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Slipposé that X(1>(i),. 5 -X(”)(t)- form a fundamental set of
solutions for x'=P(H)x on a<t< pf.

The matrix

)
Wiy =fn oy

A2 )

whose columns are x(¢),..., x"(7), is a fundamental matrix
for the system x' = P(¢#)x. This matrix is nonsingular since its
columns are linearly independent, and hence detW # 0.

Note also that since xV(7),..., x"(¢) are solutions of x' = P(?)x,
WY satisfies the matrix differential equation W' = P(¢)W.




Example 1:

# Consider the homogeneous equatlon Xy AX below
: [1 1)
X
T
* In Chapter 7.5, we found the following fundamental
solutions for this system:

T A S S e S e
X (t)—(ze SR = —28

# Thus a fundamental matrix for this system is

3t =t
e e
Y(t) =
) £2€3t —2€t]




Fundamental Matrlces and General Solutlon

™ The general solut1on of X' = P(t)x
x=cx" )+ +c x"

can be expressed x = W(7)c, where ¢ 1s a constant vector with
components cy,..., C,:
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Fundamental Matrlx & Imtlal Value Problem

= Conmder an 1n1t1a1 Value problem
x'=P()x, x(t,) = x°
where o< t, < fand x is a given initial vector.

Now the solution has the form x = W(#)c, hence we choose ¢
so as to satisfy x(z,) = x°.

A%
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Recalling W(#,) 1s nonsingular, it follows that
R s SRl R G L AT

Thus our solution x = W(#)c can be expressed as

AX

x=P(O)¥ ' ,)x"



Recall: Theorem 7.4.4

= Let 1 0 0
0 1 0

e(l) =10 e(z) =10 e(n) = :

: . 0

0 0 1

* Letx(,..., x® be solutions of x'=P(f)x on I: &< t < [ that
satisfy the initial conditions

xVt)=e", ..., x"¢,)=e", a<t, <f

Then x(I,..., x" are fundamental solutions of x' = P(¥)x.



Fundamental Matrlx & Theorem 7 4, 4

3 Suppose X(l)(t) X(”)(l‘) form the fundamental solutlons glven
by Thm 7.4 .4. Denote the corresponding fundamental matrix
by ®(7). Then columns of ®(¢) are x(1(¢),..., x")(r), and hence
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(Zy) = A E RO RS =1
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{ % Thus ®!(z)) =1, and the hence general solution to the
corresponding initial value problem is
x=01)D"' (t, X! =®(1)x’
* It follows that for any fundamental matrix ¥(z),
x=PO)Y ()X’ =®)x’ = O®H)=YOVP (¢,




The Fundamental Matrix @
and Varymg In1t1a1 COIldlthIlS

=% Thus when usmg the fundamental matrix CID(t) the general
solution to an IVP 1s

x=P1)D"' (Z, X! = ®(1)x’
» This representation 1s useful 1f same system 1s to be solved for

many different initial conditions, such as a physical system
that can be started from many different initial states.

# Also, once ®P(7) has been determined, the solution to each set
of initial conditions can be found by matrix multiplication, as
indicated by the equation above.

% Thus P(7) represents a linear transformation of the 1nitial
conditions X' into the solution x(¢) at time #.




Example 2 Find CIJ(t) for 2 x 2 System (1 of 5)

% Find CID(t) such that CID(()) I for the system below.
: [1 1]
X
4 1
% Solution: First, we must obtain xV(¢) and x®(7) such that

(D = 1 (2) W& 0
()} o

* We know from previous results that the general solution is

X = . e’ +c, &5 e

* Every solution can be expressed in terms of the general
solution, and we use this fact to find x()(7) and x)(¢).




