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Suppose that x(1)(t),…, x(n)(t) form a fundamental set of 

solutions for x' = P(t)x on α < t < β.  

The matrix
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whose columns are x(1)(t),…, x(n)(t), is a fundamental matrix 

for the system x' = P(t)x.  This matrix is nonsingular since its 

columns are linearly independent, and hence detΨΨΨΨ ≠ 0.  

Note also that since x(1)(t),…, x(n)(t) are solutions of x' = P(t)x, 

ΨΨΨΨ satisfies the matrix differential equation ΨΨΨΨ' = P(t)ΨΨΨΨ.
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Example 1:

Consider the homogeneous equation x' = Ax below.

In Chapter 7.5, we found the following fundamental 
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In Chapter 7.5, we found the following fundamental 

solutions for this system:

Thus a fundamental matrix for this system is 
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Fundamental Matrices and General Solution

The general solution of x' = P(t)x

can be expressed x = ΨΨΨΨ(t)c, where c is a constant vector with 

components c1,…, cn:
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Fundamental Matrix & Initial Value Problem

Consider an initial value problem

x' = P(t)x,  x(t0) = x0

where α < t0 < β and x0 is a given initial vector.

Now the solution has the form x = ΨΨΨΨ(t)c, hence we choose c

so as to satisfy x(t ) = x0.  so as to satisfy x(t0) = x0.  

Recalling ΨΨΨΨ(t0) is nonsingular, it follows that

Thus our solution x = ΨΨΨΨ(t)c can be expressed as
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Recall:  Theorem 7.4.4

Let 
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Let x(1),…, x(n) be solutions of x' = P(t)x on I: α < t < β that 

satisfy the initial conditions

Then  x(1),…, x(n) are fundamental solutions of x' = P(t)x.
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Fundamental Matrix & Theorem 7.4.4

Suppose x(1)(t),…, x(n)(t) form the fundamental solutions given 

by Thm 7.4.4.  Denote the corresponding fundamental matrix 

by ΦΦΦΦ(t).  Then columns of ΦΦΦΦ(t) are x(1)(t),…, x(n)(t), and hence 
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Thus ΦΦΦΦ-1(t0) = I, and the hence general solution to the 

corresponding initial value problem is 

It follows that for any fundamental matrix ΨΨΨΨ(t),
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The Fundamental Matrix ΦΦΦΦ
and Varying Initial Conditions

Thus when using the fundamental matrix ΦΦΦΦ(t), the general 

solution to an IVP is 

This representation is useful if same system is to be solved for 

many different initial conditions, such as a physical system 
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many different initial conditions, such as a physical system 

that can be started from many different initial states. 

Also, once ΦΦΦΦ(t) has been determined, the solution to each set 

of initial conditions can be found by matrix multiplication, as 

indicated by the equation above.

Thus ΦΦΦΦ(t) represents a linear transformation of the initial 

conditions x0 into the solution x(t) at time t. 



Example 2: Find ΦΦΦΦ(t) for 2 x 2 System  (1 of 5)

Find ΦΦΦΦ(t) such that ΦΦΦΦ(0) = I for the system below. 

Solution:  First, we must obtain x(1)(t) and x(2)(t) such that
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We know from previous results that the general solution is

Every solution can be expressed in terms of the general 

solution, and we use this fact to find x(1)(t) and x(2)(t). 

tt
ecec

−










−
+








=

2

1

2

1
2

3

1x









=








=

1

0
)0(,

0

1
)0( )2()1( xx



Example 2: Use General Solution (2 of 5)

Thus, to find x(1)(t), express it terms of the general solution

and then find the coefficients c1 and c2.  
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Example 2: Solve for x(1)(t)  (3 of 5)

To find x(1)(t), we therefore solve

by row reducing the augmented matrix:
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Example 2: Solve for x(2)(t)  (4 of 5)

To find x(2)(t), we similarly solve

by row reducing the augmented matrix:
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Example 2:  Obtain ΦΦΦΦ(t) (5 of 5)

The columns of ΦΦΦΦ(t) are given by x(1)(t) and x(2)(t), and thus 

from the previous slide we have 
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Note ΦΦΦΦ(t) is more complicated than ΨΨΨΨ(t) found in Ex 1. 

However, now that we have ΦΦΦΦ(t), it is much easier to 

determine the solution to any set of initial conditions.
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Matrix Exponential Functions

Consider the following two cases:

The solution to x' = ax, x(0) = x0, is x = x0e
at, where e0 = 1.

The solution to x' = Ax, x(0) = x0, is x = ΦΦΦΦ(t)x0, where ΦΦΦΦ(0) = I. 

Comparing the form and solution for both of these cases, we 

might expect ΦΦΦΦ(t) to have an exponential character.  might expect ΦΦΦΦ(t) to have an exponential character.  

