stationary processes:

#AR(1)
out1=arima.sim(list(order=c(1,0,0),ar=.9), n=100)

#MA(1)
out4=arima.sim(list(order=c(0,0,1), ma=-.5),n=100)

#ARMA(1,1)
out6=arima.sim(list(order=c(1,0,1), ar=0.9,ma=-.5),

n=100)
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Plots of Some Stationary Processes:

par(mfrow=c(3,1))

plot(out1,ylab="x",
main=(expression(AR(1)~~~phi==+.9)))

plot(out4,ylab="x",
main=(expression(MA(1)~~~theta==-.5)))

plot(out6, ylab="x", main=(expression(AR(1)
~~~phi==+.9~~~MA(1)~~~theta==-.5)))
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Plots of Some Stationary Processes (Cont’d):
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Model Identification of ARMA(p,q) Processes Using R:

install.packages("astsa")
require(astsa)

acf2(out1,48) #prints values and plots

acf2(out4,48)

acf2(out6,48)
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Model Identification of Simulated AR(1) Series:
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Model Identification of Simulated MA(1) Series:
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Model Identification of Simulated ARMA(1,1) Series:
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Plots of Theoretical ACF and PACF of an AR(2)
Process:
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Model Identification of ARMA(p,q) Processes:

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts of Tails off

after lag q

PACF Cuts off Tails off Tails off
after lag p
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Transforming ts data in R:

ARMA models assume the process is weakly stationary.
A ts plot can reveal lack of stationarity for example if:

1 there is a trend term, eg. linear, quadratic

2 the variance is not constant over time

Then, we need to transform the ts prior to fitting an ARMA(p,q)
model.
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Transforming ts data in R:
Data with Trends

Linear Trends:
Take a first difference: wt = 5yt = yt − yt−1. Then fit an ARMA
model to wt .

Detrending: Fit yt = β0 + β1 × t + at . Then use residuals to fit an
ARMA model.

Quadratic Trends:
Take a second difference:

vt = 52yt = 5(5yt ) = wt −wt−1 = yt − 2yt−1 + yt−2.

Then fit an ARMA model to vt .

Detrending: Fit yt = β0 + β1 × t + β2 × t2 + at . Then use
residuals to fit an ARMA model.
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TS Data with Trend:
Global Temperature Data (Source: Shumway & Stoffer)
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ACF of TS Data with Trend and after Transformations:
Global Temperature Data (Source: Shumway & Stoffer)
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TS Data with Non-constant Variance & Trend:
Johnson & Johnson Quarterly Earnings (Source: Shumway & Stoffer)
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Differencing and log-transformations in R:
Data Source: Shumway & Stoffer

#install.packages("astsa")
#require(astsa)
data(jj)
par(mfrow=c(3,1))
plot(jj,xlab=’Quarter’,ylab=’’,main="Quarterly

Earnings")

plot(log(jj),xlab=’Quarter’,ylab=’’,main="Log of
Quarterly Earnings")

plot(diff(log(jj)),xlab=’Quarter’,ylab=’’,main="First
Difference of Log of Quarterly Earnings")

Melody Ghahramani (U of Winnipeg) R Seminar Series January 29, 2014 24 / 67



ARIMA(p,d ,q) Modelling in R:
Using the stats package

arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period=NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.method = "BFGS",
optim.control = list(), kappa = 1e6)

There are some issues with this function; see David Stoffer’s
webpage for more details.
Recommended: Use sarima of the astsa package; diagnostic
plots are automatically produced.
Note: sarima is a front end for arima function.
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ARIMA(p,d ,q) Example:
Recruitment Series from astsa package:

The series represents the number of new fish from 1950-1987
(n = 453). The data are monthly.

data(rec)
plot(rec)

Time
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ARIMA(p,d ,q) Example:
Recruitment Series from astsa package:

mean(rec)
[1] 62.26278

acf2(as.vector(rec),48)

recruit.out = arima(rec,order=c(2,0,0))
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ARIMA(p,d ,q) Example:
Recruitment Series Model Identification:
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ARIMA(p,d ,q) Example:
Recruitment Series from astsa package (Cont’d):

