12.3

Transfer Switches

Breaker-Based Designs

Standards and Certifications

They are listed under
Underwriters Laboratories UL
1008 Standard for transfer switch equipment and are optionally available as suitable for emergency and standby systems as defined in NFPA 99 for health care facilities.

- UL 1008 listed
- CSA C22.2 No. 178 certified

(ㄴ) (다
 Listed

Catalog Number Selection

Molded Case Transfer Switch
AT H I KD B 30200 E K C

Notes
(1) $H F D=200$ and $225 \mathrm{~A}, \mathrm{HLD}=600 \mathrm{~A}, \mathrm{HMD}=800 \mathrm{~A}$ for $240 / 120 \mathrm{Vac}$ single-phase, three-wire and $208 \mathrm{Y} / 120$ Vac three-phase, four-wire systems only
(2) The contactor-based transfer switch is currently available in $100,200,320,400$ and 600 A only. Contact the factory for availability on the 800,1000 and 1200 A switch.
${ }^{(3)}$ Four-pole 600A will use an NB breaker.
(4) $\mathrm{MCB}=$ Molded Case Breaker, MCS = Molded Case Switch
(5) NEMA 4 and NEMA $4 X$ requires an ATC-600 controller.

12.3

Transfer Switches

Breaker-Based Designs

Dimensions

Approximate Dimensions in Inches (mm)
Dimension Views

Breaker-Based and Molded Case Transfer Switches

		Enclosure			Gutter Space		Bolt Pattern		Standard Terminals ${ }^{1}$			
Rating	Switch	A Height	B Width	C	D Width	E	G Horizontal	H Vertical		nal Load and	Neutral	Weight Lbs (kg)
Molded Case												
30-100	HFD (2)	47.74 (1213.0)	20.81 (528.6)	17.22 (437.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
150-225	HFD (2)	47.74 (1213.0)	20.81 (528.6)	17.22 (437.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	232 (105)
30-100	HFD (3)	47.74 (1213.0)	20.81 (528.6)	17.22 (437.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	240 (190)
150	HFD (3)	47.74 (1213.0)	20.81 (528.6)	17.22 (437.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	46.44 (1180.0)	-	-	-	240 (190)
150-225	HFD (2)	35.61 (904.0)	20.06 (509.5)	13.34 (339.0)	8.00 (203.2)	4.00 (101.6)	10.75 (273.0)	34.31 (904.0)	-	-	-	150 (68)
150-225	HKD	56.00 (1422.4)	20.81 (528.6)	18.40 (467.4)	8.00 (203.2)	4.00 (101.6)	11.00 (279.4)	45.50 (1155.7)	-	-	-	305 (134)
300	HKD	53.00 (1346.2)	25.81 (655.6)	18.40 (467.4)	8.00 (203.2)	4.00 (101.6)	11.00 (279.4)	53.50 (1358.9)	-	-	-	295 (134)
400	HLD	53.00 (1346.0)	25.81 (655.6)	18.40 (467.4)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	51.50 (1308.0)	-	-	-	425 (193)
600	HLD (2)	64.00 (1625.6)	25.81 (655.6)	18.40 (467.4)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	62.50 (1588.0)	-	-	-	475 (214)
600	HMDL	76.74 (1949.2)	25.81 (655.6)	19.50 (495.3)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	480 (218)
800	HMDL (2)	76.74 (1949.2)	25.81 (655.6)	19.50 (495.3)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	510 (232)
800-1000	HNB	76.74 (1949.2)	25.81 (655.6)	19.50 (495.3)	8.00 (203.2)	4.00 (101.6)	16.00 (406.4)	75.15 (1908.8)	-	-	-	540 (245)

Notes

(1) Suitable with copper only.
(2) $240 / 120 \mathrm{~V}$, single-phase, three-wire or 208 V , three-phase, four-wire systems only.
(3) With multi-tap voltage selection panel.

Automatic Transfer Switches

Catalog Number ATHKDB302000
Standard Features: 1a, 2a, 3a, 4a, 5j, 5k, 6b, 7a, 8c, 8d, 12c, 12d, 12g, 12h, 15a, 15b, 23j, 26d, 26j, 26k, 32a, 36 Optional Features: $5 \mathrm{~h}, 6 \mathrm{~h}, 9 \mathrm{~d}, 12 \mathrm{cc}, 12 \mathrm{dd}, 12 \mathrm{gg}, 12 \mathrm{hh}, 12 \mathrm{l}, 12 \mathrm{~m}, 14 \mathrm{~g}, 14 \mathrm{~h}, 16 \mathrm{~b}, 26 \mathrm{~h}, 35 \mathrm{~b}, 37,80 \mathrm{a}$
Open Transition, $600 / 347 \mathrm{v}$, $60 \mathrm{hz}, 3$ Phase, 4 Wire, 3 Poles
Controller Type: ATC-600
Continuous Current: 200 A
Withstand Current: 200 Amps
Normal Source Terminals:
Emergency Source Terminals:
Side Source Terminals:
(2) $2 / 0-250 \mathrm{OR}$ (1) $2 / 0-500 \mathrm{CU} / \mathrm{AL}$
(2) $2 / 0-250 \mathrm{OR}$ (1) $2 / 0-500 \mathrm{CU} / \mathrm{AL}$
(1) $3 / 0-750 \mathrm{MCM} \mathrm{AL} / \mathrm{CU}$ OR (2) $3 / 0-250 \mathrm{MCM}$
(3) $3 / 0-750 \mathrm{MCM}$ AL/CU OR (6) $3 / 0-250 \mathrm{MCM}$

