BREAST MRI PROTOCOLS

Updated 03/14/2018

Routine Bilateral w/wo	Silicone Breast Implant	Post Biopsy Additional View
Right Unilateral w/wo	Saline Breast Implant	
Left Unilateral w/wo	Biopsy	

Breast (Bilateral w/wo)

*Position the patient head first and prone. Position the breasts with the nipples in profile. Use markers for the nipples and recent biopsies FOV can be adjusted to patient size (approximately 280mm to 360mm)

AX STIR

AX Views (T1/VIBE)

AX Views FS Pre (T1 FS/VIBE FS)

- Must be under 2 minutes
- Do not send this image, use this image to check FS

AX Views FS Post (T1 FS/VIBE FS)

- 6 Measurements
- 1 measurement pre contrast -> 45 second delay -> 5 measurements
- Inject contrast immediately upon completion of the first measurement
- Injection should be at 3mL/second

SAG Views Post (T1 FS/VIBE FS)

Sequence	TR	TE	FOV		SLICE	GAP	MATRIX		PHASE	NEX	SCAN	OTHER
			FREQ	PHASE			PHASE	FREQ	DIR		DIR	
AX STIR	3850	70	300	100%	3	1	80%	448	R/L	3		
AX Views	5.43	2.46	300	100%	1.5	20%	403	448	R/L	1		
AX Views FS Pre	4.20	2.01	300	100%	1.5	20%	384	384	R/L	1		Must be under 2 minutes
AX View FS Post	4.20	2.01	300	100%	1.5	20%	384	384	R/L	1		Dynamic 6 Measurements
SAG Views Post	4.05	1.51	250	100%	1.5	20%	282	352	S/I	1		

Breast (Bilateral w/wo) Continued

Axial STIR

Axial VIEWS FS Post

Axial Views (no FS)

Sagittal VIEWS FS Post

Right Unilateral w/wo

*Position the patient head first and prone. Position the breasts with the nipples in profile. Use markers for the nipples and recent biopsies Right AX STIR

Right AX Views (T1/VIBE)

Right AX Views FS Pre (T1 FS/VIBE FS)

- Must be under 2 minutes
- Do not send this image, use this image to check FS

Right AX Views FS Post (T1 FS/VIBE FS)

- 6 Measurements
- 1 measurement pre contrast -> 45 second delay -> 5 measurements
- Inject contrast immediately upon completion of the first measurement
- Injection should be at 3mL/second

Right SAG Views Post (T1 FS/VIBE FS)

Sequence	TR	TE	FOV		SLICE	GAP	MATRIX		PHASE	NEX	SCAN	OTHER
			FREQ	PHASE			PHASE	FREQ	DIK		DIK	
Right AX STIR	3850	70	250	100%	3	1	80%	448	R/L	4		
Right AX Views	5.43	2.46	220	100%	1.5	20%	403	448	R/L	1		
Right AX Views FS Pre	4.20	2.01	220	100%	1.5	20%	384	384	R/L	1		Must be under 2 minutes
Right AX View FS Post	4.20	2.01	220	100%	1.5	20%	384	384	R/L	1		Dynamic 6 Measurements
Right SAG Views Post	4.05	1.51	250	100%	1.5	20%	282	352	S/I	1		

Left Unilateral w/wo

*Position the patient head first and prone. Position the breasts with the nipples in profile. Use markers for the nipples and recent biopsies Left AX STIR

Left AX Views (T1/VIBE)

Left AX Views FS Pre (T1 FS/VIBE FS)

- Must be under 2 minutes
- Do not send this image, use this image to check FS

Left AX Views FS Post (T1 FS/VIBE FS)

- 6 Measurements
- 1 measurement pre contrast -> 45 second delay -> 5 measurements
- Inject contrast immediately upon completion of the first measurement
- Injection should be at 3mL/second

Left SAG Views Post (T1 FS/VIBE FS

Sequence	TR	TE	FOV		SLICE	GAP	MATRIX		PHASE	NEX	SCAN	OTHER
			FREQ	PHASE			PHASE	FREQ	DIR		DIR	
Left AX STIR	3850	70	250	100%	3	1	80%	448	R/L	4		
Left AX Views	5.43	2.46	220	100%	1.5	20%	403	448	R/L	1		
Left AX Views FS Pre	4.20	2.01	220	100%	1.5	20%	384	384	R/L	1		Must be under 2 minutes
Left AX View FS Post	4.20	2.01	220	100%	1.5	20%	384	384	R/L	1		Dynamic 6 Measurements
Left SAG Views Post	4.05	1.51	250	100%	1.5	20%	282	352	S/I	1		

Silicone Breast Implant

*Position the patient head first and prone Coverage only need to include the breast implant

Axial STIR Right Sagittal STIR Water Sat Left Sagittal STIR Water Sat Right Axial STIR Water Sat Left Axial STIR Water Sat Right Sagittal STIR Silicone Left Sagittal STIR Silicone Left Axial STIR Silicone

Ax STIR

Seguence	тр	тс	FOV		SUCE	CAD	MA	MATRIX		NEV	SCAN		
Sequence	IR	IC	FREQ	PHASE	SLICE	GAP	PHASE	FREQ	DIR	INEA	DIR	UTTER	
Ax STIR	3900	64	340	340	4	0.8	326	384	R/L	1	S->I		
RT Sag STIR Water Sat	4000	64	200	200	4	0.4	192	256	S/I	1	L-R	Bright Silicone/Dark	
LT Sag STIR Water Sat	4000	64	200	200	4	0.4	192	256	S/I	1	L-R	Fat/Dark Water	
RT Ax STIR Water Sat	4000	64	220	220	4	0.4	192	256	R/L	1	S->I	Confirm Frequency: select water peak (suppress H2O)	
LT Ax STIR Water Sat	4000	64	220	220	4	0.4	192	256	R/L	1	S->I		
RT Sag STIR Silicone	4000	64	200	200	4	0.4	192	256	S/I	1	L-R	Dark (gray)	
LT Sag STIR Silicone	4000	64	200	200	4	0.4	192	256	S/I	1	L-R	Silicone/Bright Fat	
RT Ax STIR Silicone	4000	64	220	220	4	0.4	192	256	R/L	1	S->I	II: 500 (3T) Confirm Frequency:	
RT Ax STIR Silicone	4000	64	220	220	4	0.4	192	256	R/L	1	S->I	select silicone peak (suppress silicone)	

