
Na	ame:	Dat	e:
,	Student Explo	ration: Boyle's Law a	and Charles's Law
	ocabulary: absolute zero ressure	o, Boyle's law, Charles's law, Gay-Lu	ussac's law, Kelvin scale,
Α:	small helium tank measu	on (Do this BEFORE using the Gizmores about two feet (60 cm) high. Yet ain enough helium to fill so many ba	tit can fill over 50 balloons! How
Th of 1.	f gas. Inside, small purple Observe the particles. A speed?	les's Law Gizmo shows a container spheres represent gas molecules. Are they all moving at the same	Reset
2.	These interactions con	teract with the walls and lid of the contribute to the pressure on the walls of the contribute to the pressure are it area. The SI units of pressure are	of the container. Pressure is
3.	is used to measure tem coldest possible tempe	ature (7) slider back and forth. (Note aperature. On the Kelvin scale, 0 dec rature. Absolute zero is equal to -27 hange in temperature affect the spec	grees is absolute zero , the 3.15 °C or -459.67 °F)
	B. How does the c	hange in temperature affect the volu	me of the container?

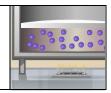
Activity Boyle's	A:
Boyle's	law

Get the Gizmo ready:

- Set the temperature (7) to 300 K.
- Check that the mass (m) is set to 0 kg.

Qu	estion: How does pres	ssure affect the volume	e of a gas?		
1.	Form hypothesis: In this What do you think will h	s experiment, you will pi nappen as more weight		f the container of gas.	
2.	Notice: Look at the DES	SCRIPTION pane. What	is the mass of the lid	?	
	How much pressure do	es the lid exert on the g	as?	<u> </u>	
3.	Collect data: With the temperature held constant at 300 K, use the Select mass slider to place weights on the lid. Record the pressure and volume of the gas for each added mass. Added mass Total mass				
	on the lid	(lid + added mass)	Pressure*	Volume	
	0 kg	10 kg			
	10 kg	20 kg			
	20 kg	30 kg			
	30 kg	40 kg			
4.	*This model does not in Analyze: As the pressu the gas?	nclude atmospheric pres			
	This relationship is called	ed Boyle's law .			
5.	Calculate: Compare the	e pressure and volume v	alues in your data tab	ole.	
	A. How did doubling	ng the pressure change	the gas volume?		
	B. How did tripling	the pressure change the	e gas volume?		
	C. How did quadru	pling the pressure chan	ge the gas volume? _		

(Activity A continued on next page)


Activity A (continued from previous page)

6.	<u>Predic</u>	t: If the added mass on the lid was 50 kg, a total mass of 60 kg would exert pressure
	on the	gas inside the container. What will be the volume of the gas?
7.	Test: 1	est your prediction using the Gizmo. What is the volume of the gas?
	Was y	our prediction correct?
8.	a point	e a graph: On the GRAPH tab, select Vvs. P . Set m to 0 kg, and click Record to plot to on the graph. Plot a point for each possible mass to create a graph showing the anship between pressure and volume.
	the ima	your graph is completed, click the camera () icon to take a snapshot. Right-click age, and click Copy Image. Paste the image into a blank word-processing document, bel the graph "Volume vs. Pressure."
	A.	What is the shape of the graph?
	В.	How does this graph illustrate Boyle's law?
	C.	How do you think the graph might change if the temperature was held constant at a
		higher temperature, say 400 K?
9.		Think about a small helium tank that can fill 50 balloons. What must be true about the in the tank compared to the helium in the balloons?

Activity B:
Charles's lav

Get the Gizmo ready:

On the SIMULATION pane, set T to 100 K and m to 0 kg.

