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« Many practical engineering problems involve mechanical or
electrical systems acted upon by discontinuous or impulsive
forcing terms.

* For such problems the methods described in Chapter 3 are
difficult to apply.

* In this chapter we use the Laplace transform to convert a
problem for an unknown function f into a simpler problem
for F, solve for F, and then recover f from its transform F.

« Given a known function K(s,t), an integral transform of a
function f is a relation of the form

F(s)= ) K(s.0)f())dt, - ¥ £a<bE¥



Improper Integrals

« The Laplace transform will involve an integral from zero
to infinity. Such an integral is a type of improper integral.

« An improper integral over an unbounded interval is
defined as the limit of an integral over a finite interval
[ f@dt=1im [ f @)t

a A—0

where A Is a positive real number.

 If the integral from a to A exists for each A > a and if the
limit as 4 — oo exists, then the improper integral is said to
converge to that limiting value. Otherwise, the integral is
said to diverge or fail to exist.



Example 1

« Consider the following improper integral.
Y odt

* \We can evaluate this intetgral as follows:

odt . Adt .
Zolim| == Ilm(InA)—>oo
1 t A—>wod 1 l' A—>0

» Therefore, the improper integral diverges.



Example 2

 Consider the following improper integral.
jwe“dt
0

« \We can evaluate this integral as follows:

JeCtdt_Ilm “edldt = lim l(eCA—l)

* Note thatif c =0, then et =1. Thus the following two cases
hold:

Tt = —l, if c<0: and
JO C

“e%dt diverges, if ¢>0.

JO




Example 3

Consider the following improper integral.
[ et

From Example 1, this integral divergesatp =1
We can evaluate this integral for p # 1 as follows:
o0 ) A . 1
j tPdt=Ilim| t° dt = lim —(Al‘Io —1)
1 A—wo Jd1 A— o0 1_ p
The improper integral diverges at p = 1 and

If p>1, lim ﬁ(Al—p_Q:_

If p<1 lim —~ (A" —1) > oo
A—>0 1_ p



Plecewise Continuous Functions

« Afunction f is piecewise continuous on an interval [a, b] if
this interval can be partitioned by a finite number of points

a=t,<t <..<t =bsuchthat
(1) fis continuous on each (t,, t,..,)

Y T\

<o, k=0,..., n-1 / ./

(2)

lim f (t)

t—ty

|
<oo, k=1,...,n v SO

3) | lim f (1)

tti

 In other words, f Is piecewise continuous on [a, b] if it is
continuous there except for a finite number of jump
discontinuities.



Theorem 6.1.1

* If fis piecewise continuous for t > a, If | f(t) | < g(t) when
> M for some positive M and If ¢e(r)dr converges, then
(‘)f(t)dt also converges. "

* On the other hand, If f(t) > g(t) = 0 for t> M, and If (g(t)dt
diverges, then Of(t)dt also diverges.



The Laplace Transform

Let f be a function defined for t > 0, and satisfies certain
conditions to be named later.

The Laplace Transform of f is defined as an integral
transform: ¢ )1 E(s) = [et @t

The kernel function is K(s,t) = e,

Since solutions of linear differential equations with constant
coefficients are based on the exponential function, the
Laplace transform is particularly useful for such equations.

Note that the Laplace Transform is defined by an improper
Integral, and thus must be checked for convergence.

On the next few slides, we review examples of improper
Integrals and piecewise continuous functions.



Theorem 6.1.2

Suppose that f is a function for which the following hold:
(1) f is piecewise continuous on [0, b] forall b > 0.
(2) | f(t) | < Ke2t when t > M, for constants a, K, M, with K, M > 0.

Then the Laplace Transform of f exists for s > a.

L{f(t)}=F(s)= j: e f (t)dt finite

Note: A function f that satisfies the conditions specified above
IS said to to have exponential order ast — oo.



Example 4

Letf (t) =1 for t>0. Then the Laplace transform F(s) of f is:
L{L}= edt

- b st
=|lim| e dt

b—w Jd0

—st b

. e
:—!)lm
—>00 S .

. s>0

2
S



Example 5

Let f (t) = e fort > 0. Then the Laplace transform F(s) of f Is:
at | [ ,-st.at
L{e }__[O e e dt

. b
:Ilmjoe (s=atdt

b—oo




Example 6

Consider the following piecewise-defined function f
1, 0<t<1

ft)=4k, t=1

0 t>1

where K Is a constant. This represents a unit impulse.
Noting that f(t) Is piecewise continuous, we can compute
Its Laplace transform

LEF =] e f @t = jole‘“dtzl_se_ 550

Observe that this result does not depend on k, the function
value at the point of discontinuity.




Example 7

« Letf(t) =sin(at) for t > 0. Using integration by parts twice, the
Laplace transform F(s) of f is found as follows:

F(s) = Lsm(at) je sinatdt = lim be‘Stsinatdt

b—wJ0

b—oo

. b S ¢b
~ Ilm[— (e cosat)/al - —j e~ cos at}
0 a°o

1 s, [¢0 _
=——=lim _[ e“cosat}
a a b—xo[ J0
1 s [ .. b S b g
==—=1lim| (esinat)/a +=[ esinat
a ab-o °arl
1 s° a

s>0

=———F(s) = F(s)=

a a 5?2 +g° "



Linearity of the Laplace Transform

« Suppose fand g are functions whose Laplace transforms exist
for s >a, and s > a,, respectively.