Silicone Breast Implant Continued

*These techniques are tailored specifically for the SIEMENS scanners which use a Water Saturation Technique (located under the contrast tab) rather than a Fat Saturation technique. Water Saturation is a frequency selected saturation and will saturate the selected peak.

SAG STIR w/ Water Saturation RT

STIR w/ Water Saturation

Confirm Frequency:

Water and Fat need to be suppressed – The TI time suppresses the fat. Adjust the system's center frequency to be centered on water to suppress the water. Left click on the peak then select "apply"

Only silicone should be bright

STIR Silicone Confirm Frequency:

Silicone needs to be suppressed – Adjust the system's center frequency to be centered on silicone to suppress signal from the silicone implant. Left click on the peak then select "apply"

SAG STIR Silicone RT

Saline Breast Implant

Right Sagittal STIR Left Sagittal STIR Right Axial STIR Left Axial STIR

Two peaks – fat and water Saline Implants

STIR with Saline Implant Confirm Frequency:

There is no need to manually adjust peaks with saline implants while running a STIR. The TI time will suppress the fat, so water (including the saline implant) will be bright.

TR	TE	FOV		SLICE	GAP	MATRIX		PHASE	NEX	SCAN	OTHER
		FREQ	PHASE			PHASE	FREQ	DIR		DIR	
4210	82	220	100%	4	0.8	256	320	R/L	2	L->R	Dark
											Fat/Bright
4210	82	220	100%	4	0.8	256	320	R/L	2	L->R	Water/Bright
											Implant
4210	82	220	100%	4	0.8	256	320	R/L	2	L->R	
											TI: 230 (3T),
4210	82	220	100%	4	0.8	256	320	R/L	2	L->R	150 (1.5T)
	TR 4210 4210 4210 4210	TR TE 4210 82 4210 82 4210 82 4210 82 4210 82	TR TE FREQ 4210 82 220 4210 82 220 4210 82 220 4210 82 220 4210 82 220	TR FOU TR FREQ PHASE 4210 82 220 100% 4210 82 220 100% 4210 82 220 100% 4210 82 220 100% 4210 82 220 100%	TR FOV $SLICE$ TRFREQPHASE421082220100%421082220100%421082220100%421082220100%421082220100%	TRTEFOV FREQSLICEGAP421082220100%40.8421082220100%40.8421082220100%40.8421082220100%40.8421082220100%40.8	TR FEQ PHASE GAP MAT 4210 82 220 100% 4 0.8 256 4210 82 220 100% 4 0.8 256 4210 82 220 100% 4 0.8 256 4210 82 220 100% 4 0.8 256 4210 82 220 100% 4 0.8 256 4210 82 220 100% 4 0.8 256	TR $FREQ$ PHASE GAP $MATRIX$ 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320 4210 82 220 100% 4 0.8 256 320	TR FEQ $FREQ$ $PHASE$ $APHASE$ $APHASE$ $PHASE$ $PHASE$ $PHASE$ DR 421082220100%40.8256320 R/L 421082220100%40.8256320 R/L 421082220100%40.8256320 R/L 421082220100%40.8256320 R/L	TR FEQ $FREQ$ $PHASE$ $APHASE$ $APHASE$ $PHASE$ $PHASE$ DR DR 421082220100%40.8256320 R/L 2421082220100%40.8256320 R/L 2421082220100%40.8256320 R/L 2421082220100%40.8256320 R/L 2421082220100%40.8256320 R/L 2	TR FEQ $FREQ$ $PHASE$ $SLICE$ GAP $MATRIX$ $PHASE$ DR

Breast Biopsy

*Position the patient head first and prone with the opposite breast positioned up and away from the affected breast. A medial or lateral approach will be determined by the radiologist.

Sagittal FS Pre Axial FS Pre

Ax FS Post

Sagittal FS Post (as indicated by the radiologist)

Sequence	TR	TE	FOV		SLICE	GAP	MATRIX		PHASE		SCAN	OTHER
			FREQ	PHASE			PHASE	FREQ	DIR		DIR	
Sag FS Pre/Post	4.58	1.74	240	100%	1.5	20%	403	448	S/I	1	L->R	Coverage to include the entirety of the bunny ears
Right AX Views Pre/Post	4.58	1.74	240	100%	1.5	20%	403	448	A/P	1	S->I	

Post Biopsy Additional View (no contrast)

*Position the patient head first and prone. Position the breasts with the nipples in profile. Use markers for the nipples and recent biopsies FOV can be adjusted to patient size (approximately 280mm to 360mm) To be scanned, as indicated, after an ultrasound guided breast biopsy

AX Views FS (T1 FS/VIBE FS) SAG Views (T1 FS/VIBE FS)

Sequence	TR	TE	FOV		SLICE	GAP	MATRIX		PHASE	NEX	SCAN	OTHER
			FREQ	PHASE			PHASE	FREQ	DIR			
AX Views FS	4.20	2.01	300	100%	1.5	20%	384	384	R/L	1	S->I	
SAG Views FS	4.05	1.51	250	100%	1.5	20%	282	352	S/I	1	L->R	