
Breath Flute Project Guide Page 1 of 63 Printed August 10, 2018 at 2:31 PM

Breath Flute Project Guide Page 2 of 63 Printed August 10, 2018 at 2:31 PM

Breath Flute Developer’s Guide

This document provides information and guidance for those who wish to fabricate Breath Flutes, as well as

developers who wish to modify the design of the Breath Flute for their own purposes.

The Instrument

The Breath Flute is a wind instrument that lets players with little or no musical experience create deep,

resonant music using only their breath. The design inherits from musical instruments of many cultures,

including the Australian didgeridoo, overtone flutes from Slovakia, and the Native American flute.

It is ideal for community music gatherings since it can be played solo, in small groups, or as a large

ensemble providing harmonic and rhythmic support for other musical instruments. It also has a role in

music therapy, therapeutic music-making, and a wide range of personal breath practices such as yoga and

meditation.

Breath Flutes are accessible to players with physical limitations, since they have no finger holes and require

no finger dexterity. Most players with no musical experience can create music in the first few minutes and

experience the physiological benefits associated with resonant breathing the first time they play the

instrument.

Most Breath Flutes have a short

headjoint section combined with a long

body tube. The headjoint is about 5 in /

13 cm long and can be 3D-printed

using free, open-source software. The

body tube can be as simple as a length of

standard pipe, or as complex as you wish

to make it (decoration, curved designs, holes for tuning, etc.) The headjoint press-fits onto the body tube.

It converts the player’s breath into a resonant vibration in the body tube that we hear as sound.

The Project

The Breath Flute Project is a free, open-source software package that has all the files you need to 3D-print

a Breath Flute headjoint. You can use the printed instruments yourself, for your music gatherings, and

even offer them for sale without paying royalties.

The distribution package contains the source code as well as extensive documentation, letting you

improve the design or adapt it for your needs. This can be done using free, open-source software.

You may download, use, modify, and distribute the Breath Flute Project software under a permissive

license designed to keep the software free and open. The license encourages anyone to improve the design

and share their improvements with the community. See the License.txt file in the distribution package

for details.

— Clint Goss [clint@goss.com], as of 8/10/2018

mailto:clint@goss.com

Breath Flute Project Guide Page 3 of 63 Printed August 10, 2018 at 2:31 PM

Copyright © 2018 the Breath Flute Project Authors (see Authors.txt).

This document is part of the Breath Flute Project (www.BreathFlute.com). You may copy, use, modify,

and distribute this document under the terms of the GNU Free Documentation License version 1.3 (“the

GFDL”) or any later version as published by the Free Software Foundation; with no Invariant Sections, no

Front-Cover Texts, and no Back-Cover Texts.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GFDL for more details.

The GFDL in plain text is distributed with releases of the Breath Flute Project. It is also available at

http://www.GNU.org/.

Acronyms and Abbreviations

CSG Constructive Solid Geometry – the technique used in the Breath Flute for solid modelling.

FFF “Fused Filament Fabrication” – the method used by many 3D printers. Note that this a copyrighted

term of the RepRap project, licensed under GPL.

FDM “Fused Deposition Modeling” – an alternate description of FFF.

https://en.wikipedia.org/wiki/Fused_deposition_modeling

S3D “Simplify3D” – slicer software.

SLA “Stereolithography” – an optical fabrication resin printing technology for fabricating 3D models

layer-by-layer using photopolymerization.

http://www.breathflute.com/
http://www.gnu.org/
https://en.wikipedia.org/wiki/Fused_deposition_modeling

Breath Flute Project Guide Page 4 of 63 Printed August 10, 2018 at 2:31 PM

Overview

If you wish to print the Breath Flute Project design, you can use pre-compiled STL files from the

distribution package. These files describe the shape – the “three-dimensional surface geometry” – of the

Breath Flute.1 You can use these STL files as the starting point for many of the 3D printing processes.2 The

typical process is to convert the STL files into specific machine instructions (typically G-code) that direct

the actions of the hardware you are using to fabricate the Breath Flute.

If you wish to simply fabricate (3D-Print) Breath Flutes, you don’t need to modify any code.

The distribution package has pre-built STL files that you can use with your 3D printer.

If you would like to improve the design of the Breath Flute or adapt it

for your needs, the source code and extensive documentation is

provided in the distribution package. The source code is written in

OpenSCAD, which uses Constructive Solid Geometry (CSG) to

create the geometric model of the Breath Flute. CSG is a

technique that combines simple object – cubes, cylinders,

prisms pyramids, spheres, cones, etc. – using Boolean

operators – union, intersection, and difference – and

transformations such as shift, rotate, and extrude. You

would render your modified design directly in OpenSCAD

to produce the STL files you need to fabricate your modified instruments.

If you do modify the design and fabricate flutes based on your modifications, you are

encouraged to get your own Fabricator Code. These two characters printed on the side of

the various components identify you and your design, and replace the default “BF” code that

identifies “vanilla” flutes fabricated from STL files in a distribution package.

To register your own Fabricator Code, send me an email (clint@goss.com) with (a) your name, (b) your

preferred two-letter code, and (c) your contact information, and I will add you to the published list (if

possible).

1 For an overview of STL files, see https://all3dp.com/what-is-stl-file-format-extension-3d-printing/.
2 Extrusion technologies such as Fused Deposition Modeling, light polymerization systems such as Stereolithography, powder
bed systems such as Selective Layer Sinstering, Laminated Object Manufacturing, or the metal alloy systems such as Electron
Beam Fabrication. See https://en.wikipedia.org/wiki/3D_printing_processes for an overview.

mailto:clint@goss.com
https://all3dp.com/what-is-stl-file-format-extension-3d-printing/
https://en.wikipedia.org/wiki/3D_printing_processes

Breath Flute Project Guide Page 5 of 63 Printed August 10, 2018 at 2:31 PM

The Breath Flute Project GPL License

The Breath Flute Project is Copyright © 2016-2018 the Breath Flute Project Authors (see AUTHORS.txt).

The Breath Flute Project is free software. You may copy, use, modify, and distribute it under the terms of

the GNU General Public License version 3 (“the GPL”) or any later version, as published by the Free

Software Foundation. Documentation released with the Breath Flute Project is separately licensed under

the terms of the GNU Free Documentation License version 1.3 (“the GFDL”) or any later version. Font

software released with the Breath Flute Project is separately licensed under the terms of the SIL Open Font

License version 1.1 (“the OFL”).

The Breath Flute Project is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GPL for more details.

This license, copyright notice, and the GPL cover the design of the Breath Flute, the stylized flute design

used in the images shown below this License, and the neologisms “Breath Flute” and “BreathFlute” in

upper case, lower case, or any mix of cases, in any typeface (“the Design Elements”). Anyone may use the

Design Elements freely in any way they choose, but they may not be registered as trademarks or restricted

in any other way. You may use the Design Elements with significant extra words and graphics in

trademarks, as you would be able to with words from a dictionary.

The GPL, the GFDL, and the OFL are distributed in plain text with releases of the Breath Flute Project.

You can also access the GPL and the GFDL at http://www.GNU.org/ or by writing to the Free Software

Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110. You can access the OFL at

http://scripts.sil.org/OFL.

END OF TERMS AND CONDITIONS

See the About the Breath Flute Project GPL License section later in this document for information about

the License and advice on how to handle common licensing scenarios.

http://www.gnu.org/
http://scripts.sil.org/OFL

Breath Flute Project Guide Page 6 of 63 Printed August 10, 2018 at 2:31 PM

Resources

You can access Web-based information on the Breath Flute as well as the latest distribution package

at http://www.BreathFlute.com/. The latest version of this Breath Flute Developer’s Guide is at:

 http://www.BreathFlute.com/pdf/BreathFlute_DevelGuide.pdf

You may also be interested in these documents:

• A Brief Introduction to the Breath Flute:

 http://www.BreathFlute.com/pdf/BreathFlute_Introduction.pdf

• Breath Flute History and Evolution:

 http://www.BreathFlute.com/pdf/BreathFlute_History.pdf

• If you use Simplify3D as your slicer, you may get something from my Simplify3D Settings Manual,

available at http://www.BreathFlute.com/pdf/S3D_SettingsCG.pdf

• If you use a Prusa i3 Mk3 printer with Simplify3D for a slicer, you might be interested in:

o Profiles Comparison: http://www.BreathFlute.com/zip/S3D_Pi3Mk3_CoreProfiles_CG.zip

o S3D Prusa Profile: http://www.BreathFlute.com/zip/S3D_Pi3Mk3_CG_BF_20180504.zip

Structure of the Distribution

This section outlines the directory structure of the distribution package.

Top-Level Directory

Files in plain text format that relate to the authorship, licensing, and history of development of the Breath

Flute Project. A copy of An Introduction to the Breath Flute is also provided.

/Doc

Documentation. These are predominantly in PDF format, because of the value of including in-line images

with the documentation. These files are licensed under the GFDL.

/Img

Digital image files that are part of the Breath Flute Project. Note that these images, and the designs they

represent, are part of the distribution and are covered by the Breath Flute Project GPL License.