> recruit.out

Call:
arima(x = rec, order = c(2, 0, 0))

Coefficients:
ar1 ar2 intercept

1.3512 -0.4612 61.8585
s.e. 0.0416 0.0417 4.0039

sigma^2 estimated as 89.33:
log likelihood = -1661.51, aic = 3329.02
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ARIMA(p,d ,q) Example:
Recruitment Series from astsa package (Cont’d):

The intercept in the arima function is really an estimate of the mean
(sort of).
The fitted model is

Yt − 61.86 = 1.35(Yt−1 − 61.86)− 0.46(Yt−2 − 61.86) + ât .

Now compare with

sarima(rec,2,0,0)
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ARIMA(p,d ,q) Estimation Using sarima
From astsa:

sarima(xdata, p, d, q, P = 0, D = 0, Q = 0,
S = -1, details = TRUE,
tol = sqrt(.Machine$double.eps),
no.constant = FALSE)

The no.constant option:
controls whether or not sarima includes a constant in the model.
In particular, if there is no differencing (d = 0 and D = 0) you get
the mean estimate.
If there is differencing of order one (either d = 1 or D = 1, but not
both), a constant term is included in the model.
These two conditions may be overridden (i.e., no constant will be
included in the model) by setting this to TRUE;
e.g., sarima(x,1,1,0,no.constant=TRUE).
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sarima (Cont’d)

Otherwise, no constant or mean term is included in the model.
The idea is that if you difference more than once (d+D > 1), any
drift is likely to be removed.
A possible work around if you think there is still drift when d+D >
1, say d=1 and D=1, then work with the differenced data,
e.g., sarima(diff(x),0,0,1,0,1,1,12).
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ARIMA(p,d ,q) Estimation Using sarima
Recruitment Series (Cont’d)

Partial output from sarima:

sarima(rec,2,0,0)

Call:
stats::arima(x = xdata, order = c(p, d, q),

seasonal = list(order = c(P, D,Q), period = S),
xreg = xmean, include.mean = FALSE,
optim.control = list(trace = trc,
REPORT = 1, reltol = tol))

Coefficients:
ar1 ar2 xmean

1.3512 -0.4612 61.8585
s.e. 0.0416 0.0417 4.0039
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ARIMA(p,d ,q) Estimation Using sarima
Recruitment Series Partial Output (Cont’d)

sigma^2 estimated as 89.33:
log likelihood = -1661.51, aic = 3331.02

$AIC
[1] 5.505631

$AICc
[1] 5.510243

$BIC
[1] 4.532889
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ARIMA(p,d ,q) Example:
Recruitment Series from astsa package (Cont’d):

The following function (Yule-Walker estimator) from the astsa package
gives the correct estimator of the mean.

rec.yw = ar.yw(rec,order=2)
names(rec.yw)
rec.yw$x.mean #estimate of mean
rec.yw$ar #autoregressive coefficients
sqrt(diag(rec.yw$asy.var.coef))
#se’s of autoreg. param. estim’s

The fitted model is

Yt − 62.26 = 1.35(Yt−1 − 62.26)− 0.46(Yt−2 − 62.26) + ât .

See also ar.mle.
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After ARIMA model Estimation...

Once the model is fit, we need to examine is adequacy via
residual analysis.
The model may need to be re-estimated.
Upon settling on an adequate model, we use it to forecast into the
(not so distant) future.
Let’s see how residual analysis and forecasting are done in R
using a more interesting model.
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U.S. GNP Series:

In this example, we consider the analysis of Yt , the quarterly U.S.
GNP series from 1947(1) to 2002(3), n = 223 observations.
The data are real U.S. gross national product in billions of chained
1996 dollars and have been seasonally adjusted.
The data were obtained from the Federal Reserve Bank of St.
Louis (http://research.stlouisfed.org/) by Shumway &
Stoffer.
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U.S. GNP Series (Cont’d):
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U.S. GNP Series (Cont’d):
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Clearly the GNP series is nonstationary.
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U.S. GNP Series (Cont’d):
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U.S. GNP Series (Cont’d):
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U.S. GNP Series (Cont’d):
Model Identification of Growth Series
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U.S. GNP Series:
Model Identification

data(gnp)
plot(gnp)
title(’Quarterly U.S. GNP from 1947(1) to 1991(1)’)
acf2(as.vector(gnp), 50)
plot(diff(gnp))