Example 2 Use General Solutlon (2 of 5)

3 Thus, to find X(l)(l‘), express it terms of the general solutlon

1 t 1 =1
x"(t) = cl(zjeS + 02[_ zje

and then find the coefficients ¢, and c,.
% To do so, use the initial conditions to obtain

o 0
2 =2 0

or equivalently,

ol




Example ks Solve for X(l)(l‘) (3 of 5)

« To find X(l)(t) we therefore solve
P hite
i SR
by row reducing the augmented matrix:
1 I 1 1 1 1 BN 1 1400 52
— — —
ARIEDS. B § 0 -4 -2 0 1 1/2 O caio /2
¢, =1/2
c, = 1/2




Example 945 Solve for X(z)(t) (4 of 5)

« To find X(Z)(t) we snmlarly solve

Lk

by row reducing the augmented matrix:

1 1 O 1 1 O I 1 0 1 0 1/4
— — —
. ANTyls T 0 —4 1 0O 1 —-1/4 0O 1 -1/4

C, =.1/4
%
c, =-1/4
# Thus 1 3:_1 =
B 1 (lj S 1 ( 1j ; Ze Ze
X UE) = e —— ey 1
2 4{-2 S




Example 2: Obtaln CID(t) (5 of 5)

% The columns of <I>(t) are glven by X(l)(l‘) and X(2>(t), and thus
from the previous slide we have

o SR
—e'+—e' —e'——¢"
G R G R
el —eh N et r—c’

* Note P(7) is more complicated than W(7) found in Ex 1.
However, now that we have ®(¢), 1t 1s much easier to
determine the solution to any set of initial conditions.

631‘ e—t
Y()=
£2e% L




Matrlx Exponentlal Functlons

Conmder the followmg two cases:

+ The solution to x' = ax, x(0) = x,, is x = x,e%, where e" = 1.
# The solution to x' = Ax, x(0) = x°, is x = ®(¢)x", where ®(0) = L.

Comparing the form and solution for both of these cases, we
might expect P(¢) to have an exponential character.

Indeed, it can be shown that <I>(t) = ¢A! where

o At =

e =

n=0 =i}

1s a well defined matrix functlon that has all the usual
properties of an exponential function. See text for details.

Thus the solution to x' = Ax, x(0) = xY, is x = eAxY.



Coupled Systems of Equatlons

= Recall that our constant coefficient homogeneous system

4

/

nn~"n?

written as X' = Ax with
x,(7) B RN

Xk DR PARS Y e N

x, (1) a

1s a system of coupled equations that must be solved
simultaneously to find all the unknown variables.




Uncoupled Systems & Dlagonal Matrlces

= In contrast, 1f each equatlon had only one Varlable, solved for
independently of other equations, then task would be easier.

# In this case our system would have the form

x; =d;x,+0x,+...+0x,

x, =0x, +d,,x, +...+0x,

x, =0x,+0x,+...+d_x

nn-"n?

or X' = Dx, where D i1s a diagonal matrix:

7 A IO R
x, (1)
0 d, - 0

x(t)=| : |, D=
x, (1)

nn




Uncouphng Transform Matrlx T

In order to explore transformlng our glven system X= AX of
coupled equations into an uncoupled system x' = Dx, where D
is a diagonal matrix, we will use the eigenvectors of A.

Suppose A is n X n with n linearly independent eigenvectors
ED,..., &M, and corresponding eigenvalues A,,..., 4,.

Define n x n matrices T and D using the eigenvalues &
eigenvectors of A:

SRS A-n 08 R0
T 1: - 1: D 0o 4 -+ 0
ShEERS IRy L i i
s S

n

Note that T is nonsingular, and hence T-! exists.



Uncoupling: T 1AT D

3 Recall here the deflmtlons of A, T and D
; A 0 - 0
QUi R e oy
DR R B R N S e Ha:
Ry, (n) : i A 1
anl ann 5}1 é:n 0 0 ﬂ

% Then the columns of AT are AED,..., AE™, and hence

460 10 g
AT =1 Y = X =TID

1) n
SR N YRy

#* It follows that T'AT = D.