/Misc

Auxiliary files such as the .log file of the rendering of all STL files in the distribution package, a PDF file

with templates for cutting out sandpaper for the sanding tools, and the zero-byte Null.txt file used to

calibrate MD5 utilities.

http://www.breathflute.com/
http://www.breathflute.com/pdf/BreathFlute_DevelGuide.pdf
http://www.breathflute.com/pdf/BreathFlute_Introduction.pdf
http://www.breathflute.com/pdf/BreathFlute_History.pdf
http://www.breathflute.com/pdf/S3D_SettingsCG.pdf
http://www.breathflute.com/zip/S3D_Pi3Mk3_CoreProfiles_CG.zip
http://www.breathflute.com/zip/S3D_Pi3Mk3_CG_BF_20180504.zip

Breath Flute Project Guide Page 7 of 63 Printed August 10, 2018 at 2:31 PM

/Src

Source code for the Breath Flute Project, including OpenSCAD files and

batch files for command-line generation of .stl files. Third-party packages

licensed under the GPL and other compatible licenses are contained in sub-

directories.

/STL_Core and /STL

These two directories contain STL files (see

https://en.wikipedia.org/wiki/STL_(file_format)) and related files. Each STL file describes the 3D geometry

of a given Breath Flute component with a particular set of parameters specific to that component.

The STL files are in “stereolithography” format (a.k.a. “standard triangle language” or “standard tessellation

language”).

The /STL_Core directory contains what might be called “starter” files – the three primary

files you would consider printing to fabricate a Breath Flute with one set of options: a Large

mouthpiece, no inlay channels, a typical expansion factor, and a ZAlign set to 5. /STL_Core

also contains the two most useful sanding tools – SandF and SandY – with the parameters

that are most useful.

The /STL directory contains all other STL files, including Breath Flute components with

other options and the files to fabricate the sanding tools that are part of this project.

The file name of each STL file indicates the OpenSCAD parameters used for the rendering of that file – see

the STL File Names section for details.

You will need some application to view the models in the .stl files. Most slicer applications

(which you will need to 3D print a model) provide a way to view .stl files. In addition, I

typically use the free STL viewer application provided by 3D-Tool (https://www.3d-

tool.com/).

The /STL directory also contains .log files – plain text files that show the command-line output of the

OpenSCAD renderings for the .stl files in this directory. The log files indicate the parameters used for

each rendering and provide detailed information on the sizes of various components.

/TTF

TrueType font files for the Kurinto fonts used by the Breath Flute Project. If you are printing models from

the .stl files in the distribution package, you do not need to install these fonts. However, for rendering

new .stl files from the OpenSCAD source code, you will need to install the files. See the Fonts section

below.

https://en.wikipedia.org/wiki/STL_(file_format)F
https://www.3d-tool.com/
https://www.3d-tool.com/

Breath Flute Project Guide Page 8 of 63 Printed August 10, 2018 at 2:31 PM

The Components

This section outlines each of the components that make up the Breath Flute. Most of them are generated

directly from the OpenSCAD source code and are printable from .STL files provided in the distribution.

If you are printing a Breath Flute, you probably want to start with the Foot or SpEdge components.

These are small, good for testing, and will help dial in which of the MBIZE variants you want. For a

complete Breath Flute headjoint, you will need to print the Bird, BodyProx, and BodyDist

components. You may also wish to print the sanding blocks – the various Sand* components – to assist in

post-production.

I have included images of many of the components. They are from various past versions of the Breath

Flute design, but they give you the general idea of the component.

For a description of the MBIZE field, see the MBIZE Variants section below.

Sandpaper

Some of the components designed for sanding – those with a radius – assume a particular thickness of

sandpaper: 0.0105″ or 0.2667 mm. This is the thickness I measured on November 29, 2017 of Mercer

Abrasives Aluminum Oxide 220A Grit paper.

Composite Components

Components that may be useful for display rendering and demonstration. They are not typically practical

for FDM printing because of: (a) bridging and overhang issues and (b) lack of access to the flue area for

post-processing.

 Code Name MBIZE Description

 HJ Headjoint M-IZE The complete Breath Flute Headjoint in one model / print.

 BY Body MBIZE The Headjoint minus the Bird.

 BB BPBird M-I-- The BodyProx plus the Bird (= the Headjoint minus the BodyDist).

Breath Flute Project Guide Page 9 of 63 Printed August 10, 2018 at 2:31 PM

Body component from v61

Main (Split-headjoint) Components

The three components needed to make functional Breath Flutes.

Code Name MBIZE Description

 BI Bird MB--- The Bird component – fixed to the BodyProx by a lanyard prior to v75 and

 then by set screws.

 BP BodyProx MBI-- Proximal half of the Body component.

 BD BodyDist --IZE Distal half of the Body component.

Breath Flute Project Guide Page 10 of 63 Printed August 10, 2018 at 2:31 PM

Bird, BodyProx, and BodyDist components from v70

(two Bird components are shown)

Breath Flute Project Guide Page 11 of 63 Printed August 10, 2018 at 2:31 PM

Half-components

Designed for a demo of the Headjoint that is split lengthwise.

 Code Name MBIZE Description

 H2 HeadjointHalf

 M-IZE Half of a Headjoint. Good for images, but not practical to FDM print.

 B2 BirdHalf MB--- Half of a Bird. Printable and can be assembled with P2 and D2.

 Y2 BodyHalf MBIZE Half of a Body. Good for images, but not practical to FDM print.

 P2 BodyProxHalf

 MBI-- Half of a BodyProx. Printable and can be assembled with D2 and B2.

 D2 BodyDistHalf

 --IZE Half of a BodyDist. Printable and can be assembled with P2 and B2.

HeadjointHalf component from v40 v73 BirdHalf, BodyProxHalf, and BodyDistHalf

(prior to the Bird) (note the lack of a brim on the Bird!)

BirdHalf, BodyProxHalf, and BodyDistHalf components

bolted together for demonstration.

Breath Flute Project Guide Page 12 of 63 Printed August 10, 2018 at 2:31 PM

Sanding Tools

Sanding Blocks, Wedges, and Dowels – useful for finishing printed flutes. Note that the names and codes

are (mostly) in alphabetical order, for ease of sorting, and generally proceed from proximal to distal and

from Bird to BodyProx to BodyDist.

 Code Name Done? MBIZE Description

 SB SandB ----- Bird Sanding Block

 Sanding block for the Bird Crown and Nest Rails.

 This is the inverse of SandN.

 This block matches the inflection angle of the base of the Bird.

 SF SandF ----E Flue Sanding Block

 For the Flue on the underside of the Bird.

 This component has exactly the shape of the roof of the flue, allowing for a

 sheet of sandpaper. See the Sandpaper section above for the specifications

 of sandpaper thickness.

 SG SandG X ----- Sanding Guard – To protect the Grip at the bottom of Sanding Dowels

 in the jaws of a vice grip. This component is designed to crush before the

 Grip crushes, if too much force is applied to the vice grip.

 SH SandH X ----- Sanding Handle – A handle that can hold all Sanding Wedges and Dowels.

 SN SandN ----- Nest Sanding Block

 Sanding block for the Crown and Nest Rails on the

 BodyProx or Body components. This is the inverse of SandB.

 This block matches the inflection angle of the base of the Bird.

 SP SandP ----E Proximal Junction Sanding Block

 For the Proximal Junction of the BodyProx component.

 SQ SandQ ----E Distal Junction Sanding Wedge

 For the Distal Junction at the proximal end of the BodyDist component.

 SS SandS ----E Sound Chamber Sanding Dowel

 For the proximal end of the Sound Chamber in the BodyDist component.

 Two are needed to form a complete dowel.

 ST SandT ----E Transition Sanding Wedge

 For the bevel transition from the Sound Chamber to the Mortice inside the

 the BodyDist component.

 SV SandV ----- V Sanding Wedge

 A V-shaped wedge useful for sanding off the brim of BodyDist. It may be

 useful for other purposes.

Breath Flute Project Guide Page 13 of 63 Printed August 10, 2018 at 2:31 PM

 SY SandY ----E Mortice Sanding Dowel

 Semi-cylinder for the Mortice at the distal end of the BodyDist component

 that holds the Body Tube. Two are needed to form a complete dowel.

 SZ SandZ ----E Bottom Flare Sanding Wedge

 For the terminal flare at the foot of the entire Headjoint.

v70 SandB component

Breath Flute Project Guide Page 14 of 63 Printed August 10, 2018 at 2:31 PM

Service Components

Useful for testing and calibration during fabrication.

Code Name MBIZE Description

 FT Foot ----E Foot end of the Headjoint – useful for selecting a scale factor.

 SE SpEdge ---Z- Just the splitting edge area of the BodyDist component, for testing.

Developers’ Components

Useful for development and testing. These may be useful for examining a shape, or for faster rendering of

a section of the model, but are not intended for fabrication.

 Code Name MBIZE Description

 LI Lip M---- Just the Lip at the top end of BodyProx – useful for development.

 FL Flue M---- Shows the shape of the Flue – very useful for debugging.

 BN BodyProxN MB--- BodyProx with no Lip – faster rendering during development.

 TH Throat -B--- The throat area of the headjoint, optionally showing the pegs for the

 Bird component. This is useful during development to position elements

 in the throat area.

 JP JunctionProx

 MBI-- The proximal part of the Junction Area – the area between the BodyProx

 and BodyDist components. Useful for development of Junction Pegs.

 JD JunctionDist

 --IZ- The distal part of the Junction Area. Useful for development of Junction Pegs.

