Boyce/DiPrima 9th ed, Ch 7.7: Fundamental Matrices

Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc.

- Suppose that $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions for $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on $\alpha < t < \beta$.
- * The matrix

 $\Psi(t) = \begin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \\ \vdots & \ddots & \vdots \\ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix},$

____j- ___j- __ _j- __ _j- __ _j- __ _j- ____j-

whose columns are $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$, is a fundamental matrix for the system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$. This matrix is nonsingular since its columns are linearly independent, and hence det $\Psi \neq 0$.

* Note also that since $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ are solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$, Ψ satisfies the matrix differential equation $\Psi' = \mathbf{P}(t)\Psi$.

Example 1:

***** Consider the homogeneous equation $\mathbf{x}' = \mathbf{A}\mathbf{x}$ below.

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

In Chapter 7.5, we found the following fundamental solutions for this system:

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} 1\\ 2 \end{pmatrix} e^{3t}, \ \mathbf{x}^{(2)}(t) = \begin{pmatrix} 1\\ -2 \end{pmatrix} e^{-t}$$

***** Thus a fundamental matrix for this system is

$$\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

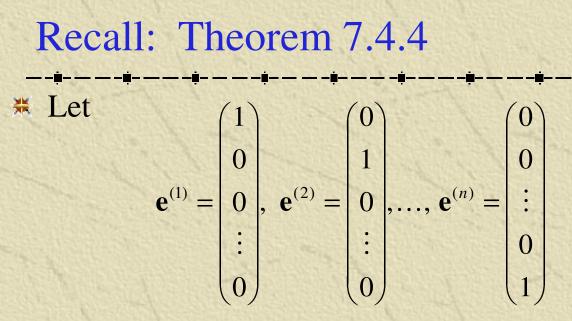
Fundamental Matrices and General Solution * The general solution of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$

$$\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + \dots + c_n \mathbf{x}^{(n)}$$

can be expressed $\mathbf{x} = \Psi(t)\mathbf{c}$, where **c** is a constant vector with components c_1, \dots, c_n :

$$\mathbf{x} = \mathbf{\Psi}(t)\mathbf{c} = \begin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \\ \vdots & \ddots & \vdots \\ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

Fundamental Matrix & Initial Value Problem Consider an initial value problem $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \ \mathbf{x}(t_0) = \mathbf{x}^0$ where $\alpha < t_0 < \beta$ and \mathbf{x}^0 is a given initial vector. Now the solution has the form $\mathbf{x} = \Psi(t)\mathbf{c}$, hence we choose \mathbf{c} * so as to satisfy $\mathbf{x}(t_0) = \mathbf{x}^0$. **Recalling** $\Psi(t_0)$ is nonsingular, it follows that $\Psi(t_0)\mathbf{c} = \mathbf{x}^0 \implies \mathbf{c} = \Psi^{-1}(t_0)\mathbf{x}^0$ ***** Thus our solution $\mathbf{x} = \Psi(t)\mathbf{c}$ can be expressed as $\mathbf{x} = \boldsymbol{\Psi}(t) \boldsymbol{\Psi}^{-1}(t_0) \mathbf{x}^0$



* Let $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ be solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on *I*: $\alpha < t < \beta$ that satisfy the initial conditions

 $\mathbf{x}^{(1)}(t_0) = \mathbf{e}^{(1)}, \dots, \mathbf{x}^{(n)}(t_0) = \mathbf{e}^{(n)}, \ \alpha < t_0 < \beta$

Then $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ are fundamental solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$.

Fundamental Matrix & Theorem 7.4.4

Suppose $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ form the fundamental solutions given by Thm 7.4.4. Denote the corresponding fundamental matrix by $\Phi(t)$. Then columns of $\Phi(t)$ are $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$, and hence

$$\Phi(t_0) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

* Thus $\Phi^{-1}(t_0) = \mathbf{I}$, and the hence general solution to the corresponding initial value problem is

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}^0 = \mathbf{\Phi}(t)\mathbf{x}^0$$

***** It follows that for any fundamental matrix $\Psi(t)$, $\mathbf{x} = \Psi(t)\Psi^{-1}(t_0)\mathbf{x}^0 = \Phi(t)\mathbf{x}^0 \implies \Phi(t) = \Psi(t)\Psi^{-1}(t_0)$

The Fundamental Matrix Φ and Varying Initial Conditions

* Thus when using the fundamental matrix $\Phi(t)$, the general solution to an IVP is

 $\mathbf{x} = \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(t_0)\mathbf{x}^0 = \mathbf{\Phi}(t)\mathbf{x}^0$

- * This representation is useful if same system is to be solved for many different initial conditions, such as a physical system that can be started from many different initial states.
- ** Also, once $\Phi(t)$ has been determined, the solution to each set of initial conditions can be found by matrix multiplication, as indicated by the equation above.
- * Thus $\Phi(t)$ represents a linear transformation of the initial conditions \mathbf{x}^0 into the solution $\mathbf{x}(t)$ at time *t*.