title(’First Difference of U.S. GNP from

1947(1) to 1991(1)’)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
title(’First difference of the U.S. GNP data’)
acf2(as.vector(gnpgr), 24)
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U.S. GNP Growth Series:
Estimation

ar.mod = sarima(gnpgr, 1, 0, 0)
# AR(1); includes an intercept term

ar.mod$fit

Coefficients:
ar1 xmean

0.3467 0.0083
s.e. 0.0627 0.0010

sigma^2 estimated as 9.03e-05:
log likelihood = 718.61, aic = -1431.22
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U.S. GNP Growth Series:
Estimation (Cont’d)

ma.mod = sarima(gnpgr, 0, 0, 2)
#MA(2); includes an intercept term

ma.mod$fit

Coefficients:
ma1 ma2 xmean

0.3028 0.2035 0.0083
s.e. 0.0654 0.0644 0.0010

sigma^2 estimated as 8.919e-05:
log likelihood = 719.96, aic = -1431.93
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U.S. GNP Growth Series:
Estimation (Cont’d)

Comparing AIC criteria, can select both models. Put Xt = ∇ log(Yt ).
The fitted AR(1) model is

Xt − 0.0083 = 0.347 (Xt−1 − 0.0083) + ât

The fitted MA(2) model is

Xt − 0.0082 = ât + 0.303 ât−1 + 0.204 ât−2
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U.S. GNP Growth Series:
AR(1) Model Diagnostics

Standardized Residuals

Time

1950 1960 1970 1980 1990 2000

−2
0

2
4

1 2 3 4 5 6

−0
.2

0.
2

0.
4

ACF of Residuals

LAG

AC
F

−3 −2 −1 0 1 2 3

−2
0

2
4

Normal Q−Q Plot of Std Residuals

Theoretical Quantiles
S

am
pl

e 
Q

ua
nt

ile
s

5 10 15 20

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p 
va

lu
e

Melody Ghahramani (U of Winnipeg) R Seminar Series January 29, 2014 47 / 67



Diagnostics

Model diagnostics are produced automatically if you use sarima
from the astsa package.
The function tsdiag in the stats package produces INCORRECT
p-values for the Ljung-Box statistics.
See David Stoffer’s webpage on why the p-values produced are
incorrect: http:
//www.stat.pitt.edu/stoffer/tsa3/Rissues.htm

Figure : Greta M. Ljung
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Automatic ARIMA(p,d ,q) Model Selection in R:

We may have several different candidate models to choose from.
We select the model with minimum AIC or minimum BIC criterion.
We can automate the process using the auto.arima function
found in the forecast package.
auto.arima outputs the same parameter estimates as arima from
the stats package.
CAUTION: Use auto.arima with care!
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Automatic ARIMA(p,d ,q) Model Selection in R
(Cont’d):

install.packages("forecast")
library(forecast)

auto.arima(x, d=NA, D=NA, max.p=5, max.q=5,
max.P=2, max.Q=2, max.order=5, start.p=2,
start.q=2, start.P=1, start.Q=1,
stationary=FALSE,
seasonal=TRUE,ic=c("aicc","aic", "bic"),
stepwise=TRUE, trace=FALSE,
approximation=(length(x)>100 | frequency(x)>12),
xreg=NULL,test=c("kpss","adf","pp"),
seasonal.test=c("ocsb","ch"),allowdrift=TRUE,
lambda=NULL, parallel=FALSE, num.cores=NULL)
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Automatic ARIMA(p,d ,q) Model Selection in R
(Cont’d):

arma11 = auto.arima(log(gnp),d=1,D=0,seasonal=FALSE)
> arma11
Series: log(gnp)
ARIMA(2,1,2) with drift

Coefficients:
ar1 ar2 ma1 ma2 drift

1.3459 -0.7378 -1.0633 0.5620 0.0083
s.e. 0.1377 0.1543 0.1877 0.1975 0.0008

sigma^2 estimated as 8.688e-05: log likelihood=720.03
AIC=-1428.05 AICc=-1427.66 BIC=-1407.64
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Model Selection for the GNP Growth Series:

#Model Selection:
temp <- rbind(ar.mod$AIC,ar.mod$AICc,ar.mod$BIC)
temp2 <- rbind(ma.mod$AIC,ma.mod$AICc,ma.mod$BIC)
temp3 <- rbind(arma11$aic,arma11$aicc,arma11$bic)
out <-t(cbind(temp,temp2,temp3))
dimnames(out) <- list(c("AR(1)","MA(2)","ARMA(2,2)"),

c("AIC","AICc","BIC"))
round(out,3)
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Model Selection for the GNP Growth Series:

> round(out,3)
AIC AICc BIC

AR(1) -8.294 -8.285 -9.264
MA(2) -8.298 -8.288 -9.252
ARMA(2,2) -1428.054 -1427.664 -1407.638

The information criteria for the AR and MA models were computed
using sarima.
The same criteria for the ARMA models are outputted from the
arima function.
For example, the AIC from arima is calculated using
−2 log(likelihood)k + 2 k , where k is the number of parameters in
the model.
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Model Selection

We use the information criteria defined as follows:

AIC = log σ̂2
k +

