
ERIC BOYD AND ED BALAS

Internet2 and Indiana University

OCTOBER, 2015

Network Virtualization: A Retrospective After One Year

Internet2 Goals

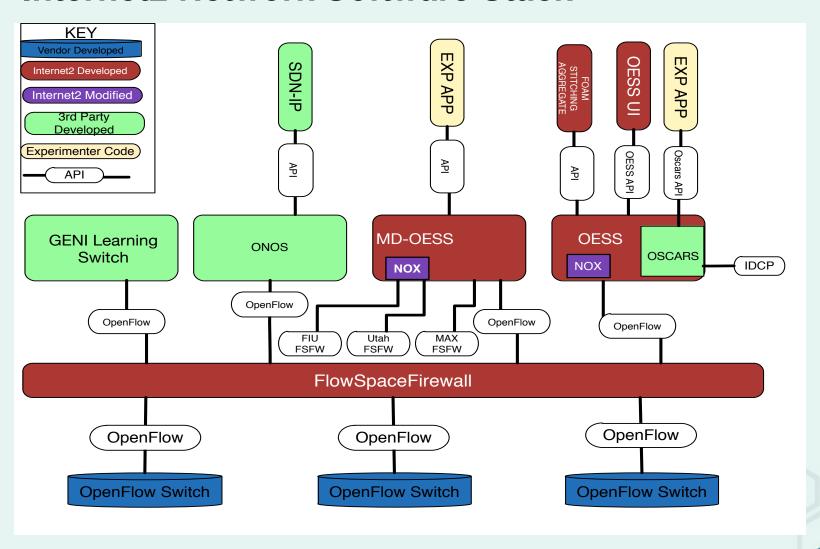
- Support production networking
 - Across Internet2
 - Integrated with partner networks around the globe
- Be a leader in advanced networking
 - Show what can be done, don't copy what commercial world is doing
- Innovation Platform:
 - Abundant Bandwidth (100G +)
 - Deeply Programmable (SDN)
 - Friction Free Science (Science DMZs)
- Use Cases ...
 - Domain scientists collaborating in data intensive science
 - Extending local control over far-flung campuses (e.g. US, China, Middle East)
 - Massively Online Courses
 - Etc.

Internet2 Philosophy

- Support open, standards-compliant implementation of SDN
 - Strongly resist vendor impulse towards vertical integration
 - Decoupling control plane from data plane enables competition between switch vendors and competition between controllers
- Deploy multiple vendors in a common network to force inter-operability
 - Creates a "lowest common denominator" effect
 - Reflects the reality of the R&E networking community
 5-7 networks along the E2E path
- Support both Production Networking and Innovation
 - Twin goals are definitely at odds but ...
 - What is the point of R&E networks if we're following?
 - There isn't financial support to build operational-quality R&E networks just for network research
- Harness the strengths of R&E community to influence the market
 - Open, collaborative, innovative community
 - Collectively we have the power to change the conversation

Notable Milestones to Date

- April 2012: Internet2 announces intent to build 100G Layer 2 network on an SDN substrate in partnership with Indiana University
- October 2012: Internet2 AL2S launched on Brocade MLXe-16s in pure OpenFlow mode: First nationwide, open 100G network built on SDN Substrate
- March 2013: Internet2 AL2S becomes multi-vendor with introduction of Juniper MX-960s in pure OpenFlow mode
- May 2013: Juniper OpenFlow implementation becomes fully supported
- December 2013: Mulitpoint VLANs supported
- June 2014: Network Virtualization implemented through Flowspace Firewall hypervisor
- August 2014: Partnership with ON.LAB begins
- October 2014: GENI Sitemon v0.1 becomes first "alien" controller running on the Internet2 network
- October 2014: Multi-Domain SDX demonstrated
- April 2015: ONOS Controller / SDN-IP demonstrated with 3 universities
- June 2015: Three continent deployment of router-less Layer 3 network using ONOS and SDN-IP



Internet2 Current Status: October, 2015

- OpenFlow 1.0 in production
 - OF 1.3 support in FSFW and OESS in design
 - Experimenting with Brocade 5.8bx implementation of OF1.3
 - Working with Juniper on implementing requirements for OF 1.3
- Hypervisor (FlowSpace Firewall1.0.6) in production
 - Supports L2 and L3 matching
 - Vendor Updates (current versions Juniper 13.3, Brocade 5.6dc)
 - Vendor-specific limits do exist.
- Controller (OESS 1.1.6a) in production
 - Supports Layer 2 Trace
- Accepting 3rd party controllers
 - Questionnaire
 - Openflow Network Emulator (Mininet clone of AL2S plus chaos monkey)
 - Test Lab
 - Production
- GENI Aggregate Manager in production
 - Allow provisioning of a sliver across AL2S as part of a larger GENI slice