* Then, for s greater than the maximum of a, and a,, the Laplace
transform of c, f (t) + c,g(t) exists. That is,

L{c f(t)+c,g(t) }= jo“’ e ¢, f(t)+c,g(t)|dt is finite
with
Lic,f(t)+c,g(t) l=c, joooe‘“f(t)dt +¢, joooe‘“g(t)dt
=c,L{f ®)}+c,L{g(t)}



Example 8

o Letf (t) = 5e2t - 3sin(4t) fort > 0.

« Then by linearity of the Laplace transform, and using results
of previous examples, the Laplace transform F(s) of f is:

F(s)=L{f(t)}
= L{5e% —3sin(4t) |
=5L{e |-3L{sin(4t) }

9 12 s> 0

T 5+2 $2+16
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The Laplace transform is named for the French mathematician
Laplace, who studied this transform in 1782.

The techniques described in this chapter were developed
primarily by Oliver Heaviside (1850 - 1925), an English
electrical engineer.

In this section we see how the Laplace transform can be used
to solve initial value problems for linear differential equations
with constant coefficients.

The Laplace transform is useful in solving these differential
equations because the transform of f' is related in a simple way
to the transform of f, as stated in Theorem 6.2.1.



Theorem 6.2.1

Suppose that f is a function for which the following hold:

(1) f is continuous and f' is piecewise continuous on [0, b] for all b > 0.
(2) | f(t) | < Ke2t when t > M, for constants a, K, M, with K, M > 0.

Then the Laplace Transform of f' exists for s > a, with
L{f'(©)}=sL{f ©)}~ f(0)

Proof (outline): For f and f' continuous on [0, b], we have

lim eStf(t)dt _lim -Stf(t)\b—jb(—s)e-stf(t)dt
b— _b—)oo 0 0

b—w

—lim | e f (b)~ F(0) +5[ e " f (t)dt}

Similarly for f' piecewise continuous on [0, b], see text.



The Laplace Transform of f'

Thus If f and f' satisfy the hypotheses of Theorem 6.2.1, then
L{f'(1)}=sL{f ()} f (0)

Now suppose f' and f " satisfy the conditions specified for f
and f' of Theorem 6.2.1. We then obtain

L{f"()}=sL{f'(t)}~ f'(0)
=s[sL{f (1)} f (0)]- f'(0)
= s®L{f (t)}—sf (0)- f'(0)
Similarly, we can derive an expression for L{f (™}, provided f

and its derivatives satisfy suitable conditions. This result is
given in Corollary 6.2.2



Corollary 6.2.2

« Suppose that f is a function for which the following hold:

(1) f,f',f",..., ™D are continuous, and f ™ piecewise continuous,
on [0, b] forall b > 0.

(2) | f(t) | < Kedt, | f'(t) | <Kex, ..., | fO-D(1) | <Ke? fort> M, for
constants a, K, M, with K, M > 0.

Then the Laplace Transform of f ™ exists for s > a, with

L{f ™ @) f=s"L{f (t)}—s"*f (0)—s"2'(0) —---—sf "2 (0) — f "D (0)



Example 1: Chapter 3 Method (1 of 4)

Consider the initial value problem
y'-y'-2y=0, y(0)=1 y(0)
Recall from Section 3.1
yt)=e" = r’-r-2=0 < (r-2)r+1)=0
Thus r, = -2 and r, = -3, and general solution has the form
y(t)=ce " +c,e”

0

Using initial conditions: Yyt =2/3 e +1/3 ¢
c,+¢C,=1
=c, =23,¢,=13
—C,+2¢, =0
Thus

y(t)=2/3e " +1/3 —
We now solve this problem using Laplace Transforms.




y'—y'—2y=0, y(0)=1 y'(0)=0

Example 1: Laplace Transform Method (2 of 4)

« Assume that our I\VP has a solution 7 (¢)and 7'(¢) and 7"(¢)
satisfy the conditions of Corollary 6.2.2. Then
Ly -y -2y}= Ly -y} -2{y}= {0}=0
and hence
s°LEy}—sy(0) - y'(0) |- [sL{y} - y(@)]- 214y} = 0

« Letting Y(s) = L{y}, we have
(s?—s—2)Y(s)—(s—1)y(0)- y'(0) =0

 Substituting in the initial conditions, we obtain
(s?—s—2)Y(s)—(s—1)=0

 Thus s—1

=Y )= e



Example 1: Partial Fractions (3 of 4)

 Using partial fraction decomposition, Y(s) can be rewritten:

s-1  a b
(5-2)s+1) (5-2) (5+1)
s—1=a(s+1)+b(s-2)
s—1=(a+b)s+(a—2b)
a+b=1 a-2b=-1

a=13,b=2/3

e Thus

1/3 2/3
YO = )




Example 1: Solution (4 of 4)

Recall from Section 6.1:

L{eat }: F(s) = joooe‘“ea‘dt = joooe“s‘a)tdt :i, s>a
Thus
1/3 213
Y(S)= =1/3 L{e*'}+2/3 L{e '}, 2
() (s—2)+(s+1) {e“}+ {e '}, s>

Recalling Y(s) = L{y}, we have

L{y}=L{2/3e " +1/3 '}

and hence 1 5
== +=¢"
w(2) > >



General Laplace Transform Method

« Consider the constant coefficient equation
ay"+by' +cy = f(t)

« Assume that the solution y(t) satisfies the conditions of
Corollary 6.2.2 for n = 2.