ATS Logic Instructio
ATS Logic Technical Data
IBATS-1005.PDF
TD15A05TE.PDF
ATHIKD 3 Poles 200 Amps
AT No Enclosure
1a. Time Delay Normal to Emergency Adj. 0-1800 sec
2a. Time Delay Engine Start Adj. 0-120 sec
3a. Time Delay Emergency to Normal Adj. 0-1800 sec
4a. Time Delay Engine Cool-off Adj. 0-1800 sec
5j. Emergency (S2) Sensing All Phase Under Voltage/Under Freq
5k. Emergency (S2) Sensing All Phase Over Voltage/Over Freq
6b. Test Pushbutton
7a. Time Delay Engine Fail Adj. 0-6 se
8c. Time Delay Bypass Emergency to Normal
8d. Time Delay Bypass Normal to Emergency
9d. Keyed Maintenance Selector Switch Isolates Elec. Op.
12c. LED Indicator Normal Position
12d. LED Indicator Light Emergency Position
12h. LED Indicator Emergency Source Available
12cc. Source1 Connected (30mm Pilot Light)
12dd. Source2 Connected (30 mm Pilot Light)
12gg. Source1 Available (30 mm Pilot Light)
12hh. Source2 Available (30 mm Pilot Light)
14g. Source1 Available (2NO/2NC Form C)
15a. Source1 Connected (1NO/1NC Form C)
15b. Source2 Connected (1NO/1NC Form C)
16b. 80\% Overcurrent Protection Normal. 200A Trip Emerg. 200A Trip
Normal Trip Amps - 200 Emergency Trip Amps - 20
23j. Auto Plant Exerciser Timer Select Load/No Load w/Fail Safe
26d. Go To Source 2
26. Normal (S1) Sensing Phase Reversal

26j. Normal (S1) Sensing All Phase Under-voltage/Under-frequency
32a. Time Delal Sensing All Phase Over-voltage/Over-frequency
35b. Pre-transfer Sitral Adjustable $0-120$ seconds
36. Emergensfer Signal Contacts ($2 \mathrm{NO} / 2 \mathrm{NC}$)
36. Emergency Load Shed from Remote
3. Go to "Isolated" Position (Not SE Rated)

80a. Emergency (S2) Inhibit Contac
Special BAR relay
Special Remote Local switch
Special Local Test switch
Special OR relay
Special RO pilot light
Special breaker tripped pilot lights
Comments to Spec 16225. Item 2.10.3.4. All power switching devices and control components are accessible from the front of the ATS Item 2.10.5. Current transformers are not shown on schematic or single line diagrams and are not included.
Standard Eaton ATS wiring

	THE INFORMATION ON THIS DOCUMENT IS CREATED BY CUTLER-HAMMER. IT IS DISCLOSED FOR THE PURPOSE IN WHICH IT IS SUPPLED. LES RENSEIGNEMENTS CI-DESSUS ONT ETE SONT DMULGUES EN TOUTE CONFANCE ET LEUR UTILISATION SE LIMTE AUX SEUIES FNS POUR		${ }_{\text {TR }}^{\text {DFR }}$	- DAIE/20/11	ExT•M		ler-Hammer	MIL	TON, ON
			APPD	DATE	$\begin{gathered} \text { TiTLE INDEX/BIDMAN FILE } \\ \text { KING PARK WS } \\ \hline \end{gathered}$				
			FILENAME	ATS	TPE			ATS	
	FEDERAL ID NO. 88725	PRODUCT CODE PG 230	MsIon	ows size	${ }_{\text {CSOTO }}^{\text {Co. }}$		${ }^{\text {DWG }} 23 \mathrm{E} 2869$		SHEET

TRANSFER SWITCH - SEQUENCE OF OPERATION
CONSIDER THE TRANSFER SWTCH IN THE NORMAL OPERATNG POSITON, WTH NORMAL POWER AVALLABLE AND THE
NORMAL INTERUUTER CLOSED. THE IQTRANSFER MONTORS ALL THREE PHASES OF THE NORMAL POWER.
WHEN IT SENSES A DIP OR LOSS OF VOLTAGE, THIS CAUSES TDES TO TME OUT AND INTIATE ENGINE STARTUP. WHEN
THE EMERGENCY SYSTEM REACHES CORRECT SETPONT LEVELS OF VOLTAGE AND RREQUENCY, TDNE WLL TMME OUT.
THE K2 CONTACT WIL THEN CLOSE, WHICH INTURN MAKE THE NORMA INTERRUPTER OPEN.
THS NTURN COMPLEES THE CLOSING CRCUIT FOR THE EMERGENCY INTERRUPTER WHICH WLL
NOW SUPPLY THE LOAD.
UPON RETURN OF STABIIIED NORMAL POWER, TDEN WLL TME OUT. THE KI CONTACT WLL THEN CLOSE WHICH INTURN
MAKE EMERGENCY INTERUPTER OPEN. THIS INURN COMPLETES THE
MAKE EMERGENCY INTERRUPTER OPEN THIS INTUNN COMPLETES THE
CLOLING CRCUIT FOR THE NORMLL NTERUUPTER WHICH WLL NOW SUPPLY THE LOAD.
the transfer swich is now ready to react to another normal power falure.

$\xrightarrow[y]{x}$	