n + 2k
n

AICc = log σ̂2
k +

n + k
n− k − 2

BIC = log σ̂2
k +

k log n
n

where n is the length of the series and k is the number of parameters
in the fitted model.
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Model Selection for GNP Growth Series:

The information criteria are the following:

> round(out,3)
AIC AICc BIC

AR(1) -8.294 -8.285 -9.264
MA(2) -8.298 -8.288 -9.252
ARMA(2,2) -8.306 -8.295 -9.229

Either the AR(1) or the MA(2) model will do.
Let’s examine the residual analysis output once more.

Melody Ghahramani (U of Winnipeg) R Seminar Series January 29, 2014 55 / 67



ARIMA(p,d ,q)× (P,D,Q)S Modeling

It may happen that a series is strongly dependent on its past at
multiples of the sampling unit.
For example, for monthly business data, quarters may be highly
correlated.
We can combine ‘seasonal models’ along with differencing, as
well as the ARMA models to fit ARIMA(p,d ,q)× (P,D,Q)S
models defined by

Φ(Bs)φ(B)(1− Bs)D(1− B)dXt = Θ(Bs)θ(B)wt .

e.g. ARIMA(0,1,1)× (0,1,1)12 is

(1− B12)(1− B)Xt = (1 + ΘB12)(1 + θB)wt

Aside: Observe the MA parameters (plus or minus?)
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Behavior of the ACF and PACF for Pure SARMA
Models

AR(P)s MA(Q)s ARMA(P,Q)s
ACF* Tails off at lags ks, Cuts off after Tails off at

k = 1,2, . . . , lag Qs lags ks
PACF* Cuts off after Tails off at lags ks Tails off at

lag Ps k = 1,2, . . . , lags ks
*The values at nonseasonal lags h 6= ks, for k = 1,2, . . . , are zero.
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Johnson & Johnson Quarterly Earnings, revisited

Data in astsa package.

data(jj)
plot(jj)
title(’Quarterly Earnings of Johnson & Johnson

(J&J)’)

#Transform data:
plot(diff(log(jj)),xlab=’Quarter’,ylab=’’,

main="First Difference of Log of Quarterly
Earnings")

JJ <- diff(log(jj)) #transformed series

#Model Identification
acf2(as.vector(JJ),max.lag=30)
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J&J Model Identification
First difference of log-transformed series
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Johnson & Johnson Model Identification (Cont’d)
First difference of log-transformed series

Let’s take a seasonal difference (S=4).

Note: JJ is the first difference of log-transformed series.

JJ.dif <- diff(JJ,4)
acf2(as.vector(JJ.dif),max.lag=30)
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Johnson & Johnson Model Identification (Cont’d)
A Seasonal Difference of first difference of log-transformed series; S = 4

0 5 10 15 20 25 30

−0
.5

0.
0

0.
5

1.
0

Series:  as.vector(JJ.dif)

LAG

AC
F

0 5 10 15 20 25 30

−0
.5

0.
0

0.
5

1.
0

LAG

PA
C

F

Melody Ghahramani (U of Winnipeg) R Seminar Series January 29, 2014 61 / 67



Johnson & Johnson Model Estimation

logjj <- log(jj) #log-transform raw series
sarima(logjj, 1,1,1,1,1,0,4) #Candidate Model

Call:
stats::arima(x = xdata, order = c(p, d, q),
seasonal = list(order = c(P, D,Q), period = S),
optim.control = list(trace = trc, REPORT = 1,
reltol = tol))

Coefficients:
ar1 ma1 sar1

-0.0141 -0.6700 -0.3265
s.e. 0.2221 0.1814 0.1320
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Johnson & Johnson Model Estimation (Cont’d)

sigma^2 estimated as 0.007913:
log likelihood = 78.46,
aic = -148.92

$AIC
[1] -3.767848

$AICc
[1] -3.73801

$BIC
[1] -4.681033
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Johnson & Johnson Model Estimation (Cont’d)

The non-seasonal AR term fails to be significant.
I refit the model without the non-seasonal AR term.
I also used auto.arima to see what model would be selected; a
model with more parameters was selected.
I selected the ARIMA(0,1,1)× (1,1,0)4 model as it had the
smaller AIC.

sarima(logjj, 0,1,1,1,1,0,4)
#Output omitted for brevity
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J&J ARIMA(0,1,1)× (1,1,0)4 Model Diagnostics
Model is fit to log-transformed data
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Johnson & Johnson Forecasting; four-steps ahead
Forecasts are for log-transformed data
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Johnson & Johnson Forecasting; four-steps ahead
Forecasts are for log-transformed data

sarima.for(logjj,n.ahead=4, 0,1,1,1,1,0,4)
$pred

Qtr1 Qtr2 Qtr3 Qtr4
1981 2.910254 2.817218 2.920738 2.574797

$se
Qtr1 Qtr2 Qtr3 Qtr4

1981 0.08895758 0.09341102 0.09766159 0.10173473
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