Question: How does temperature affect the volume of a gas?

		the mass on the lid, record the	pressure and volume of the
gas	at each of the given temper		Volume
	Temperature 100 K	Pressure*	Volume
	200 K		
	300 K		
	400 K		
	500 K		
<u>Ana</u>	l <u>yze</u> : As the temperature ind	mospheric pressure, which is 1	
Ana the (creases at constant pressure, w	
Ana the (l <u>yze</u> : As the temperature ind gas? relationship is called Char l	creases at constant pressure, w	hat happens to the volume o
Ana the o	lyze: As the temperature inc gas? relationship is called Char l lain: Based on the motions	creases at constant pressure, w	what happens to the volume of
Ana the of This	lyze: As the temperature inc gas? relationship is called Char l lain: Based on the motions	creases at constant pressure, we see the constant pressure, and the constant pressure, are constant pressure, and the constant pressure, and the constant pressure, and the constant pressure, and the constant pressure, are constant pressure, and the constant pressure, and the constant pressure, are constant p	what happens to the volume of

Activity B (continued from previous page)

6.	Calculate: Compare the pressure and volume values in your data table.
	A. How did doubling the temperature affect the gas volume?
	B. How did tripling the temperature affect the gas volume?
	C. How did quadrupling the temperature affect the gas volume?
7.	Predict: Suppose the temperature was 50 K. What will be the volume of the gas?
8.	Test: Test your prediction using the Gizmo. What is the volume of the gas?
	Was your prediction correct?
9.	<u>Create a graph</u> : On the GRAPH tab, select Vvs. T . Set T to 50 K, and click Record to plot a point on the graph. Plot a point every 50 degrees to create a graph showing the relationship between temperature and volume.
	When your graph is complete, click the camera icon to take a snapshot. Paste the image into your document, and label the graph "Volume vs. Temperature."
	A. What is the shape of the graph?
	B. How does this graph illustrate Charles's law?
10	. Apply: Based on what you learned, what would happen to a balloon placed in the freezer?
	What would happen to a balloon placed in a warm oven? (Assume it doesn't pop.)
11.	. <u>Think and discuss</u> : Consider temperature, pressure, and volume. How does the mathematical relationship in Boyle's law compare to that in Charles's law?

	Get t	he Giz
Activity C:		On th
Gay-Lussac's Law		to 15
	•	Turn

zmo ready:

- e SIMULATION pane, set T to 300 K and m
- on the **Constant volume** checkbox.

Question: How does temperature affect the pressure of a gas when volume is constant?

1.	Form hypothesis: If the volume of a gas is held constant, how do you think the pressure will
	change as temperature increases?

2. Collect data: Select the TABLE tab. Record the pressure when T = 100 K, 200 K, and so forth up to 500 K. (Note: The volume will remain constant at 1.02 m³.)

Temperature	Pressure	Pressure Temperature
100 K		
200 K		
300 K		
400 K		
500 K		

3.	<u>Analyze</u> : Divide the pressure by the temperature to fill in the last column of the table.	Since
	1 N/m ² is equal to 1 pascal (Pa), write the units of the ratio as Pa/K.	

٩.	When the volume is held constant, how does the pressure change as temperature
	increases?

B. What do you notice about the ratio of pressure to temperature, when volume is constant?

Gay-Lussac's law states that, at constant volume, the ratio of pressure to temperature is constant. As temperature increases, pressure increases as well.

4. Explain: Based on the motions of the gas molecules, why do you think the pressure changed as it did when the temperature was increased?

(Activity C continued on next page)

Activity C (continued from previous page)

5.	5. <u>Calculate</u> : Compare the pressur	Calculate: Compare the pressure and temperature values in your data table.	
	A. At constant volume, how	did doubling the temperature affect the pressure?	
	B. How did tripling the temp	erature affect the pressure?	
	C. How did quadrupling the	temperature affect the gas pressure?	
1.	Create a graph: Record the pressure for temperatures of 50 K, 150 K, 250 K, 350 K, and 450 K. On the GRAPH tab, select P vs. T . Click the camera icon to take a snapshot. Past the image into your document, and label the graph "Pressure vs. Temperature." A. What is the shape of the graph?		
	b. How does this graph lifes	strate Gay-Lussac's law?	
2.		ed, what do you think would happen if you placed a sealed	
	container of gas into a file:		
3.	<u>Challenge</u> : Combine Boyle's law, Charles's law, and Gay-Lussac's law into a single proportional relationship between pressure (P), volume (V), and temperature (T). Use the symbol " \propto " to represent "is proportional to."		
	Explain your reasoning.	ain your reasoning.	