The v75 Lip component in isolation, viewed from above and below

Breath Flute Project Guide Page 15 of 63 Printed August 10, 2018 at 2:31 PM

Deprecated / Discontinued / Defunct Components

These components appear in the OpenSCAD code, but are no longer viable.

 Code Name MBIZE Description

 SL Sleeve ----- From the ill-fated Sleeve / Insert design of the version 50 era.

 IN Insert ----- From the ill-fated Sleeve / Insert design of the version 50 era.

 SX SandX ----- The old sanding block for the rails of the nest area on the BodyProx.

 Retired in v77 with the Differential Flue Radius, which reduced the

 “bump” on the floor of the flue so it sits below the Nest rails.

 This component allowed sanding of the nest rails without affecting

 the floor of the flue.

 It is designed to have small strips of sandpaper fixed onto the rails.

 It also has an end-stop to prevent accidentally sanding the crown area.

 Note that this was actually called SandN, but the name was changed on

 6/16/2018 to SandX to avoid conflict with the new SandN component.

v72 SandX component

Multi-Component Codes

Codes for multiple components. These codes are not printable, but are useful for photos and for .gcode

files with multiple components in a single print.

 Z0 A combination of BodyProx and BodyDist.

 Z1 A combination of BodyProx, BodyDist, and Bird.

 Z2 A combination of BodyProxHalf, BodyDistHalf, and BirdHalf.

Breath Flute Project Guide Page 16 of 63 Printed August 10, 2018 at 2:31 PM

 ZZ A combination of all components. This code is used, for example, when all

 components are rendered.

Breath Flute Project Guide Page 17 of 63 Printed August 10, 2018 at 2:31 PM

MBIZE Variants

There are five parameters that allow for variations of some of the Breath Flute components:

• The Mouthpiece parameter controls the size of the mouthpiece. See the [M] section in STL File
Names (below).

• The BirdStyle parameter controls the size of the mouthpiece. See the [bb] section in STL File
Names (below).

• The Inlay parameter controls the width of channels on the sides of some of the component, for

decorative inlays. See the [ii] section in STL File Names (below).

• The ZAlign parameter controls the precise Z-axis alignment of the splitting edge of the flute. This is

critical for getting the best sound from the fabricated instrument. See the [zz] section in STL File
Names (below) as well as the Z Axis Synchronization section that follows.

• The XYExpand parameter controls the size of the Mortice at the foot end of the flute in the X-Y plane.

This allows adjustments for different size body tubes. See the [eeee] section in STL File Names

(below).

To keep track of which settings were used for a particular rendering, the setting used for each of these

parameters is inscribed on each of the rendered parts that are affected by that parameter (unless, as with the

BirdStyle parameter, it is obvious).

Breath Flute Project Guide Page 18 of 63 Printed August 10, 2018 at 2:31 PM

STL File Names

STL files in a Breath Flute Project distribution have a file names that help keep all the models and their

variants organized. The file name, for example …

BFlute_074a_BD_CG_f125i3z5e5_20180505_1234.stl

… might seem cryptic. This section describes how to decipher those names, and also indicates the

corresponding parameter in the OpenSCAD source code that relates to each of the variants.

The general format of an STL file name is:

BFlute_VVVV_CC_FF_dsss[M][bb][ii][zz][eeee]_YYYYMMDD_hhmm.stl

The sections in [brackets] are optional, and only appear for some of the STL files. The sections in colors

(other than black) are:

VVVV The version of the Breath Flute Project OpenSCAD code that generated the STL file. This is

always three digits followed by an optional single letter (e.g. “074” or “129a”).

 OpenSCAD parameter: ProjectVersion (except without any leading “0”).

render.bat variables: varProjectVersion24 and varProjectVersion34

CC A two-character code for the Component. See The Components above.

 OpenSCAD parameter: Component

render.bat variables: varComponent and varComponentFlag

FF Fabricator Code: two upper-case letters that identify who has fabricated the instrument, by an

FDM process or any other manufacturing process. This code is printed on the side of most of the

components, as a way to identify who has produced the physical model. A list of fabricator codes

currently in use is available at www.BreathFlute.com.

Note that the special fabricator code “BF” is used for the STL files in the standard Breath

Flute Project distribution package and may appear on printed models that have not been

modified from that distribution.

 If you wish to register your own Fabricator Code, send me an email (clint@goss.com) with:

• your name,

• preferred two-letter code, and

• contact information,

 and I will add you to the published list (if possible).

 OpenSCAD parameter: FabricatorCode

 render.bat variable: varFabricatorCode

http://www.breathflute.com/
mailto:clint@goss.com

Breath Flute Project Guide Page 19 of 63 Printed August 10, 2018 at 2:31 PM

d RenderDetailFlag – a parameter that controls the number of straight-line segments used to

approximate curves. These single-letter flags that are used in STL file names run in tandem with the

one-word RenderDetail values used in the both the OpenSCAD code and the render.bat

script.

 Values for the RenderDetailFlag and their corresponding RenderDetail values are “c”

(Coarse), “m” (Medium), “f” (Fine), or “s” (SuperFine).

 Developers will typically set the OpenSCAD parameter RenderDetail to “Coarse” during

development. This allows them to quickly render and visualize their designs.

Note: the RenderDetail setting is not printed on the parts themselves. You will need to

use the flag in the STL file name or look at the rendered component to determine what

RenderDetail setting was used.

Various RenderDetail settings, using the Bird component from v79

Breath Flute Project Guide Page 20 of 63 Printed August 10, 2018 at 2:31 PM

 For a rendering intended for fabrication, developers should change RenderDetail to “Fine”

(RenderDetailFlag = “f”). The rendering will take significantly longer, but curves on the

fabrication will be far more detailed. Most STL files in the distribution package are rendered with

RenderDetail = “Fine”, although some Coarse and Medium renderings are included (in case

you are using them on a machine with limited horsepower).

 The difference in size between the different RenderDetail settings is dramatic: The size of the

STL file increases from Coarse to Medium by about a factor of × 2 and from Coarse to Fine by

about a factor of × 6–7.

 For development work where a finer detail that coarse is needed, the RenderDetail setting

“Medium” is available. This takes longer to render, but is useful for an F6 render, especially if

images of the OpenSCAD rendering are being captured (e.g. for documentation).

 Finally, the “SuperFine” setting affects only the rendering of the Lip component. I left

“SuperFine” for the pre-v75 (needlessly high) $fn settings for Lip and changed “Fine” to one

level down (half of SuperFine).

 OpenSCAD parameter: RenderDetail – “Coarse”, “Medium”, “Fine”, or “SuperFine”

render.bat variables: varRenderDetail and varRenderDetailFlag

sss Size of the Body Tube. Currently supported values are:

 125 1¼″ PVC tubing

More sizes are planned in the future …

 OpenSCAD parameter: Pipe

render.bat variable: varPipe

Breath Flute Project Guide Page 21 of 63 Printed August 10, 2018 at 2:31 PM

[M] Mouthpiece size (optional). A single, upper-case letter that indicates the size of the mouthpiece and

lip plate at the proximal end of the headjoint:
 S Small
 M Medium
 L Large. This was the standard (and only) size prior to v76.

 X X-Large

 Only present for the Headjoint(HJ), Body(BY), BPBird(BB), Bird(BI), BodyProx(BP),

HeadjointHalf(H2), BirdHalf(B2), BodyHalf(Y2), BodyProxHalf(P2), Lip(LI),

Flue(FL), BodyProxN(BN), and JunctionProx(JP) components.

Only multi-supplied for the Bird(BI), BodyProx(BP), and Lip(LI) components.

The Flue component is dependent on Mouthpiece size, but only for its shape in the SAC area.

The shape of the Flue in the Throat area (i.e. underneath the Bird) does not change with

Mouthpiece size.

Note: Bird components must be matched with a BodyProx component that has the same

Mouthpiece size setting, because the shape at the proximal end of the Bird changes as the

Mouthpiece size changes!

OpenSCAD parameter: MouthpieceSize

render.bat variable: varMouthpieceSize

Small Mouthpiece X-Large Mouthpiece

Breath Flute Project Guide Page 22 of 63 Printed August 10, 2018 at 2:31 PM

[bb] Bird Style (optional). Indicates which of these bird styles to use:

 bT Tied-on Bird – no peg holes for set screws

 bP Peg Holes – for using four 6-32 set screws to fix the Bird onto the BodyProx component

 bW Wedges – the same as Peg Holes with the addition of side wedges to avoid breaking the

 delicate outboard areas of the Bird when screwing in the set screws.

 Only present for the Body(BY), Bird(BI), BodyProx(BP), BirdHalf(B2),

BodyHalf(Y2), BodyProxHalf(P2), BodyProxN(BN), Throat(TH), and

JunctionProx(JP) components.

Only multi-supplied for the Bird(BI) and BodyProx(BP) components.

OpenSCAD parameter: BirdStyle

render.bat variable: varBirdStyle

BirdStyle=T (Tied-on) BirdStyle=W (Wedges) BirdStyle=P (Peg Holes)

Breath Flute Project Guide Page 23 of 63 Printed August 10, 2018 at 2:31 PM

[ii] Inlay (optional). Indicates the size of any channels for decorative inlay on the sides of this model.

 i0 No inlay channels

 i1 ¹⁄₁₆″ inlay channels

 i2 ²⁄₁₆″ (¹⁄₈″) inlay channels

 . . .

 i8 ⁸⁄₁₆″ (½”) inlay channels

 Only present for the Headjoint(HJ), Body(BY), BPBird(BB), BodyProx(BP),

BodyDist(BD), HeadjointHalf(H2), BodyHalf(Y2), BodyProxHalf(P2),

BodyDistHalf(D2), JunctionProx(JP), and JunctionDist(JD) components.