« \We can take the transform of the above equation:

a(s°Y (s)- sp(0)- »'(0)) +b(sY (s) - ¥(0)) +c¥(s) = F(s)

where F(s) is the transform of f(t).

 Solving for Y(s) gives:

(as +b)y(0)+ay'(0)  — F(s)

Y(s)= : :
as +bs+c as +bs+c




Algebraic Problem

« Thus the differential equation has been transformed into the
the algebraic equation

as+b)y(0)+ay'(0 F(s
v(s)= @O0 +ay(©) ()
as“ +hs+c as - +bs+c

for which we seek y = 7(¢)such that L{ 7 (¢)} = Y(s).

* Note that we do not need to solve the homogeneous and
nonhomogeneous equations separately, nor do we have a
separate step for using the initial conditions to determine the
values of the coefficients in the general solution.



Characteristic Polynomial

Using the Laplace transform, our initial value problem
ay” +by' +cy=f(t), y(0)=y,, y(0)=y;
becomes

as+b)y(0)+ay'(0 F(s
v(s)= @ +DYO+ay(©) F(s)
as“ +bs+c as“ +bs+c

The polynomial in the denominator is the characteristic
polynomial associated with the differential equation.

The partial fraction expansion of Y(s) used to determine 7 (¢)
requires us to find the roots of the characteristic equation.

For higher order equations, this may be difficult, especially if
the roots are irrational or complex.



Inverse Problem

The main difficulty in using the Laplace transform method is
determining the functiony = 7(¢)such that L{7 ()} = Y(s).
This is an inverse problem, in which we try to find 7 (#)such
that 7(¢) = L{Y(s)}.

There is a general formula for L2, but it requires knowledge of

the theory of functions of a complex variable, and we do not
consider it here.

It can be shown that if f is continuous with L{f(t)} = F(s), then f
IS the unique continuous function with f(t) = L{F(s)}.

Table 6.2.1 in the text lists many of the functions and their
transforms that are encountered in this chapter.



Linearity of the Inverse Transform

Frequently a Laplace transform F(s) can be expressed as
F(s)=F(s)+F,(s)+:--+F,(s)
Let
L) =LH{RO)).. f,0) = LHF(6)]
Then the function
fit)y=f,)+f, )+ -+ f (1)
has the Laplace transform F(s), since L is linear.

By the unigueness result of the previous slide, no other
continuous function f has the same transform F(s).

Thus L is a linear operator with

f(t)=LHF @)= LR E)}++ LR, (5)}



Example 2: Nonhomogeneous Problem (1 of2)

Consider the initial value problem
y'+y=sin2t, y(0)=2, y(0)=1

Taking the Laplace transform of the differential equation, and
assuming the conditions of Corollary 6.2.2 are met, we have

[s?L{y}-sy(0) - y'(0) |+ L{y} = 2/(s* +4)
Letting Y(s) = L{y}, we have
(s +2)Y (5) - sy(0) — y'(0) = 2/(s* +4)
Substituting in the initial conditions, we obtain
(s?+1)Y (s)—25—1=2/(s? +4)

Thus Y(s) 25° +5°+85+6
(s® +1)(s* +4)




Example 2: Solution (2 of 2)

Using partial fractions,

Y (s) = 25° +5° +8s+6 As + B Cs+D
(s°+1)(s*+4) s° +1 s°+4

Then
25% + 5% +85+6=(As + B)s? +4)+(Cs+ D)(s* +1)

= (A+C)s’+(B+D)s*+(4A+C)s+ (4B + D)

Solving, we obtain A=2,B=5/3,C=0,and D =

2S 5/3 2/3
s° +1 s° +1 s° +4

Y(8) ==

Hence . 1
y(t) = 2cost +§sint —gsin 2t

-2/3. Thus



Example 3: Solving a 4™ Order IVP (1 of 2)

Consider the initial value problem

y9—-y=0,  y(0)=0, y'(0)=1 y"(0)=0, y"'(0) =0
Taking the Laplace transform of the differential equation, and
assuming the conditions of Corollary 6.2.2 are met, we have

|s*L{y}—sy(0) —s2y'(0) —sy"'(0) — y"""(0) |+ L{y} =0

Letting Y(s) = L{y} and §ubstituting tzhe Initial values, we have
S S

Y (s) = =
) (s*=1) (s*-1(s*+1)
Using partial fractions
Y(s) = 5° _as+b  cs+d
Thus C(SP-D(sP+D) (sP-1) (sP+D)

(as+b)(s* +1) +(cs +d)(s* —1) =s°



y@-y=0, y(0)=0, y'(0)=1 y"(0)=0, y"'(0)=0

Example 3: Solving a 4" Order IVP (2 of 2)

* In the expression: (as+b)(s*+1)+(cs+d)(s*—1) =s°

e Settings=1ands =-1 enables us to solve for a and b:
2(@+b)=1and 2(-a+b)=1=a=0,b=1/2

e Settings=0,b-d=0,s0d=1/2

« Equating the coefficients of _3n the first expression gives

S
atc=0,s0c=0
e Thus Y (s) = 1/2 N 1/2 it y(t) < Siht+sint
(s2-1) (s*+1) 2
e Using Table 6.2.1, the solution is
sinht+sint
y(t) = ;
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« Some of the most interesting elementary applications of the
Laplace Transform method occur in the solution of linear
equations with discontinuous or impulsive forcing functions.