Example 2: Find $\Phi(t)$ for 2 x 2 System (1 of 5) Find $\Phi(t)$ such that $\Phi(0) = I$ for the system below.

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

***** Solution: First, we must obtain $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ such that

$$\mathbf{x}^{(1)}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{x}^{(2)}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- We know from previous results that the general solution is $\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$
- * Every solution can be expressed in terms of the general solution, and we use this fact to find $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$.

Example 2: Use General Solution (2 of 5)
Thus, to find x⁽¹⁾(t), express it terms of the general solution

$$\mathbf{x}^{(1)}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

and then find the coefficients c_1 and c_2 . ***** To do so, use the initial conditions to obtain $\mathbf{x}^{(1)}(0) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

or equivalently,

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Example 2: Solve for $\mathbf{x}^{(1)}(t)$ (3 of 5) To find $\mathbf{x}^{(1)}(t)$, we therefore solve $\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}$$

$$\rightarrow \begin{array}{c} c_1 & = 1/2 \\ c_2 & = 1/2 \end{array}$$

🗮 Thus

$$\mathbf{x}^{(1)}(t) = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + \frac{1}{2} \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{2} e^{3t} + \frac{1}{2} e^{-t} \\ e^{3t} - e^{-t} \end{pmatrix}$$

Example 2: Solve for $\mathbf{x}^{(2)}(t)$ (4 of 5) To find $\mathbf{x}^{(2)}(t)$, we similarly solve $\begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

by row reducing the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1/4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/4 \\ 0 & 1 & -1/4 \end{pmatrix}$$

$$\rightarrow \begin{array}{c} c_1 & = 1/4 \\ c_2 & = -1/4 \end{array}$$

** Thus $\mathbf{x}^{(2)}(t) = \frac{1}{4} \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} - \frac{1}{4} \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t} = \begin{pmatrix} \frac{1}{4} e^{3t} - \frac{1}{4} e^{-t} \\ \frac{1}{2} e^{3t} + \frac{1}{2} e^{-t} \\ \frac{1}{2} e^{3t} + \frac{1}{2} e^{-t} \end{pmatrix}$

Example 2: Obtain $\Phi(t)$ (5 of 5)

* The columns of $\Phi(t)$ are given by $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$, and thus from the previous slide we have

$$\mathbf{\Phi}(t) = \begin{pmatrix} \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} & \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} \\ e^{3t} - e^{-t} & \frac{1}{2}e^{3t} + \frac{1}{2}e^{-t} \end{pmatrix}$$

** Note $\Phi(t)$ is more complicated than $\Psi(t)$ found in Ex 1. However, now that we have $\Phi(t)$, it is much easier to determine the solution to any set of initial conditions.

$$\Psi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$

Matrix Exponential Functions

Consider the following two cases:

• The solution to x' = ax, $x(0) = x_0$, is $x = x_0e^{at}$, where $e^0 = 1$.

• The solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}^0$, is $\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}^0$, where $\mathbf{\Phi}(0) = \mathbf{I}$.

* Comparing the form and solution for both of these cases, we might expect $\Phi(t)$ to have an exponential character.

***** Indeed, it can be shown that $\Phi(t) = e^{At}$, where

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{\mathbf{A}^n t^n}{n!} = \mathbf{I} + \sum_{n=1}^{\infty} \frac{\mathbf{A}^n t^n}{n!}$$

is a well defined matrix function that has all the usual properties of an exponential function. See text for details.
[★] Thus the solution to x' = Ax, x(0) = x⁰, is x = e^{At}x⁰.

Coupled Systems of Equations

Recall that our constant coefficient homogeneous system

 $x_1' = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n$

 $x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \ldots + a_{nn}x_{n},$

written as $\mathbf{x}' = \mathbf{A}\mathbf{x}$ with

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix},$$

is a system of *coupled* equations that must be solved *simultaneously* to find all the unknown variables.