Only multi-supplied for BodyProx(BP) and BodyDist(BD) components.

Note that the setting for this parameter is not imprinted on the sides of the instrument, since the

width of the inlay can easily be measured on those components where it is important.

OpenSCAD parameter: Inlay

render.bat variable: varInlay

[zz] ZAlign (optional). Addresses the issues described in the Z Axis Synchronization section below.

 z0 Layers are aligned to a 100-micron boundary.

 z1 Layers are aligned to a x.x10 mm boundary. This would occur, for example, if your

 Layer Height is 0.10 mm and your First Layer is set to 1.10mm (or 110% of the

 Layer Height).

 z2 Layers are aligned to a x.x20 mm boundary. This would occur, for example, if your

 Layer Height is 0.10 mm and your First Layer is set to 1.20mm (or 120% of the

 Layer Height).

 . . .

 z9 Layers are aligned to a x.x90 mm boundary. This would occur, for example, if your

 Layer Height is 0.10 mm and your First Layer is set to 1.90mm (or 190% of the

 Layer Height).

 Only present for the Headjoint(HJ), Body(BY), BodyDist(BD), HeadjointHalf(H2),

BodyHalf(Y2), BodyDistHalf(D2), SpEdge(SE), and JunctionDist(JD) components.

 Only multi-supplied for BodyDist(BD) and SpEdge(SE) components.

 OpenSCAD parameter: ZAlign

 render.bat variable: varZAlign

Breath Flute Project Guide Page 24 of 63 Printed August 10, 2018 at 2:31 PM

[eeee] XYExpand (optional) – XY Expansion Factor in per mille (‰ – 1 part per 1,000 … or ¹⁄₁₀%). This

is used to scale the size of the Mortice at the foot end of the flute in the X-Y plane to allow adjusting for

different size body tubes. This parameter replaces the prior use of slicer shrinkage / expansion factors,

which would change the size of the entire headjoint. However, for the Mortice, this parameter is also

largely deprecated in favor of tapping out the end of the Mortice using a reaming tool or sanding it with

the SandY component.

This parameter can be used to scale (typically shrink) the SandF, SandS, and SandY components, to

accommodate thicker sandpaper. It affects the diameter of the cylindrical part of these components.

The XYExpand parameter can be used to scale (typically enlarge) the SandP component, to

accommodate thicker sandpaper. It affects the diameter of the cylindrical area of SandP.

For the SandQ, SandT, and SandZ components, the XYExpand parameter affects only the diameter of

the bottom-most guide cylinder (and possibly the overall height of the sanding wedge). You can use this

parameter to produce a part with a modified (typically smaller) guide cylinder.

The format for XYExpand is e###.

• Values of ### in the range 001–500 provide for X-Y expansion of 1–500‰ (0–50%) corresponding to

an expansion multiplier of × 1.001 through × 1.500.

• Values of ### in the range 501–999 provide for X-Y shrinkage of 499–1‰ (49.9–0.1%). These values

correspond to expansion multipliers in the range of × 0.501 through × 0.999.

The XYExpand value is inscribed on the model of all component that are affected by it. It is shown as

“e###”. An XYExpand value of 000 is a special case: it is inscribed as “e0” rather than “e000”.

The shrinkage factors are particularly useful for the SandS and SandY components.

 Only present for the Headjoint(HJ), Body(BY), BodyDist(BD), HeadjointHalf(H2),

BodyHalf(Y2), BodyDistHalf(D2), SandF(SF), SandY(SP), SandQ(SQ), SandS(SS),

SandT(ST), SandY(SY), SandZ(SZ), and Foot(FT) components.

 Only multi-supplied for BodyDist(BD), SandS(SS), and SandY(SY), and Foot(FT)

components.

 OpenSCAD parameter: XYExpand

 render.bat variable: varXYExpand

YYYY Date/time stamp of when the STL file was rendered from the OpenSCAD model.

MMDD The hh and mm use a 24-hour clock.

hhmm These are represented in the OpenSCAD parameters RenderADate, RenderODate,

 RenderS1Date, RenderS2Date, and RenderS3Date.

Breath Flute Project Guide Page 25 of 63 Printed August 10, 2018 at 2:31 PM

Variants in the Distribution Package

This section lists the variants of each component provided with the current distribution package. Each

variant is available as a .STL file in either the /STL or the /STL_Core directory in the distribution package

(the files that are in /STL_Core are noted below).

Currently, all renderings in the distribution package use:

• a Detail of “f” (Fine),

• a pipe size set for a 1¼″ PVC pipe, and with

• the Fabricator code is set to “BF” (the Fabricator code for the pristine, un-modified STL files as

distributed).

A † mark following a file indicates that the STL file is generated in the Scope=Dev setting in the

render.bat script. The Scope variable is used to control how many renderings are done. Setting

Scope=All generates all the files needed for a standard distribution package and takes quite a while.

Composite Components

These components are intended to be used for demonstration purposes only (e.g. in a display rendering for

a presentation). They tend not to be practical for FDM printing, primarily because of overhand situations.

The distribution package has only a few versions of each of them, with some typical parameters.

Headjoint – HJ

 BFlute_vvvv_HJ_FF_f125Li3z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_HJ_FF_c125Li3z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_HJ_FF_m125Li3z5e000_YYYYMMDD_hhmm.stl

Body – BY

 BFlute_vvvv_BY_FF_f125Li3z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BY_FF_c125Li3z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BY_FF_m125Li3z5e000_YYYYMMDD_hhmm.stl

BPBird – BB

 BFlute_vvvv_BB_FF_f125Li3_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BB_FF_c125Li3_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BB_FF_m125Li3_YYYYMMDD_hhmm.stl

Breath Flute Project Guide Page 26 of 63 Printed August 10, 2018 at 2:31 PM

Main Components

Bird – BI

The Tied-on bird is the most viable version of the Bird design. Renderings for this component are

provided in the distribution package for all size mouthpieces for a Tied-on Bird.

The Peg and Wedge variants are provided only for the Large mouthpiece.

 BFlute_vvvv_BI_FF_f125LbP_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BI_FF_f125LbT_YYYYMMDD_hhmm.stl † (located in /STL_Core)

 BFlute_vvvv_BI_FF_c125LbT_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BI_FF_m125LbT_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BI_FF_f125LbW_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BI_FF_f125MbT_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BI_FF_f125SbT_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BI_FF_f125XbT_YYYYMMDD_hhmm.stl

BodyProx – BP

The Tied-on bird is the most viable version of the Bird design. Renderings for this component are

provided in the distribution package for all size mouthpieces for a Tied-on Bird with no inlays.

The Peg and Wedge variants are provided only for the Large mouthpiece with no inlay.

Inlay variants are also provided only for the Large mouthpiece with a tied-on bird.

Note that the BirdStyle variants of “P” (Pegs) and “W” (Wedge) should render identically.

 BFlute_vvvv_BP_FF_f125LbPi0_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BP_FF_f125LbTi0_YYYYMMDD_hhmm.stl † (located in /STL_Core)

 BFlute_vvvv_BP_FF_c125LbTi0_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BP_FF_m125LbTi0_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BP_FF_f125LbTi2_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BP_FF_f125LbTi3_YYYYMMDD_hhmm.stl

 ## Not provided – should be the same as _BP_FF_f125LbPi0_
 ## BFlute_vvvv_BP_FF_f125LbWi0_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BP_FF_f125MbTi0_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BP_FF_f125SbTi0_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BP_FF_f125XbTi0_YYYYMMDD_hhmm.stl

Breath Flute Project Guide Page 27 of 63 Printed August 10, 2018 at 2:31 PM

BodyDist – BD

The e010 and e020 variants increase the diameter of the Mortice area is increased by 1% and 2%,

respectively. This can be used to compensate for shrinkage during fabrication or other artifacts that tend to

make the junction between the headjoint and the body tube a very tight fit, requiring excessive post-

processing with the SandY tool.

The version with no inlay is the primary option in the distribution package. These “no-inlay” renderings

are provided for all combinations of:

• ZAlign values 0 and 5, and

• XYExpand values corresponding to expansions of the Mortice diameter that holds the Body Tube of

0.0%, 0.4%, 0.8%, 1.2%, 1.6%, and 2.0%.

 In addition, these combinations are also provided:

• ZAlign values 2 and 7, and

• XYExpand values corresponding to expansions of the Mortice diameter that holds the Body Tube of

0.0% and 0.8%.

Two additional renderings are provided for inlay parameters of 2 and 3.

 BFlute_vvvv_BD_FF_f125i0z0e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z0e004_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z0e008_YYYYMMDD_hhmm.stl †

 BFlute_vvvv_BD_FF_f125i0z0e012_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z0e016_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z0e020_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z2e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z2e008_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z5e004_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z5e008_YYYYMMDD_hhmm.stl † (located in /STL_Core)

 BFlute_vvvv_BD_FF_c125i0z5e008_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BD_FF_m125i0z5e008_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_BD_FF_f125i0z5e012_YYYYMMDD_hhmm.stl

Breath Flute Project Guide Page 28 of 63 Printed August 10, 2018 at 2:31 PM

 BFlute_vvvv_BD_FF_f125i0z5e016_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z5e020_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z7e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i0z7e008_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i2z0e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_BD_FF_f125i3z0e000_YYYYMMDD_hhmm.stl

Half-Components

These components are designed for display rendering for demonstration, but are not typically practical for

FDM printing. The distribution package has only one version of each of them, with “typical” parameters.