* In this section, we will assume that all functions considered are
piecewise continuous and of exponential order, so that their
Laplace Transforms all exist, for s large enough.

£(0) '/_\ f(0 7/_\
|
|

(a) (b)



Step Function definition

 Letc>0. The unit step function, or Heaviside function, is
defined by

y4

0 () = 0, t<c 1
1 t>c

« A negative step can be represented by

1 t<c

y(t) =1-u.(t) ={ l °

0, t>c




Example 1

« Sketch the graph of y = h(t), where

 Solution: Recall that u.(t) is defined by

0, t<c
UJUZ{L t>c d
* Thus L= —
(0, O<t<n~x :
ht)=11, 7<t<2x S
[ 2T <t<w

and hence the graph of h(t) is a rectangular pulse.



Example 2

For the function (2 0<t<4
5 4<t</7
h(t) =<
-1 7<t<9
1, t>9

.

whose graph is shown

To write h(t) in terms of u.(t), we will need
u,(t), u-(t), and uy(t). We begin with the 2,
then add 3 to get 5, then subtract 6 to get —1,
and finally add 2 to get 1 — each quantity is

— o w IS e

multiplied by the appropriate u(t)

h(t) = 2+3u, (t) —6u, (t) + 2u, (t), t>0



Laplace Transform of Step Function

* The Laplace Transform of u (t) Is

Liu, (t)} = j: e~lu_(t)dt = j:oe‘“dt

b [ 1 2
=lim | e*dt=lim| —=¢™™
b—wdC b—w S
L C_
e—bs e—cs
=lim| — +
b—o0 S S
e—cs




Translated Functions

* Given a function f (t) defined for t > 0, we will often want to
consider the related function g(t) = u.(t) f (t - c):

0, t<c
g(t):{f(t—c), t>c

« Thus g represents a translation of f a distance c in the
positive t direction.

* In the figure below, the graph of f is given on the left, and the
graph of g on the right.

£(0) '/_\ f(0) 7/_\
|
l

(b)



Theorem 6.3.1

o IfF(s)=L{f(t)} existsfors>a=>0, and if ¢ > 0, then
L{iu () f(t—c)}=e " L{ f(t)}=eF(s)
» Conversely, if f (t) = L1{F(s)}, then
u, () f(t—c) = L*{eF(s)}

« Thus the translation of f (t) a distance c in the positive t
direction corresponds to a multiplication of F(s) by e,

sy
£(0) '/_\ f(0) 7/_\
|
l
[




Theorem 6.3.1: Proof Outline
» \We need to show
L{u (t) f(t—c)}=e=F(s)
 Using the definition of the Laplace Transform, we have
L{u (t)f(t—c)}= _'O°° e~tu_(t) f (t —c)dt

= [Tef(t-c)at

JC
u=t—c

= [ e 9 (u)du

— 'O°° e f (u)du

=e “F(s)




Example 3
* Find L{ f (t)}, where f is defined by

sint, 0<r< % Il

J() =5
sint +cos(z - E), tzg
4 4

* Note that f (t) = sin(t) + u p,(t) cos(t — O/4), and

L{f(t)}= Lisint}+L{u_,,(t)cos(t—z/4)}
= L{sint}+e™"*L{cost}
l —rsl4 S

= +e
s +1 s +1

1+se ™4

5% +1




Example 4

* Find L{F(s)}, where
F(s) =

1_ -2s
2

S

£ (1) = Ll{siz}+ Ll{eszs}
=t-u,(t)(t-2)

« The function may also be written as
t, 0<t<?2
() ={ S

* Solution:

2, t>2



Theorem 6.3.2

If F(s) = L{f (t)} exists for s >a >0, and if c Is a constant,
then
L{eCt f (t)}z F(s—c), s>a+c

Conversely, if f (t) = L-1{F(s)}, then
e f (t) = L*{F(s—c)}

Thus multiplication f (t) by et results in translating F(s) a
distance c in the positive t direction, and conversely.

Proof QOutline:

L{e®f(t)}= [[ee f(ydt=[ e f ()dt = F(s—c)



Example 5

To find the inverse transform of

1
G(s) =
) S —4s+5
We first complete the square:
1 1 1
G(s) = = = =F(s-2
B)= 2 asis (s —4s+4)+1 (s—2)f +1 -2
Since
LH{F(s)} = Ll{ 21 1}:cost and L {F(s—2)}=e®f(t)
S° +

It follows that
g(t) = L*{G(s)}=e* cost
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 In this section focus on examples of nonhomogeneous initial
value problems in which the forcing function is discontinuous.

ay”+by'+cy =g(t), y(0)=vy, y(0)=y;

¥ =)
1.21 B
14 i Ilf\
06 | \
0.a] | "'.\/\-f-l
04 | \
| \
i 0.6 | I|
0.2 .'I III
0.47 / 10 20| A 40
\ | \ |
1 |
0.2 [
0.2 ¥




Example 1: Initial Value Problem (10f12)

 Find the solution to the initial value problem
2y"+y'+2y=g(t), y(0)=0, y'(0)=0

where
1, 5<t<20
g(t) = U5 (t) — Uy (1) {o, 0<t<5and t>20

 Such an initial value problem might model the response of a
damped oscillator subject to g(t), or current in a circuit for a
unit voltage pulse.