Internet2 Network Software Stack

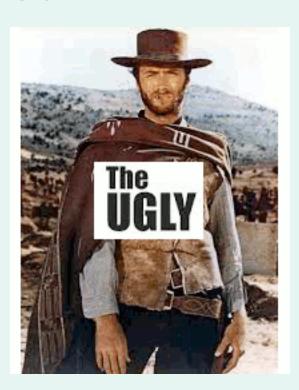
Internet2 2015 Plans

- Continue to support network research on AL2S, and we are in particular interested in understanding and meeting needs of GENI researchers
- Deploy NSI on AL2S
 - Begin conversations about continued IDCP support
- ONOS Deployment, with Global Peers as a prototype service
- Work with vendors to get OF 1.3 Support
 - Brocade -> 5.8c ("now") in testing
 - Juniper -> 15.1 in development
- Continue to support and enhance OESS, FSFW
 - Evaluating OF 1.3 support in FSFW
- Refine Slice Deployment Process
 - Faster?
 - Test for correctness, then safety
 - Testing constraints?

Operating SDN Networks: The Good

- Possible to build and operate a reliable Layer 2 and Layer 3 network atop an SDN Substrate
- Possible to support multiple controllers concurrently on an SDN substrate through network virtualization
- Possible to create a mult-domain SDX using network virtualization
- Possible to build a global Layer 3
 network through software on a routerless network in ~1 month

Operating SDN Networks: The Bad


- Vendor implementations of OpenFlow
 1.0 have been buggy and incomplete
- Vendor implementations of OpenFlow
 1.3 have been very slow to appear, as well as buggy and incomplete
- OpenFlow 1.0 and 1.3 standards have too many optional features, making the implementation of new features a painstaking negotiating process with multiple vendors
- OpenFlow 1.0 and 1.3 specs are sufficiently "vague" that we had to write supplemental specs to ensure vendor interoperability

Operating SDN Networks: The Ugly

- Building a network software stack requires absolutely rigorous testing when any component changes
 - Testing harness becomes the resource bottleneck
 - Testing for safety != testing for correctness
- Supporting multiple controllers concurrently on a production network software stack:
 - Requires significant FTE resources
 - Moves slower than researchers are accustomed
 - Requires more productization (logging, release management, documentation) than normally done by researchers

How we thought Slice testing would go

- App Developers fill out questionnaire
 - Assume testing against mininet
 - Assume systems best practice
- Developers demonstrate it working
- We go into lab testing
 - Assume it takes us a week to test
- Testing goes flawlessly
- New slice is recommended for deployment
- Deployment goes flawlessly
 - Assume lab tests have sufficient coverage
- Achievement unlock

What we saw in our first round

- Expectation mismatch on packaging slows testing and later deployment
- Testing was performed by developers with insufficient use cases
 - Found bugs in every component
 - Feedback loops with developers created protracted break, fix, test cycle
 - We found ourselves operating as a QA shop
- Getting to recommendation took several Months not a week
- In spite of testing, deployment still unstable
 - Scale based issues not protected by FSFW

Process Improvement

- Problems identified
 - App developers lacked test tools to mimic the complexity of production networks
 - Developers not anticipating the number of failures that will occur in a geodistributed network
 - App developers were relying on us to help forcing us into their dev cycle basically.
- Adjustments we made
 - Build a test environment based on mininet and share with developers
 - Exact topo,
 - DPIDS and port names
 - production chaos
 - Link failures
 - Node reboots
 - Wait to test in our lab until they can test in virtual environment at "scale"

Take 2

- Developers initially skeptical
 - Felt the approach was overkill
- Developers changed tune
 - took a few months to resolve discovered issues
- Our lab testing was was wrapped in a week
- Deployment still unstable
 - We still have difficultly test at virtual scale with also involving vendor hardware
 - Insufficient vendor testing

Takeaways

- Operating an SDN-based network is doable, today, and has been for a 3 years
- SDN != Open SDN
 - SDN = Fully programmable devices
 - Open SDN = Fully programmable, vendor-swappable devices
- It's too soon to declare "winners" in the network stack space
 - Controllers: ODL, ONOS, Ryu, etc.
 - Apps: FSFW/OESS, SDN-IP, etc.
 - Declaring a "winner" raises the "narrow waist"
 - => Less room for R&E innovation
- We need crisp, complete, required SDN programming interfaces fully implemented across multiple vendors
- We need to start tool development to support network operators of SDNbased-networks
- We need maturation of open source controllers
 - Logging, Documentation, Release Management, Long-Term Support
 - Open Source Testing Harnesses

ERIC BOYD AND ED BALAS

Internet2 and Indiana University

OCTOER, 2015

NETWORK VIRTUALIZATION: A RETROSPECTIVE AFTER ONE YEAR

eboyd@internet2.edu ebalas@grnoc.iu.edu