HeadjointHalf – H2

 BFlute_vvvv_H2_FF_f125Li3z5e000_YYYYMMDD_hhmm.stl

BirdHalf – B2

 BFlute_vvvv_B2_FF_f125LbP_YYYYMMDD_hhmm.stl

 BFlute_vvvv_B2_FF_f125LbT_YYYYMMDD_hhmm.stl

BodyHalf – Y2

 BFlute_vvvv_Y2_FF_f125LbPi3z5e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_Y2_FF_f125LbTi3z5e000_YYYYMMDD_hhmm.stl

BodyProxHalf – P2

 BFlute_vvvv_P2_FF_f125LbPi3_YYYYMMDD_hhmm.stl

 BFlute_vvvv_P2_FF_f125LbTi3_YYYYMMDD_hhmm.stl

BodyDistHalf – D2

 BFlute_vvvv_D2_FF_f125i3z5e000_YYYYMMDD_hhmm.stl

Breath Flute Project Guide Page 29 of 63 Printed August 10, 2018 at 2:31 PM

Sanding Tools

Many (but not all) of the Sanding Tool components are configured by a the XYExpand parameter, which

affects the diameter of particular diameters on each of the tools. The distribution package contains

renderings for the sizes I have found most useful in finishing Breath Flutes.

SandB – SB – Bird Sanding Block

 BFlute_vvvv_SB_FF_f125_YYYYMMDD_hhmm.stl

SandF – SF – Flue Sanding Block

 BFlute_vvvv_SF_FF_f125e000_YYYYMMDD_hhmm.stl (located in /STL_Core)

 BFlute_vvvv_SF_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is reduced by 4% to accommodate thicker sandpaper.

 BFlute_vvvv_SF_FF_f125e980_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is reduced by 2% to accommodate thicker sandpaper.

SandG – SG

 (this component is not yet implemented)

SandH – SH

 (this component is not yet implemented)

SandN – SN

 BFlute_vvvv_SN_FF_f125_YYYYMMDD_hhmm.stl

SandP – SP

 BFlute_vvvv_SP_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SP_FF_f125e020_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is increased by 2% to accommodate thicker sandpaper.

 BFlute_vvvv_SP_FF_f125e040_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is increased by 4% to accommodate thicker sandpaper.

SandQ – SQ

 BFlute_vvvv_SQ_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SQ_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 4%.

 BFlute_vvvv_SQ_FF_f125e980_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 2%.

Breath Flute Project Guide Page 30 of 63 Printed August 10, 2018 at 2:31 PM

SandS – SS

 BFlute_vvvv_SS_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SS_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is reduced by 4% to accommodate thicker sandpaper.

 BFlute_vvvv_SS_FF_f125e980_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is reduced by 2% to accommodate thicker sandpaper.

SandT – ST

 BFlute_vvvv_ST_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_ST_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 4%.

 BFlute_vvvv_ST_FF_f125e980_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 2%.

SandV – SV

Note that XYExpand is not an official parameter for this component, but its value is inscribed on the side

of the tool. Also, the angle of the sanding bevel of this tool – by default 45° – is also shown on the side of

the tool. Changing this value requires editing the OpenSCAD code.

 BFlute_vvvv_SV_FF_f125_YYYYMMDD_hhmm.stl

SandY – SY

 BFlute_vvvv_SY_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SY_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the cylindrical area is reduced by 4% to accommodate thicker sandpaper.

 BFlute_vvvv_SY_FF_f125e980_YYYYMMDD_hhmm.stl (located in /STL_Core)

 The diameter of the cylindrical area is reduced by 2% to accommodate thicker sandpaper.

SandZ – SZ

 BFlute_vvvv_SZ_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SZ_FF_f125e960_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 4%.

Breath Flute Project Guide Page 31 of 63 Printed August 10, 2018 at 2:31 PM

 BFlute_vvvv_SZ_FF_f125e980_YYYYMMDD_hhmm.stl

 The diameter of the guide cylinder at the bottom is reduced by 2%.

Service Components

Foot – FT

The e010 and e020 variants increase the diameter of the Mortice area is increased by 1% and 2%,

respectively. This can be used to compensate for shrinkage during fabrication or other artifacts that tend to

make the junction between the headjoint and the body tube a very tight fit, requiring excessive post-

processing with the SandY tool.

 BFlute_vvvv_FT_FF_f125e000_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e004_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e008_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e010_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e012_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e016_YYYYMMDD_hhmm.stl

 BFlute_vvvv_FT_FF_f125e020_YYYYMMDD_hhmm.stl

SpEdge – SE

These small components are designed to help determine the correct ZAlign parameter for a given

fabrication setup. You could easily print all of them on a single print run.

 BFlute_vvvv_SE_FF_f125z0_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z1_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z2_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z3_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z4_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z5_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z6_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z7_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z8_YYYYMMDD_hhmm.stl

 BFlute_vvvv_SE_FF_f125z9_YYYYMMDD_hhmm.stl

Breath Flute Project Guide Page 32 of 63 Printed August 10, 2018 at 2:31 PM

Developers' Components

Lip – LI

This component might be useful to check out the shape of the just the Lip in its various sizes.

 BFlute_vvvv_LI_FF_f125L_YYYYMMDD_hhmm.stl †

 BFlute_vvvv_LI_FF_f125M_YYYYMMDD_hhmm.stl

 BFlute_vvvv_LI_FF_f125S_YYYYMMDD_hhmm.stl

 BFlute_vvvv_LI_FF_f125X_YYYYMMDD_hhmm.stl

Flue – FL

The Flue component does change shape at the proximal end, based on the size of the Mouthpiece.

However, since this component is not printed (and not even printable in many fabrication situations), we

only provide the variant for a large mouthpiece.

 BFlute_vvvv_FL_FF_f125L_YYYYMMDD_hhmm.stl †

BodyProxN – BN

This component is only intended to provide a way to render faster when developing in OpenSCAD. It is

not useful as a printed or even rendered model.

Throat – TH

This component shows just the area surrounding the Bird Pegs on the BodyProx component. It is useful

during development when configuring the depth and angle of Bird Pegs, and it might be useful for

demonstration purposes. Note that the “P” and “W” settings for BirdStyle should render identically.

 BFlute_vvvv_TH_FF_f125bP_YYYYMMDD_hhmm.stl

 BFlute_vvvv_TH_FF_f125bT_YYYYMMDD_hhmm.stl

JunctionProx – JP

A “typical” configuration for this development component.

 BFlute_vvvv_JP_FF_f125LbTi3_YYYYMMDD_hhmm.stl †

JunctionDist – JD

A “typical” configuration for this development component.

BFlute_vvvv_JD_FF_f125i3z5_YYYYMMDD_hhmm.stl †

Breath Flute Project Guide Page 33 of 63 Printed August 10, 2018 at 2:31 PM

Deprecated / Discontinued / Defunct Components

Renderings are not provided in the distribution package.

Sleeve – SL

Insert – IN

SanxX – SX

Breath Flute Project Guide Page 34 of 63 Printed August 10, 2018 at 2:31 PM

Identification

Many of the Breath Flute components have inscriptions that identify various parameters settings used for

that component. These inscriptions help keep printed parts organized, and avoid mismatches that can

occur if you try to combine components from different versions of the Breath Flute.

Here are some examples:

The Foot component is inscribed on the outside with the version and

XYExpand parameter setting, since this is a test-only component. This

is shown at the right for the v75 Foot component with an XYExpand

setting of 005.

Settings for “production” components have the relevant settings

inscribed on the inside. For example, the BodyDist component has an

inscription on the inside wall of the sound chamber, visible by looking

into the sound hole of the flute. It gives the values for the ZAlign and

XYExpand setting for that render:

Breath Flute Project Guide Page 35 of 63 Printed August 10, 2018 at 2:31 PM

Fonts

The /TTF directory of the distribution package has TrueType font files for the Kurinto Sans fonts used by

the Breath Flute Project. If you are printing models from the .stl files in the distribution package, you do

not need to install these fonts.

However, if you are rendering the OpenSCAD source code into .stl files (whether or not you are

modifying the code), you will need to install some fonts on your system so that they are accessible to

OpenSCAD at render time.

Note that, if you wish to get exactly the same font rendering as the .stl files in the

distribution package, you should install the version of the fonts that came with that

distribution package.

For more information on the Kurinto fonts (as well as the latest version of the complete set of fonts), visit

www.Kurinto.com. The Kurinto project provides a general-purpose set of fonts covering all the 136,755

characters in all the 139 scripts from the world’s writing systems defined in the Unicode 10.0 standard.

This document is primarily set in Kurinto Book.

For information on font licensing, see the How does the License apply to the fonts that are included in
the distribution package? section below.

Installation

The fonts are provided as basic TrueType™ .ttf files. There are many excellent Web-based resources on

how to install TrueType fonts on various systems.

Development Workflow

This section offers some suggestions on doing development work on the code, and provides a very brief

outline about how I have been developing and make design changes to the Breath Flute model. If may be

helpful if you wish to modify the design.