2y"+Yy'+2y =ug(t) —uy(t), y(0)=0, y'(0)=0

Example 1: Laplace Transform (2 of 12)

Assume the conditions of Corollary 6.2.2 are met. Then

2Ly "3+ L{yH+ 214y} = L{u, (03— L{u,0 (D)3
or

[252L{y} - 2sy(0) —2y'(O) |+ [sL{y} ~ y(©) ]+ 2L{y} =~
Letting Y(s) = L{y},

(252 +S+ 2)Y (s)—(2s+1)y(0)—2y'(0) = (e‘SS —e " )/ S
Substituting in the initial conditions, we obtain

(252 +S+ 2)Y (s) = (e‘5S —e " ) S

Thus

-5s . —20s

e

B (e—5s _e—zos)
Yi8)= s(2s? +s+2)



Example 1: Factoring Y(s) (30f12)

 We have

_ (e_SS _e—zos) _ (555 —20s
Y= s(2s? +s+2)_(e —e " H(

where

H(S) = s

3(232 +S+ 2)

« If we let h(t) = LY{H(s)}, then

y = ¢(t) = Us (H)h(t —5) — U, (Dh(t —20)
by Theorem 6.3.1.



Example 1: Partial Fractions (4 of12)

* Thus we examine H(s), as follows.

1 A Bs+C

H(s) = =+
(5) 5(252+s+2) S 25°+s+2

 This partial fraction expansion yields the equations
(2A+B)s’ +(A+C)s+2A=1
= A=1/2,B=-1,C=-1/2

* Thus

/2 s+1/2

1
H(s)=—-
(5) S 25°+5+2




Example 1: Completing the Square (5of12)

« Completing the square,

/2_ s+1/2
S 25°+S5+2
1/2 1 s+1/2 }

H(s) ="

s  2|s°+s/2+1

12 1] s+1/2 }
s 2|s°+s/2+1/16+15/16
1/2 1| s+1/2

s 2| (s+1/4) +15/16

1/2 1| (s+1/4)+1/4
s 2|(s+1/4) +15/16 |




Example 1: Solution (6 of 12)

* Thus ] )
=2 1 (s+1/421)+1/4
s 2| (s+1/4) +15/16 |

12 1] (s+1/4) | 1 V15/4
s 2|(s+1/4f +15/16 | 2J15|(s+1/4) +15/16
and hence

1 1 V15 1 _ [ /15
ht :L—l H - _ -t/4 —t - -t/4 —t
(t) {H(s)} > 2e cos{ P ] 2\/Ee sm( p j
« For h(t) as given above, and recalling our previous results,

the solution to the initial value problem is then
(1) = Us ()h(t —5) —u,,(t)h(t —20)



Example 1: Solution Graph (7of 12)

» Thus the solution to the initial value problem is
#(t) =u (t)h(t—5)—u20(t)h(t—20) where
h(t) _——Ee cos(rt/4) sin(\/ﬁt/4)

zf

« The graph of this solution is given below.




Example 1: Composite IVPs (8of 12)

« The solution to original IVVP can be viewed as a composite of
three separate solutions to three separate I'\VPs:

O<t<53: y1+y1+2y120’ yl(o):O’ y{(0)=0
5<t<20: 2y;+y,+2y,=1 vy,(5=0, y,(5)=0
t>20: 2y3 T y3 +2y, =0, y3(20) =Y,(20), y;(20) = y; (20)

¥y = git)

0 5 m o, 18 20 25



Example 1: First IVP  (90f12)

Consider the first initial value problem
2y;+y,+2y,=0,  y,(0)=0, y;(0)=0; 0<t<5

From a physical point of view, the system is initially at rest,
and since there is no external forcing, it remains at rest.

Thus the solution over [0, 5) is y, = 0, and this can be verified
analytically as well. See graphs below.

¥ = git)
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Example 1: Second IVP (100f12)

Consider the second initial value problem

"

2y, +Y,+2y, =1  y,(5) =0, y,(5=0;, 5<t<20
Using methods of Chapter 3, the solution has the form
y, =ce cos(\/Et /4)+c,e sin(\/ﬁt /4)+1/2

Physically, the system responds with the sum of a constant
(the response to the constant forcing function) and a damped
oscillation, over the time interval (5, 20). See graphs below.

¥ =glt)
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Example 1: Third IVP (110f12)

Consider the third initial value problem
2y;+Y;+2Y, =0,  Y;(20) =Y,(20), y;(20) = y,(20); t>20

Using methods of Chapter 3, the solution has the form
y, =ce cos(\/Et / 4)+ c,e sin(\/ﬁt / 4)

Physically, since there is no external forcing, the response Is a
damped oscillation about y = 0, for t > 20. See graphs below.

¥ = git)
1.21

1‘ - I\
U.b [\

0.5 [\ /ﬂ‘\,.ﬁ
04 \

y 0.6

0.4

0.21

0 5 o, 15 20 5



Example 1: Solution Smoothness (12 of 12)
« QOur solution is
#(t) = us (H)h(t —3) —u,,(t)(t — 20)
e It can be shown that f and f 'are continuous at t = 5 and

t=20, and 7 " has a jump of 1/2 att=5 and a jump of —1/2
att=20: . e
Ilrg]/ "(¢) =0, Ilrgy "(t)=1/2

lim /" (r) @-0.0072, limj " (r) @-0.5072

t—20°

« Thus jump in forcing term g(t) at these points is balanced by a
corresponding jymp In highest order term 2y" in ODE.