Slmllarlty Transformatlons

= Thus if the elgenvalues and elgenvectors of A are known
then A can be transformed into a diagonal matrix D, with

T'AT=D
» This process is known as a similarity transformation, and A
is said to be similar to D. Alternatively, we could say that A

is diagonalizable.
Wi s Gy 51(1) é:l(n) /z)l

PRl
Ansbg

anl 5T ann 5}51) g é:rgn)




Slmllarlty Transformatlons Hermltlan Case

% Recall: Our snmlarlty transformatlon of A has the form
T'AT=D
where D is diagonal and columns of T are eigenvectors of A.

# If A 1s Hermitian, then A has » linearly independent
orthogonal eigenvectors EW,..., E™, normalized so that

(€D, ED) =1 fori=1,..., n, and (§®, EX) = 0 for i # k.
= With this selection of eigenvectors, it can be shown that

T-' = T". In this case we can write our similarity transform as
T°AT=D




Nondlagonahzable A

= Fmally, if A is 7 x n with fewer than n hnearly 1ndependent
eigenvectors, then there is no matrix T such that T-'AT = D.

* In this case, A is not similar to a diagonal matrix and A is not
diagonlizable.

a, - 4y, 51(1) é:l(n)

B R A éiﬁ” éﬁm




Example 3:
Flnd Transformatlon Matrlx T (1 of 2)

% For the matrix A below flIld the snmlarlty transformatlon
matrix T and show that A can be diagonalized.

oo

* We already know that the eigenvalues are 4, =3, 4, = -
with corresponding eigenvectors

(H 1 1 (2) ] 1
&.c (t)_(2j7§ (t)_(_zj
(1 1) [3 oj
T= . D=
e 0 —1

# Thus




Example 3: Similarity Transformation 2 of 2)

% To find T-! augment the 1dent1ty to T and row reduce
1 1 1 0 By 1 1 1 0O kel 1 0
RS S | A NS N RSN Y e i

1 0 1/2 1/4 1/4
%
0 1 1/2 -1/4 T2l

* Then
2 VA R A
T AT=

12" =14
1/ 2014

= = D
FA2%s = ARG 2 0 -1

* Thus A is similar to D, and hence A 1s diagonalizable.




Fundamental Matrlces for Slmllar Systems (1 of 3)

= Recall our orlgmal system of dlfferentlal equatlons X' = AX.

% If A is n x n with n linearly independent eigenvectors, then A
1s diagonalizable. The eigenvectors form the columns of the
nonsingular transform matrix T, and the eigenvalues are the
corresponding nonzero entries in the diagonal matrix D.

= Suppose X satisfies X' = Ax, let y be the n x 1 vector such that
x = Ty. That is, let y be defined by y = T-'x.

#* Since x'= Ax and T is a constant matrix, we have Ty'= ATy,
{ and hencey’' = T-'ATy = Dy.

* Therefore y satisfies y' = Dy, the system similar to x' = Ax.

#* Both of these systems have fundamental matrices, which we
examine next.




Fundamental Matrix for Diagonal System (2 of 3)

% A fundamental matrix for y' = Dy is given by Q(7) = €P".
% Recalling the definition of ¢, we have

(&) \
o o ZW‘) 0050
S5 | s . om0 T
n=0 . n=0 n ' 3 tn
\0 0 ﬂn) 0 0 Z n
k n=0 n' )
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Fundamental Matrlx for Orlglnal System (3 of 3)

. To obtaln a fundamental matrix ‘P(t) for x' = AX recall that the
columns of W(¢) consist of fundamental solutions x satisfying
x'= Ax. We also know x = Ty, and hence it follows that
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i = The columns of W(7) given the expected fundamental solutions

of X' = Ax.



Example 4:
Fundamental Matrlces for Slmllar Systems

= We now use the analy51s and results of the last few slides.

* Applying the transformation x = Ty to X' = Ax below, this
system becomes y' = T-'ATy = Dy:

AR RNy
X = b (g a? o
4 1 5 O—ly

% A fundamental matrix for y' = Dy is given by Q(7) = e

gt
e

* Thus a fundamental matrix W(¢) for x' = Ax is

1 1 eSt O e3t e—t
s T VS )