As a first step, please:

• Update the Authors.txt file with your name and contact information. You may enter your

information in any of the section, including (if you will be doing modifications to the source code) the

first section that lists copyright holders. You should not need to modify the License.txt files, since it

refers to Authors.txt.

• Install the needed fonts, as described in the Fonts section (above).

Even if you don’t plan to release your modifications or offer fabricated models to others, it’s a good idea to

register that yourself in the copyright list at the beginning.

http://www.kurinto.com/

Breath Flute Project Guide Page 36 of 63 Printed August 10, 2018 at 2:31 PM

Note that files with a .txt extension have CR-LF line terminators (the Windows standard).

Please maintain that standard when modifying these files, to that downstream tools can

reliably determine what changes have been made by contributors.

Throughout development and prior to release, please update the ChangeLog.txt file as appropriate. See

https://en.wikipedia.org/wiki/Changelog for a description of the format. Here is a brief example (note that

there are two spaces separating the date from the author and the author from the contact information):

2016-04-11 Jon Norris <jon@jonnorrismusic.com>
 Clint Goss <clint@goss.com>

 Prototypes v3-11 crafted April 11-16, 2016 at Jon's shop.

2017-02-03 Clint Goss <clint@goss.com>

 Beginning of development of the v40 series in OpenSCAD.

You may also update the copyright year in any file you modify. Please see the section below on How
should the year or years given in a copyright notice be set?

Initial development work was done in 2017–2018 on Beagle – a 2015-vintage, Windows 7x64 PC with an

Intel i7-4790, 3.6 GHz, 4-core, 8 processor CPU with 16 GB physical / 32 GB virtual memory. You may

need a moderately hefty desktop with similar or better specs to render the model, especially components

that use the compute-intensive and complex Lip at the top of the headjoint. (See Complexity of the
Geometric Model below.)

My primary development tools for the Breath Flute Project are:

• OpenSCAD version [2015, 3, 0];

• 3D-Tool version 12 from 3D-Tool GmbH & Co to visualize .stl files;

• Simplify3D version 4.0.1 to “slice” the .stl files into .gcode files for my particular hardware setup

(printer, filament, etc.);

• The fonts in this package were developed in High-Logic FontCreator 11.5.0.2427 Professional Edition.

For development work in OpenSCAD, I set RenderDetail to “Coarse” and use F5 to view my

changes.

I use a script – render.bat – to generate all the needed components and variants of the model. While I

am not typically a fan of Windows BAT files, this was the only command-line method I found that could

execute OpenSCAD as a sub-process and not run into system limitations. Note that my typical run of

render.bat typically takes about 4-5 hours to render all of the .stl files for a standard distribution.

The documentation in render.bat outlines my process for bulk-rendering on my Win7x64 system.

This includes the process for capturing the log output of the run. Feel free to develop your own process.

https://en.wikipedia.org/wiki/Changelog

Breath Flute Project Guide Page 37 of 63 Printed August 10, 2018 at 2:31 PM

I use Simplify3D (currently version 4.0.1) to convert the needed .stl files into .gcode files for the printer

I am using (a Prusa i3 Mk3 as of May 2018). See the Slicer Settings section (below) for suggestions on

configuring your slicer.

I print it!

Units, Orientation, and Axes

This section provides background on how the Breath Flute

code and model is oriented in X-Y-Z (Cartesian) as well as

Radius-Angle (Polar) coordinate systems. The diagram at

the right, from Wikimedia Commons, provides some

assistance for the Cartesian Space axis, but we could really

use a better one with a Breath Flute superimposed over the

image …

Cartesian Space

Units in Cartesian space – distances, lengths, stations,

diameters, etc. – are typically given in mm.

Longitudinal Axis

The longitudinal axis of the flute is oriented along the

length of the instrument, with “length” and “station”

locations defined along this axis.

The longitudinal axis corresponds to the Z axis of this CSG model, so “Length” and “Station”

measurements along the longitudinal axis of the flute correspond to Z-axis values on this CSG model. The

longitudinal axis is also called the "Centerline” of the CSG model.

The headjoint is printed standing on its distal end, so the most distal end of the headjoint sits on the X-Y

plane with Z=0 and Z values increase toward the proximal end of the headjoint. The entire headjoint has

positive Z.

Vertical Axis

The vertical axis of the flute is oriented from the “front" or “top” of the instrument to the “back” or

“bottom”. The “front" of the flute is the side with the True Sound Hole and the Bird, and would typically

have the finger holes on a Bansuri or a Native American flute.

The vertical axis corresponds to the Y axis of this CSG model. When viewed from the front, Y-axis values

increase further from the observer.

Breath Flute Project Guide Page 38 of 63 Printed August 10, 2018 at 2:31 PM

The X-Z plane with Y=0 intersects the centerline of the CSG model, which corresponds to the center of

radius of many components such as the Sound Chamber and Mortice.

This gives elements in the front of the instrument – for example, the True Sound Hole and the Bird –

negative Y values, and the drain holes on the back of the instrument positive Y values.

Lateral Axis

The lateral axis of the flute is often termed the “left side” and “right side” of the instrument, although with

side is left changes depending on the vantage point (e.g. Player's perspective vs. a vantage point from the

front side of the instrument).

The lateral axis corresponds to the X axis of this CSG model. When viewed from the player's perspective,

X values increase from the player's right to the player's left. When viewed from the perspective of the front

of the instrument, X values increase left to right.

As with the vertical axis, the Y-Z plane with X=0 intersects the centerline of the CSG model.

Polar Coordinates

Angles are typically given in degrees. The reference axis for an angle – i.e. the axis that the angle is a

measure from – varies based on context. (That's a nice way of saying “we're not consistant about angle

measurement”).

For most situations, the reference angle for an axis is fairly straightforward. However, for angles from the

longitudinal axis, it might not be obvious. There are two possibilities:

Angle_fromLateral

A number of degrees from the X-Y plane, with an angle of 90 degrees being aligned with the longitudinal

axis. From an FDM printing perspective, an Angle_fromLateral of 0 produces a flat overhang, and

increasing angles become easier to print. The lowest practical Angle_fromLateral in this model is ...

Angle_fromLateral_MinPractical = 35;

Angle_fromCenterline

A number of degrees from the Longitudinal axis. Unsupported surfaces with higher values of

Angle_fromCenterline become increasingly harder to print. An Angle_from Centerline of 90

degrees produces a flat overhang. The highest practical Angle_fromCenterline in this model is ...

Angle_fromCenterline_MaxPractical = 90 - Angle_fromLateral_MinPractical; // 55
degrees

 Starting with v77, key angles which were ambiguous were augmented with _fromLateral or

_fromCenterline. The alternative – to modify all angles to the same standard – was too daunting and

error-prone).

Breath Flute Project Guide Page 39 of 63 Printed August 10, 2018 at 2:31 PM

Z Axis Synchronization

This section describes an irksome little issue with precisely printing the splitting edge of the instrument.

Depending on your slicer settings for Layer Height, First Layer Height, and other Z-axis parameters, you

may encounter issue with the integrity of the splitting edge – a critical area for producing the flute’s

sound.

Because of the curvature of the splitting edge, if the Z-axis position at the point where the splitting edge is

printed is within certain bounds, some slicers will create G-code that fabricates as “grit” on the splitting

edge. Here are some images from the rendering by Simplify3D and an actual print in PLA showing the

“grit” scenario:

Splitting Edge of the v73 BodyDistHalf component, rendered by Simplify3D and printed in PLA.

I have addressed this issue with the ZAlign parameter in the OpenSCAD code. The ZAlign value (0

through 9) increases the Z-axis position of splitting edge in 10-micron steps. This control seems sufficient

to allow all slicers I have tested to generate G-code for the sharp splitting edge that produces one single,

continuous filament extrusion.

The ZAlign parameter comes into play for the BodyDist component, with is the primary component

for the splitting edge.

The Trial-and-Error Method
So that you don’t have to print entire BodyDist components to find the right ZAlign setting, there is a

SpEdge component that prints just the area of the splitting edge. Ten .stl renderings of the SpEdge

component are included in the distribution, and all ten of them can be printed in a few minutes.

This practical, “trial-and-error” method for finding the optimal ZAlign setting may be the most efficient

for your situation.

The Predictive Method
Alternately, you can try to predict the best ZAlign setting. The rationale goes something like this:

• If you are printing with a Layer Height of 0.10 mm (100 microns) and have a First Layer Height that

is a multiple of 0.10 mm, then ZAlign = 0 is likely to produce good results. The top of the splitting

Breath Flute Project Guide Page 40 of 63 Printed August 10, 2018 at 2:31 PM

edge is exactly aligned on a 0.10 mm boundary, so the slicer should produce the top of the splitting

edge in one, complete extrusion.

• If your combination of Layer Height and First Layer Height settings cause your splitting edge to line

up on a boundary that is of the form x.xZ0 mm, then ZAlign = Z is likely to produce good results.

Regardless of how you approach choosing your ZAlign, the setting is inscribed on all the components

where it come into play – BodyDist, SpEdge, etc. This should avoid confusion and allow you to reliably

choose the best ZAlign setting down the line.

All ten SpEdge components from v74, rendered by Simplify3D.