[\

[\

N,
\ / \

| W \




Smoothness of Solution In General

« Consider a general second order linear equation

y'+p)y +a(t)y=9(t)
where p and g are continuous on some interval (a, b) but g Is
only piecewise continuous there.

o Ify = 7()is a solution, then f and 7 ' are continuous
on (a, b) but /" has jump discontinuities at the same
points as g.

 Similarly for higher order equations, where the highest
derivative of the solution has jump discontinuities at the same
points as the forcing function, but the solution itself and its
lower derivatives are continuous over (a, b).



Example 2: Initial Value Problem (10f12)

 Find the solution to the initial value problem
y'+4y=g(t), »(0)=0,'(0)=0

where
) 0<t<5
r-5 tr-10 1
g(t) =u (t)— - -ulo()T X g(t-5) 5<t<10
1, t>10

* The graph of forcing function
g(t) is given on right, and Is
known as ramp loading.

0.5

20 t



y'+4y=u (t) o(t) , ¥(0)=0, y'(0)=0

Example 2: Laplace Transform (2 of 12)

» Assume that this ODE has a solution y = 7 (¢) and that

7'(¢) and 7 "(¢) satisfy the conditions of Corollary 6.2.2.
Then

L{y"}+4L{y} = [L{u, (t)(t - 5)}]/5— [L{u,o (t)(t —10)}/5

e—5S e—lOs

[sLEy}—sy(0) — y'(0) |+ 4L{y} = =

 Letting Y(s) = L{y}, and substituting in initial conditions,
(52 + 4)Y (s) = (e‘5S el )/552

° Thus ~ (e—SS _e—los)
Y()= 5s%(s? + 4)




Example 2: Factoring Y(S) (30f12)

 We have

(e—ss _ e—lOs) B a55 _ o105
5s(s?+4) 5 HE)

Y(S)=

where

1
32(52 +4)

H(s)=

« If we let h(t) = L-{H(s)}, then

Y =40 = Z [ O -5) ~Uy,(ONE-10)]

by Theorem 6.3.1.



Example 2: Partial Fractions (4 of12)

* Thus we examine H(s), as follows.

1 _A B Cs+D
(s2+4) s s s*+4

H(S)=S

 This partial fraction expansion yields the equations

(A+C)s’+(B+D)s* +4As+4B =1
— A=0,B=1/4,C=0,D=-1/4

* Thus
1/4  1/4

2 2

H(s) =
(5) S S°+4




Example 2: Solution (50f12)

» Ul (e 4 /4
s°  s°4+4
_é[i}_l{ 2 }
4| s*| 8|s’°+4
and hence

h(t) = LH(s)}= %t —%sin(Zt)

« For h(t) as given above, and recalling our previous results,
the solution to the initial value problem is then

Y =40 = 2 [ Oh(t-5) -ty (DN -10)]



Example 2: Graph of Solution (6 of 12)

» Thus the solution to the initial value problem is

A(t) = %[uS (t)h(t—5)— U, (t)h(t —10)], where
11
h(t):zt—gsm(Zt)

« The graph of this solution is given below.




Example 2: Composite IVPs (7 0f12)

« The solution to original IVVP can be viewed as a composite of
three separate solutions to three separate I\VVPs (discuss):

0<t<5: y/+4y, =0, y,(0)=0, y;(0)=0
5<t<10: y;+4y,=(t-5)/5 vy,(5=0,vy,(5=0
t>10: Yz +4Y, =1, y5(10) =y, (10), y;(10) = y;(10)




Example 2: First IVP (8 0f 12)

Consider the first initial value problem

y/+4y, =0, vy, (0)=0, y;(0)=0; 0<t<5
From a physical point of view, the system is initially at rest,
and since there is no external forcing, it remains at rest.

Thus the solution over [0, 5) is y, = 0, and this can be verified
analytically as well. See graphs below.

)
l -

0.5




Example 2: Second IVP (90f12)

« Consider the second initial value problem
Y, +4y, =(t-5)/5  y,(5)=0 y,(5)=0; 5<t<10

« Using methods of Chapter 3, the solution has the form
Y, =C, 008(2t)+c, sin(2t)+t/20-1/4

« Thus the solution is an oscillation about the line (t — 5)/20,
over the time interval (5, 10). See graphs below.

¥2 /20
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Example 2: Third IVP (100f12)

« Consider the third initial value problem
ys+4y; =1 y;(10)=y,(0), y;(10) = y,(10); t>10
« Using methods of Chapter 3, the solution has the form
Y, = C, cos(2t)+c, sin(2t)+1/4

« Thus the solution is an oscillation about y = 1/4, for t > 10.
See graphs below.
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Example 2: Amplitude (11 of 12)

Recall that the solution to the initial value problem is
Y =90 = 2 1 O(t-5) -t (O -10)], h®) = ;t-Zsin(2)

To find the amplitude of the eventual steady oscillation, we
locate one of the maximum or minimum points for t > 10.
Solving y' = 0, the first maximum is (10.642, 0.2979).