Uncoupled Systems & Diagonal Matrices

- In contrast, if each equation had only one variable, solved for independently of other equations, then task would be easier.
- In this case our system would have the form

$$x'_{1} = d_{11}x_{1} + 0x_{2} + \dots + 0x_{n}$$
$$x'_{2} = 0x_{1} + d_{11}x_{2} + \dots + 0x_{n}$$

$$x'_n = 0x_1 + 0x_2 + \ldots + d_{nn}x_n,$$

or $\mathbf{x}' = \mathbf{D}\mathbf{x}$, where **D** is a diagonal matrix:

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

Uncoupling: Transform Matrix T

- In order to explore transforming our given system x' = Ax of coupled equations into an uncoupled system x' = Dx, where D is a diagonal matrix, we will use the eigenvectors of A.
- Suppose A is $n \ge n$ with n linearly independent eigenvectors $\xi^{(1)}, \ldots, \xi^{(n)}$, and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$.
- Define n x n matrices T and D using the eigenvalues & eigenvectors of A:

$$\mathbf{T} = \begin{pmatrix} \boldsymbol{\xi}_1^{(1)} & \cdots & \boldsymbol{\xi}_1^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_n^{(1)} & \cdots & \boldsymbol{\xi}_n^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \boldsymbol{\lambda}_1 & 0 & \cdots & 0 \\ 0 & \boldsymbol{\lambda}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\lambda}_n \end{pmatrix}$$

***** Note that **T** is nonsingular, and hence **T**⁻¹ exists.

Uncoupling: $T^{-1}AT = D$

Recall here the definitions of A, T and D:

 $\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \boldsymbol{\xi}_{1}^{(1)} & \cdots & \boldsymbol{\xi}_{1}^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_{n}^{(1)} & \cdots & \boldsymbol{\xi}_{n}^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \boldsymbol{\lambda}_{1} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\lambda}_{2} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\lambda}_{n} \end{pmatrix}$

***** Then the columns of **AT** are $A\xi^{(1)}, \ldots, A\xi^{(n)}$, and hence

$$\mathbf{AT} = \begin{pmatrix} \lambda_1 \xi_1^{(1)} & \cdots & \lambda_n \xi_1^{(n)} \\ \vdots & \ddots & \vdots \\ \lambda_1 \xi_n^{(1)} & \cdots & \lambda_n \xi_n^{(n)} \end{pmatrix} = \mathbf{TD}$$

It follows that $T^{-1}AT = D$.

Similarity Transformations

* Thus, if the eigenvalues and eigenvectors of A are known, then A can be transformed into a diagonal matrix D, with $T^{-1}AT = D$

$\mathbf{I}^{T}\mathbf{A}\mathbf{I}=\mathbf{D}$

* This process is known as a similarity transformation, and A is said to be similar to D. Alternatively, we could say that A is diagonalizable.

 $\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \boldsymbol{\xi}_{1}^{(1)} & \cdots & \boldsymbol{\xi}_{1}^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_{n}^{(1)} & \cdots & \boldsymbol{\xi}_{n}^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \boldsymbol{\lambda}_{1} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\lambda}_{2} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\lambda}_{n} \end{pmatrix}$

Similarity Transformations: Hermitian Case Recall: Our similarity transformation of A has the form $T^{-1}AT = D$

where \mathbf{D} is diagonal and columns of \mathbf{T} are eigenvectors of \mathbf{A} .

- ★ If A is Hermitian, then A has *n* linearly independent orthogonal eigenvectors ξ⁽¹⁾,..., ξ⁽ⁿ⁾, normalized so that (ξ⁽ⁱ⁾, ξ⁽ⁱ⁾) =1 for *i* = 1,..., *n*, and (ξ⁽ⁱ⁾, ξ^(k)) = 0 for *i* ≠ k.
- * With this selection of eigenvectors, it can be shown that $T^{-1} = T^*$. In this case we can write our similarity transform as $T^*AT = D$

Nondiagonalizable A

Finally, if A is n x n with fewer than n linearly independent eigenvectors, then there is no matrix T such that T⁻¹AT = D.
In this case, A is not similar to a diagonal matrix and A is not diagonlizable.

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} \boldsymbol{\xi}_{1}^{(1)} & \cdots & \boldsymbol{\xi}_{1}^{(n)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\xi}_{n}^{(1)} & \cdots & \boldsymbol{\xi}_{n}^{(n)} \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} \boldsymbol{\lambda}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\lambda}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\lambda}_{n} \end{pmatrix}$$

Example 3: Find Transformation Matrix T (1 of 2)

For the matrix A below, find the similarity transformation matrix T and show that A can be diagonalized.