Indeed, it can be shown that ΦΦΦΦ(t) = eAt, where 

is a well defined matrix function that has all the usual 

properties of an exponential function.  See text for details.  

Thus the solution to x' = Ax, x(0) = x0, is x = eAtx0. 
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Coupled Systems of Equations

Recall that our constant coefficient homogeneous system
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written as x' = Ax with

is a system of coupled equations that must be solved 

simultaneously to find all the unknown variables. 
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Uncoupled Systems & Diagonal Matrices

In contrast, if each equation had only one variable, solved for 

independently of other equations, then task would be easier.

In this case our system would have the form
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or x' = Dx, where D is a diagonal matrix:  
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Uncoupling:  Transform Matrix T

In order to explore transforming our given system x' = Ax of 

coupled equations into an uncoupled system x' = Dx, where D

is a diagonal matrix, we will use the eigenvectors of A.

Suppose A is n x n with n linearly independent eigenvectors 

ξξξξ(1),…, ξξξξ(n), and corresponding eigenvalues λ ,…, λ .ξξξξ(1),…, ξξξξ(n), and corresponding eigenvalues λ1,…, λn.

Define n x n matrices T and D using the eigenvalues & 

eigenvectors of A:

Note that T is nonsingular, and hence T-1 exists. 
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Uncoupling: T-1AT = D

Recall here the definitions of A, T and D:
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Then the columns of AT are Aξξξξ(1),…, Aξξξξ(n), and hence

It follows that T-1AT = D.  
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Similarity Transformations

Thus, if the eigenvalues and eigenvectors of A are known, 

then A can be transformed into a diagonal matrix D, with 

T-1AT = D

This process is known as a similarity transformation, and A

is said to be similar to D.  Alternatively, we could say that Ais said to be similar to D.  Alternatively, we could say that A

is diagonalizable.  
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Similarity Transformations: Hermitian Case

Recall:  Our similarity transformation of A has the form

T-1AT = D

where D is diagonal and columns of T are eigenvectors of A.  

If A is Hermitian, then A has n linearly independent 

orthogonal eigenvectors ξξξξ(1),…, ξξξξ(n), normalized so that orthogonal eigenvectors ξξξξ(1),…, ξξξξ(n), normalized so that 

(ξξξξ(i), ξξξξ(i)) =1 for i = 1,…, n, and (ξξξξ(i), ξξξξ(k)) = 0 for i ≠ k.  

With this selection of eigenvectors, it can be shown that 

T-1 = T*.  In this case we can write our similarity transform as

T*AT = D



Nondiagonalizable A

Finally, if A is n x n with fewer than n linearly independent 

eigenvectors, then there is no matrix T such that T-1AT = D.  

In this case, A is not similar to a diagonal matrix and A is not 

diagonlizable.  
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Example 3: 

Find Transformation Matrix T  (1 of 2)

For the matrix A below, find the similarity transformation 

matrix T and show that A can be diagonalized.
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Example 3: Similarity Transformation  (2 of 2)

To find T-1, augment the identity to T and row reduce:
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Fundamental Matrices for Similar Systems (1 of 3)

Recall our original system of differential equations x' = Ax.

If A is n x n with n linearly independent eigenvectors, then A

is diagonalizable.  The eigenvectors form the columns of the 

nonsingular transform matrix T, and the eigenvalues are the 

corresponding nonzero entries in the diagonal matrix D.corresponding nonzero entries in the diagonal matrix D.

Suppose x satisfies x' = Ax, let y be the n x 1 vector such that 

x = Ty.  That is, let y be defined by y = T-1x.

Since  x' = Ax and T is a constant matrix, we have Ty' = ATy, 

and hence y' = T-1ATy = Dy.

Therefore y satisfies y' = Dy, the system similar to x' = Ax.

Both of these systems have fundamental matrices, which we 

examine next.



Fundamental Matrix for Diagonal System (2 of 3)

A fundamental matrix for y' = Dy is given by Q(t) = eDt.  

Recalling the definition of eDt, we have
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Fundamental Matrix for Original System  (3 of 3)

To obtain a fundamental matrix ΨΨΨΨ(t) for x' = Ax, recall that the 

columns of ΨΨΨΨ(t) consist of fundamental solutions x satisfying 

x' = Ax.  We also know x = Ty, and hence it follows that
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The columns of ΨΨΨΨ(t) given the expected fundamental solutions 

of x' = Ax.  
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Example 4: 

Fundamental Matrices for Similar Systems

We now use the analysis and results of the last few slides.

Applying the transformation x = Ty to x' = Ax below, this 

system becomes y' = T-1ATy = Dy:
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A fundamental matrix for y' = Dy is given by Q(t) = eDt:

Thus a fundamental matrix ΨΨΨΨ(t) for x' = Ax is
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