Thus the amplitude of the oscillation is about 0.0479.

y = philt) ¥ = phiit)
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Example 2: Solution Smoothness (12 of 12)

* Our solution is
V=40 = HlusONE -5 ~u,ONE-10)]. ) =t sin2)

 In this example, the forcing function g is continuous but g' Is
discontinuous att=5and t = 10.

« It follows that / and its first two derivatives are continuous
everywhere, but £ "' has discontinuities at t =5 and t = 10 that
match the discontinuities of g'att =5and t = 10.
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Boyce/DiPrima/Meade 11% ed, Ch 6.5:
Impulse Functions

Elementary Differential Equations and Boundary Value Problems, 11t edition, by William E. Boyce, Richard C. DiPrima, and Doug Meade ©2017 by John Wiley

& Sons, Inc.

In some applications, it is necessary to deal with phenomena of
an impulsive nature.

For example, an electrical circuit or mechanical system subject
to a sudden voltage or force g(t) of large magnitude that acts

over a short time interval about t,. The differential equation
will then have the form

ay” +by’+cy =qg(t), =30
where -
big, t,.—r<t<t,+7
gty={ 0 ° = S
0, otherwise

and T> O IS Sma” 07072 04 06 06 1 12 14 16 18 2



Measuring Impulse

In @ mechanical system, where g(t) is a force, the total impulse

of this force i1s measured by the integral

00 to+7
(D) =] a@dt=[" g(t)ct
Note that if g(t) has the form N
Cfe t—r<t<ty+r "
9= {O, otherwise

then

1 (7) = _‘: g(t)dt :_“tzojg (t)dt =2zc, >0

In particular, if ¢ = 1/(27), then I(f) = 1 (independent of ).



Unit Impulse Function

Suppose the forcing function d, (¢) has the form

1
—, -l <t<t
d(t)=1 2t y 4

k 0, otherwise
Then as we have seen, I( ) = 1.

We are interested d, (¢)acting over f
shorter and shorter time intervals a8
(i.e., t —> 0). See graph on right. '

Note that ¢ (¢) gets taller and narrower +_
as t — 0. Thus for t #0, we have I

limd, (t) =0, and lim 1(z) =1 -




Dirac Delta Function

Thus for t # 0, we have Iirrg d_(t)=0, and Iirrcl) 1(7) =1
The unit impulse function ¢ is defined to have the properties

5(t)=0fort=0, and [ 5(t)dt =1
The unit impulse function is an example of a generalized
function and is usually called the Dirac delta function.

In general, for a unit impulse at an arbitrary point t,,

S(t—t,)=0fort=t,, and [~ 5(t—t,)dt =1

Y

-
,




Laplace Transformof @ (1 of2)

The Laplace Transform of  is defined by
Liot—t,)}= lim L{d_(t-t,)}, t, >0

and thus
L{s(t—t,)}=lim j “e'd_(t—t,)dt = lim 1 j et
07 50 do Fe 0 >0 97 Jtg—r
_st to+7
= ||m £ — ||mi[_e S(t0+r)_|_e S(to T)]
7—0 232- 7—0 252-




Laplace Transform of g (2of2)

« Thus the Laplace Transform of 4 Is
Lio(t—t,)}=e", t, >0
 For Laplace Transform of ¢ at t,= 0, take limit as follows:
L{o(t)}= lim Lid_(t—t,)}= lemoe-sto =1
 For example, when t;= 10, we have L{ ¢/(t —-10)} = e-10s,

¥ = dit-10)

301




Product of Continuous Functions and ¢/

« The product of the delta function and a continuous function f
can be integrated, using the mean value theorem for integrals:

[ st-t)f@dt=lim | d, (t-t,)f ()t

_lim— [t @t

7—0 22’ to -7

— lim zi[zf f(t9]  (wheret, -7 <t*<t +7)
-0 21

— lim f (t¥)

7—0

= 1(t,)
 Thus .
Lo S(t—t,) f (t)dt = f (t,)



Example 1: Initial Value Problem (1 of 3)

« Consider the solution to the initial value problem
2y"+y' +2y=5(t-5), y(0)=0, y'(0)=0

e Then

2L{y"}+ L{y }+2L{y} = L{o6(t -5)}

« Letting Y(s) = L{y},

[252Y (s) — 25y(0) — 2y'(0) |+ [sY (5) - y(0) ]+ 2Y (s) =™
 Substituting in the initial conditions, we obtain

(25 +s+2)Y(5)=€™ i 5(t—5)
or =

e
Y(S)=
(5) 25° +5+2




Example 1: Solution (2 of 3)

 We have

e—53

Y(S)=
(5) 25° +5+2

« The partial fraction expansion of Y(s) yields

e {( JV15/4 }

Y (s) =
)= 215 | (s+1/4) +15/16

Plot of the Solution

and hence

y(t) = ﬁu(t)ets S'n[\/f(t—@j : /’\/\mt
1 5 \7 B~




Example 1: Solution Behavior (3 of 3)

« With homogeneous initial conditions at t = 0 and no external
excitation until t = 5, there is no response on (0, 5).

« The impulse at t =5 produces a decaying oscillation that
persists indefinitely.

« Response is continuous at t = 5 despite singularity in forcing
function. Since y' has a jump discontinuity att =5, y" has an
Infinite discontinuity there. Thus a singularity in the forcing
function is balanced by a corresponding singularity in y".