Breath Flute Project Guide Page 41 of 63 Printed August 10, 2018 at 2:31 PM

Complexity of the Geometric Model

The complexity of the 3D geometry of the Breath Flute may cause performance or capacity issues on some

systems. If you encounter limitations, here are some suggestions:

• Re-generate the STL files using the “Coarse” setting for RenderDetail, and see if the problems

persist. Coarse mode uses a substantially lower $fn setting when rendering curves, and should produce

.stl files that avoid capacity limitations.

• If that is successful, you can experiment with increasing $fn incrementally until you have reasonably

smooth curves.

• The lip at the proximal end of the BodyProx component is particularly complex. You can experiment

with controlling the $fn settings for just that portion of the model, independent of more general $fn

settings.

A PLA print of just the Lip at the top of the BodyProx component,

introduced in v46 using David Eccles’s path_extrude() code.

Slicer Settings

Many fabrication processes use a “slicer” – a software component that converts the geometric model

represented in a .stl file into a sequences of commands to direct the actions of a particular hardware

device, such as a 3D printer or a CNC milling machine.

The process of slicing is outside the scope of the Breath Flute Project itself. However, the slicer you use

and the settings you provide to it are critical to fabricating the Breath Flute model into a usable musical

instrument.

During the development of the Breath Flute Project, I have encountered many issues that are addressed

with slicer settings. This section offers some advice in this area. For more information, see these resources

(which are not part of the Breath Flute Project, but can help you in setting up a slicer):

• S3D_SettingsCG.pdf

• Breath Flute History document

Breath Flute Project Guide Page 42 of 63 Printed August 10, 2018 at 2:31 PM

Z-axis Strength

One of the goals is to maximize the strength of the Breath Flute headjoint along the Z-axis. I anticipate

that the maximum load forces will be applied along the Z-axis, and this tends to be the weakest axis in a

fabrication process that uses FDM.

I typically print with a Layer Height of 0.10 mm (100µm) for good visual detail and precision on the

critical airflow surfaces of the slow air chamber, flue, and splitting edge. However, the Yield Stress of an

FDM part is improved 24% at extrusion diameters of 0.20mm ([3DMatter 2015]). As a compromise, I will

print the outer perimeter (the “shells”) at a Layer Height of 0.10 mm and print infill at 0.20 mm. In

Simplify3D, this is done by setting the Infill → Combine parameter set to 2.

The [3DMatter 2015] study also showed that the greatest Yield Strength is attained by printing 3

perimeter shells and using an Infill percentage of 90%, which is how I set up my slicer.

To further handle Z-axis stress forces, I use a rectilinear infill pattern (which appears to be stronger than

the honeycomb patterns which are often recommended in popular articles). I also choose overlapping

angles than are more in line with the expected direction of bending forces. As angles from the from the X-

Z plane, I use: 0°, +50°, -25°, +25°, -50°, and 90° (and then back to the start of this list).

Brims

In order to keep parts stuck to the print bed, I will use a brim on some of the components. This is

sometimes problematic on components, such as the Bird, where the first layer on the print bed has a

critical shape (in this case, the chamfer on the front lip of the Bird).

I would recommend extreme care removing these brims. You can use a sharp knife, and carefully post-

process the edge to preserve the chamfer angle.

Start / Stop Points

The outer perimeter of a 3D printed model is subject to

artifacts at the point where the extruder begins a new

layer. If the slicer generates code to begin each layer in

the same or similar X-Y coordinates, you can wind up

with a print that looks like the print of the Bird

component at the right (from v60).

Many slicers let you control how start / stop points are

chosen on the perimeter – you might select a “random” setting, or you might choose a particular location

that is on the back or inside of the component.

Settings for Sanding Tools

For the various sanding tools, I tend to adjust the above settings by using a layer height of 0.20mm and

30% infill.

Breath Flute Project Guide Page 43 of 63 Printed August 10, 2018 at 2:31 PM

Post-Processing

Once you print a Breath Flute, you get to customize it in the post-processing phase. Rather than a

cookbook How-To on post-processing, this section offers a smattering of useful things I have found along

the way.

Sanding Tools

The distribution package for the Breath Flute provides STL files for an array of sanding tools. I have

developed these tools on an as-needed basis while post-processing Breath Flutes (usually after getting

mediocre results after 20 minutes of free-form hand-sanding). Each of the sanding tools is used for one

very specific task on a part of a printed Breath Flute.

The distribution package has a PDF file with printable templates for cutting out sandpaper of the exact

shape needed for the sanding tools.

I typically print the sanding tools in PLA with a 0.20 mm layer height, 30% infill, and 3 solid shells. Some

things to consider:

Some of the tools (eg. SandS and SandY) use removable sandpaper. You probably only need one or two

of these. However, for other sanding tools where the sandpaper needs to be glued onto, you may need to

3D print a number of copies.

Sanding Tool Templates

The distribution package has a template file –

BreathFlute_SandingToolTempaltes.pdf.

This document has templates that you can print

and use to cut out patches of sandpaper that can

be glued to the Sanding Tools used to finish a

Breath Flute.

It also has templates for paper that can be used to

adjust the diameter of the Sanding Dowels.

You can print this document on U.S. Letter size

paper (8½″×11″) or A4 paper (210×297 mm).

Each page has a ¼″ margin (in red) that should

accommodate all the content. When you print:

1. Turn off all scaling options and print in landscape orientation at the original document size.

2. Measure your printout (with a ruler) to ensure the printed red border measures exactly 8″×10.5″

(203.2×266.7 mm).

The sandpaper shapes needed are either rectangles or frustums - the truncated cone shapes of Sanding

Wedges that finish bevels on the Breath Flute. You can temporarily fix the printed template to the back of

Breath Flute Project Guide Page 44 of 63 Printed August 10, 2018 at 2:31 PM

a sheet of sandpaper – I use binder clips – and cut along the solid lines of the template. Alternately, since

there is a 4 mm space between the templates, you can cut between them and trim each one individually.

The dashed purple lines are fold lines – the

approximate location you will be folding that

template after you cut it out.

If you fabricate Sanding Tools that are scaled to a

different size – some of the Sanding Dowels support

the XYExpand parameter for scaling the size of the

dowel – these templates will no longer fit. You may

be able to scale your printout to make these templates

work. I have not worked out how the scale factors

for the XYExpand parameter relate to scale factors

for printing this document.

This document also contains a page of templates that

can be printed on plain paper and cut out to produce

spacers for the Sanding Dowels. You can place one or

more of these spacers between the two halves of a

Sanding Dowel to make it slightly larger and increase

the sanding pressure on the bore you are sanding.

Finally, there are several pages at the end that have

the calculations and development of the flat arcs that

create the frustum shapes.

The calculations for frustum shapes are from code

were provided by David Reed Smith

(David@DavidReedSmith.com), from an article and

spreadsheet retrieved on 6/9/2018 from:

www.DavidReedSmith.com/Articles/FoamConeSander/FoamConeSander.htm

Note: You need to use the version of the template that corresponds to the version of the

Sanding Tools that you fabricated! Sizes and shapes do change from version to version, and

these templates are updated to track those changes.

Sanding Blocks, Dowels, and Wedges

This section contains some notes on the use of the various sanding tools.

• Many of the Sanding Tools can be held by a table-mounted vice. I use a heavy drill-press vice that has a

quick-set level. The vice is note even mounted on the table – it is heavy enough to provide a sufficient

base for the tool.

mailto:David@DavidReedSmith.com
http://www.davidreedsmith.com/Articles/FoamConeSander/FoamConeSander.htm

Breath Flute Project Guide Page 45 of 63 Printed August 10, 2018 at 2:31 PM

• The vice-mounted tools do run the risk of being crushed in the vice. However, I have not had this issue

in practice. There is a yet-to-be-designed SandG (Sanding Tool Guard) component to protect the

vice-grip section these tools, but I have not found the need.

• Alternately you can simply hold the grip portion of the sanding tool in your hand. Gloves do help in

this situation. Most sanding tools have eased edges – either small-radius curves or “micro-bevels” – to

minimize the hand-trauma.

• The Sanding Dowels – SandY and SandS – need to be printed in pairs. You need two of them to

make a complete sanding dowel. I have typically needed the full-size versions, plus the versions that are

shrunk by 2% using the XYExpand parameter of 980 (for 98% size). I’ll start with the 98% tools, adding

paper spacers as I go from coarse to fine sandpaper, and then switch to the 100% size after I get to 5–8

paper spacers.

Sanding Sticks

Micro-Mesh Colored Sanding Sticks from Woodcraft.com – 5¾″ × ½″

Splitting Edge

NOTE that the curvature of the splitting edge is NOT the same as the tube adjacent to it!

Don’t just sand away blindly!!

Peg Holes and Set Screws

The three main components of a complete Breath Flute are bolted together with set screws. There are four

pairs of aligned “peg holes” on the Bird and BodyProx components and five pairs at the junction of the

BodyProx and BodyDist components.

All the peg holes are designed for #6-32 set screws – ¼″ long for the five peg holes at the
junction and ³⁄₈″ long for the Bird peg holes. I use Fastenal SKU 25116 #6-32 × ¼″ Hex

Drive Flat Point (i.e. Flat End) Black Oxide Finish Alloy Steel Socket set screws for

the peg holes at the junction area. This particular hardware uses a ¹⁄₁₆″ hex drive Allen

wrench.