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

* We already know that the eigenvalues are $\lambda_1 = 3$, $\lambda_2 = -1$ with corresponding eigenvectors

$$\xi^{(1)}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \xi^{(2)}(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

🗮 Thus

$$\mathbf{T} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$

Example 3: Similarity Transformation (2 of 2)
To find T⁻¹, augment the identity to T and row reduce:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -4 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1/2 & -1/4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1/2 & 1/4 \\ 0 & 1 & 1/2 & -1/4 \end{pmatrix} \rightarrow T^{-1} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix}$$

👯 Then

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} = \mathbf{D}$$

***** Thus A is similar to **D**, and hence A is diagonalizable.

Fundamental Matrices for Similar Systems (1 of 3)

- ***** Recall our original system of differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- If A is n x n with n linearly independent eigenvectors, then A is diagonalizable. The eigenvectors form the columns of the nonsingular transform matrix T, and the eigenvalues are the corresponding nonzero entries in the diagonal matrix D.
- Suppose x satisfies x' = Ax, let y be the *n* x 1 vector such that x = Ty. That is, let y be defined by $y = T^{-1}x$.
- Since $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and \mathbf{T} is a constant matrix, we have $\mathbf{T}\mathbf{y}' = \mathbf{A}\mathbf{T}\mathbf{y}$, and hence $\mathbf{y}' = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{y} = \mathbf{D}\mathbf{y}$.
- ***** Therefore y satisfies y' = Dy, the system similar to x' = Ax.
- Both of these systems have fundamental matrices, which we examine next.

Fundamental Matrix for Diagonal System (2 of 3)
A fundamental matrix for y' = Dy is given by Q(t) = e^{Dt}.
Recalling the definition of e^{Dt}, we have

 $\int \infty (1) n$

$$\mathbf{Q}(t) = \sum_{n=0}^{\infty} \frac{\mathbf{D}^{n} t^{n}}{n!} = \sum_{n=0}^{\infty} \begin{pmatrix} \lambda_{1}^{n} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_{n}^{n} \end{pmatrix} \frac{t^{n}}{n!} = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{(\lambda_{1} t)}{n!} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sum_{n=0}^{\infty} \frac{(\lambda_{n} t)^{n}}{n!} \end{pmatrix}$$
$$= \begin{pmatrix} e^{\lambda_{1} t} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & e^{\lambda_{n} t} \end{pmatrix}$$

Fundamental Matrix for Original System (3 of 3)
** To obtain a fundamental matrix Ψ(t) for x' = Ax, recall that the columns of Ψ(t) consist of fundamental solutions x satisfying x' = Ax. We also know x = Ty, and hence it follows that

$$\Psi = \mathbf{T}\mathbf{Q} = \begin{pmatrix} \xi_{1}^{(1)} & \cdots & \xi_{1}^{(n)} \\ \vdots & \ddots & \vdots \\ \xi_{n}^{(1)} & \cdots & \xi_{n}^{(n)} \end{pmatrix} \begin{pmatrix} e^{\lambda_{1}t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_{n}t} \end{pmatrix} = \begin{pmatrix} \xi_{1}^{(1)}e^{\lambda_{1}t} & \cdots & \xi_{1}^{(n)}e^{\lambda_{n}t} \\ \vdots & \ddots & \vdots \\ \xi_{n}^{(1)}e^{\lambda_{1}t} & \cdots & \xi_{n}^{(n)}e^{\lambda_{n}t} \end{pmatrix}$$

* The columns of $\Psi(t)$ given the expected fundamental solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Example 4: Fundamental Matrices for Similar Systems

- * We now use the analysis and results of the last few slides.
- * Applying the transformation $\mathbf{x} = \mathbf{T}\mathbf{y}$ to $\mathbf{x}' = \mathbf{A}\mathbf{x}$ below, this system becomes $\mathbf{y}' = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{y} = \mathbf{D}\mathbf{y}$:

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x} \implies \mathbf{y}' = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{y}$$

- ** A fundamental matrix for $\mathbf{y}' = \mathbf{D}\mathbf{y}$ is given by $\mathbf{Q}(t) = e^{\mathbf{D}t}$: $\mathbf{Q}(t) = \begin{pmatrix} e^{3t} & 0\\ 0 & e^{-t} \end{pmatrix}$
- ***** Thus a fundamental matrix $\Psi(t)$ for $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is

$$\Psi(t) = \mathbf{T}\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{pmatrix} = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix}$$