03¢ Plot of the Solution
5(": _ 5) 04l

A/\ S




Boyce/DiPrima/Meade 11 ed, Ch 6.6:
The Convolution Integral
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Wiley & Sons, Inc.

e Sometimes it is possible to write a Laplace transform H(s) as

H(s) = F(s)G(s), where F(s) and G(s) are the transforms of
known functions f and g, respectively.

 In this case we might expect H(S) to be the transform of the
product of f and g. That is, does

H(s) = F(s)G(s) = L{f }L{g} = L{f 9}?
« On the next slide we give an example that shows that this

equality does not hold, and hence the Laplace transform
cannot in general be commuted with ordinary multiplication.

* In this section we examine the convolution of f and g, which
can be viewed as a generalized product, and one for which the
Laplace transform does commute.



Observation

Let f (t) =1 and g(t) = sin(t). Recall that the Laplace
Transforms of f and g are

1 _ 1
L{F@}=L{1}==, Lo }=Lisint}=—
Thus
_ 1
LIf©g(®)= Lisint j=——
and

1

'—{f(t)}'—{g(t)}=m

Therefore for these functions it follows that

Lif)g®)f=L{ f(t) fL{g) |



Theorem 6.6.1

Suppose F(s) = L{f (t)} and G(s) = L{g(t)} both exist for
s>a>0. Then H(s) = F(s)G(s) = L{nh(t)} for s > a, where

ht) =], ft-n)g()dz=[ fO)gt-7)dz

The function h(t) is known as the convolution of f and g and
the integrals above are known as convolution integrals.

Note that the equality of the two convolution integrals can be
seen by making the substitutionu =t— x.

The convolution integral defines a “generalized product” and
can be written as h(t) = (f *g)(t). See text for more details.



Theorem

F(s)G(s)=|

0

- :OOO g (T)d T.

6.6.1 Proof Outline

e~ f (u)du j: e 'g(r)dr

': e f (y)du

- j:’ g(f)dr::o e f(t—7)dt (t=z+u)

_ N ot
00 j’l' g

= L{h(t)}

[ ef dzd
=, jo e (t—7)g(r)dzdt

:.'Owest[j; f(t—r)g(r)dr}dt /

(z)f(t—7)dtdz




Example 1: Find Inverse Transform (1 of 2)

* Find the inverse Laplace Transform of H(s), given below.

a
H(s)= s?(s*+a°)

 Solution: Let F(s) = 1/s? and G(s) = a/(s? + a2), with
f(t)=L"F(s)}=t

g(t) = LH{G(s)}=sin(at)
e Thus by Theorem 6.6.1,

LH{H(s)} = h(t) = j; (t—7)sin(ar)dz



LH{H (s)} = h(t) = j; (t—7)sin(ar)dr
Example 1: Solution h(t) (20f2)

« \We can integrate to simplify h(t), as follows.
h(t) = [, (t—7)sin(ar)dr =t[ sin(az)dz | rsin(ar)dr

t t

= —ltcos(ar)
a

= {— 17 cos(ar)
a

1 et
+5J'0 cos(ar)dr}

0 0

- fcos(at) ~1]~ [— Zt[cos(at)]+ =5 [Sin(at)]}
a a d

:lt—izsin(at)
a a
_at-sin(at)

a.2




Example 2: Initial Value Problem (1 0f4)

Find the solution to the initial value problem

y'+4y=g(t), y(0)=3, y'(0)=-1
* Solution:

L{y"}+4L{y}=L{g(t)}

[s°LLy}—sy(0) - y'(0) |+ 4L{y} = G(s)
 Letting Y(s) = L{y}, and substituting in initial conditions,
(52 +4)Y (s) =3s—1+G(s)

7l 3s-1 G(s)

s+4 s°+4

Y(8)=—




Example 2: Solution (2 of 4)

We have

35— 1 G(s
Y(s)=> (s)
s° +4 s*+4
S 1 2 1 2
_3[32+4}_2[32+4}r2{32+4}G(S)
Thus

1 . 1 et .
y(t) = 3cos 2t—§sm 2t +Ejosm 2(t—7)g(r)dr

Note that if g(t) is given, then the convolution integral can be
evaluated.



y'+4y=g9(t), y(0)=3, y(0)=-1
Example 2:
Laplace Transform of Solution (3 of 4)

« Recall that the Laplace Transform of the solution y is
3s-1 G(9)
_|_
s°+4 s°+4
* Note F (s)depends only on system coefficients and initial

conditions, while Y (s)depends only on system coefficients
and forcing function g(t).

e Further, f(¢)= L1[F (s)] solves the homogeneous I\VP
y"+4y=0, y(0)=3, y'(0)=-1

while  (¢)= L-1{Y (s)} solves the nonhomogeneous IVP

y'+4y=g(t), y(0)=0, y'(0)=0

=®(s)+¥(9)

Y(s)=



Example 2: Transfer Function (4 of 4)

Examining Y (s) more closely,

G(s) =H(s)G(s), where H(s)=—;

P(S)=
%) s*+4 s*+4

The function H(s) is known as the transfer function, and
depends only on system coefficients.

The function G(s) depends only on external excitation g(t)
applied to system.
If G(s) = 1, then g(t) = ¢(¢) and hence h(t) = L-*{H(s)} solves
the nonhomogeneous initial value problem

y'+4y=4(t), y(0)=0, y(0)=0
Thus h(t) is response of system to unit impulse applied att =0,
and hence h(t) is called the impulse response of system.