It is possible to simply screw in the set screws into a freshly

3-D printed component. Alternately, you may wish to tap

out the peg holes with a metal tap. I hand-drill a square-

nose 6-32 tap into each of the holes. You may wish to pre-drill the hole with a drill (#35 or #36 drill bit

Breath Flute Project Guide Page 46 of 63 Printed August 10, 2018 at 2:31 PM

sizes – approximately ⁷⁄₆₄″ – are recommended), but this may not be necessary since the holes are already

printed to size.

Inlays

The optional inlay channels on the side of the

BodyProx, BodyDist, and other components

are designed for decorative inlays that can be

added after the model is printed. The Inlay

parameter to the model determines the width of any inlay channel, and the [ii] component of the .stl

file name indicates what Inlay value was used for that rendering.

I use inlays from Sauers & Company – see http://SVeneers.com/ and https://www.Woodcraft.com . Here

are the specific Sauers inlay products that correspond to each of the possible Inlay values:

Inlay Width Sauers

 0 No inlay channels

 1 ¹⁄₁₆″ inlay No Sauers products

 2 ¹⁄₈″ inlay Sauers #1–4

 3 ³⁄₁₆″ inlay Sauers #5–10

 4 ¼″ inlay Sauers #11–18

 5 ⁵⁄₁₆″ inlay Sauers #19–22

 6 ³⁄₈″ inlay Sauers #23–26

 7 ⁷⁄₁₆″ inlay No Sauers products

 8 ½″ inlay Sauers #27–29

http://sveneers.com/
https://www.woodcraft.com/

Breath Flute Project Guide Page 47 of 63 Printed August 10, 2018 at 2:31 PM

The Body Tube

The mortice at the distal end of Breath Flutes headjoints are designed to fit

pipes of standard “Schedule” sizes. The initial headjoint design is for a

Schedule pipe size of (nominally) 1¼″, which has an outside diameter of

1.660″ and an inside diameter that depends on the wall thickness for that

Schedule.

While you might start with PVC pipe from a local supply store, here are

some special manufacturers of pipe that offer pipes that may be more

suitable to a “finished” look that may be more appropriate for a musical

instrument:

C&S Plastics: Winter Haven, FL. Specialists in PVC pipe extrusion and fittings. I visited their facility in

July 2017 and used them for development of prototypes beginning with v79. They produce furniture-

grade pipes in various specifications and colors with a glossy finish and no printing on the outside. They

also fill orders for small quantities directly from their factory. http://candsplastics.com/

Dara Plastics: Lebanon, PA. Custom extrusion of pipes and tubing in a wide variety of materials.

http://daraplastics.com/

Excaliber Extrusions: La Habra, CA. Now part of VIP Rubber. Plastic Pipe manufacturing.

https://viprubber.com/

FlexPVC: Pahrump, NV. A supplier of a wide variety of PVC tubes and fittings. https://flexpvc.com/

FormUFit: Lenexa, KS. Furniture Grade PVC pipe, fittings, and accessories. https://formufit.com/

http://candsplastics.com/
http://daraplastics.com/
https://viprubber.com/
https://flexpvc.com/
https://formufit.com/

Breath Flute Project Guide Page 48 of 63 Printed August 10, 2018 at 2:31 PM

Filament Materials

There is a wide selection of 3D printing filaments in many materials and specifications, and the available

offerings seem to be growing hourly. It is (well) beyond the scope of this Developer’s Guide to survey 3D

printing filaments. However, here are a few issues to consider when choosing a material:

• How easy / reliable is the material for 3D printing?

• Can 3D-printed components made from the material be chemically sanitized?

• At what temperature will 3D-printed components deform? Consider your prints on the dashboard of a

car in the summer sun …

• Can 3D-printed components made from the material be sanitized in a dishwasher?

• Is it biodegradable?

• Is it food-safe? Some filaments are listed as safe or approved for food contact. However, please note that

3D printing with a filament whose material is food-safe does not mean that the finished, 3D-printed

component is safe for food contact. Here are some references on the topic:

o Clinton Freeman, Is 3D Printed PLA food safe?, November 30, 2012.

https://reprage.com/post/36869678168/is-3d-printed-pla-food-safe

o PLA and ABS vs food safety? Discussion on RepRap.org.

http://forums.reprap.org/read.php?1,164077,167669#msg-167669

o R. E. Conn et al, Safety assessment of polylactide (PLA) for use as a food-contact polymer, Food and

Chemical Toxicology, Volume 33, Issue 4, April 1995, pages 273–283. https://doi.org/10.1016/0278-

6915(94)00145-E

One of the main issues with food safety seems to

be the small pits and gouges that inevitably form

on the surface of an FDM print. These pits catch

food particles, which degrade and become host to

nasty microbes.

The image at the right was provided by user

PomeroyB on the RepRap.org user forum. It

shows the top infill from a Stratasys print using

ABS. It clearly shows that the surface of the print

is pitted. The infill wasn't perfect, so those huge

gouges you see are the second-from-the-top

layer showing through. The scale bar at the

bottom is 100 micrometers.

https://reprage.com/post/36869678168/is-3d-printed-pla-food-safe
http://forums.reprap.org/read.php?1,164077,167669#msg-167669
https://doi.org/10.1016/0278-6915(94)00145-E
https://doi.org/10.1016/0278-6915(94)00145-E

Breath Flute Project Guide Page 49 of 63 Printed August 10, 2018 at 2:31 PM

FAQ

Why didn’t I use a WYSIWYG tool for creating the solid geometry model for the Breath Flute?

I began with Fusion 360 – a tool that does exactly that. The WYSIWYG

approach fell short on a few fronts:

• It did not lend itself easily to very precise dimensions for the model.

• The complexity of the project – with more than a dozen

components that were best auto-generated – lent itself to a

programmatic tool.

• I’m a programmer by training and experience!

For these reasons, I chose OpenSCAD, which build a model

using constructive solid geometry (CSG) – a technique for creating a solid model by

combining simple objects using Boolean operators.

Why is the headjoint designed to print as three separate parts?

If the entire headjoint were printed at once several flat overhangs / bridging

situations would invite sagging and breaking of the filament strands. See the

image at the right, from v60 of the Breath Flute design that shows the distal

end of the flue and the proximal end of the sound chamber.

Also, if the Bird component were integral with the rest of the headjoint, the

flue area could not easily be sanded or cleaned.

Breath Flute Project Guide Page 50 of 63 Printed August 10, 2018 at 2:31 PM

Third-party Code

This section logs information about third-party code used in the Breath Flute Project.

NameOfThirdPartyPackage

The title of each section (NameOfThirdPartyPackage) names the package of imported third-party code.

It also identifies the subdirectory of /Src that holds the code, license information, and related

documentation for that package. The code and license files are typically kept in pristine form in the

subdirectory (aside from modifications for Plain Text File Format).

The code may be used directly (by an OpenSCAD include <> or use <> directive). Alternatively, the

code may be copied and modified in module in /Src. To assist in locating instances of the code, you can

search for the tag “Third-party NameOfThirdPartyPackage”, which appears in comments

associated with the copied code.

Author(s): Open-source license under which the code was distributed. These authors are also listed in

the Authors.txt file at the top level of the distribution package.

Contact: Best known contact information for the author(s).

Directory: /Src/NameOfThirdPartyPackage – the name of the /Src directory that holds the files.

License: Open-source license under which the code was distributed.

Source: Where the package came from, including a URL, if available.

Initial date: The earliest known date that the package was publically made available.

File date: The date stamp on the file(s) of the package. This may indicate a date of last modification,

although it may not be reliable because these dates are sometimes altered by utilities that

copies or agregates files. A notation in (italics) is used for cases where the file date was not

preserved or is not useful.

Release date: The date of release of the package as we are using it. In the case of GitHub repositories, this

may be the date the file(s) were checked in.

Retrieval date: The date this version of the file was retrieved (downloaded) from the Source.

Local cache: Clint’s working directory for this package. This typically contains all the available versions

of the package and ancillary information that is available publicly. This directory is not in

the distribution package.

Used: Where / how the package is used.

Breath Flute Project Guide Page 51 of 63 Printed August 10, 2018 at 2:31 PM

Bioinfscripts

This software package contains a module that implements Path Extrusion, which is used to generate the

complex curved shape of the lip at the proximal end of the headjoint.

Author(s): David Eccles (“gringer” on GitHub and Thingiverse)

Contact: David Eccles of Wellington, New Zealand is a member of GitHub and Thingiverse. He has

a Web site at www.gringene.org and may be contacted at bioinformatics@gringene.org.

Directory: /Src/Bioinfscripts

License: GPLv3

Source: GitHub - https://github.com/gringer/bioinfscripts

Initial date: Initial commit of the bioinfscripts project on GitHub of version 1.83: July 1, 2013.

Initial commit of path_extrude.scad on GitHub: January 5, 2016 @ 12:06 AM EDT.

File date: (not preserved)

Release date: The file we are using is the second commit of path_extrude.scad on GitHub: January 5,

2016 @ 3:17 PM EDT.

Retrieval date: February 9, 2017

Local cache: /ThirdParty_Code/PathExtrude_DavidEccles

Used: Prior to v75, this code was incorporated in the PathExtrude.scad module in the main

/Src directory. However, the only changes to the code were some comments explaining

the source of the code. So, while setting up for distrubution, I returned to the initial pristine

version of this code and moved the documentation to the ReadMe.txt file.

Hex

This software package has code for converting hexidecimal (base 16) numbers.

Author(s): MichaelAtOz

Contact: MichaelAtOz is a member of many on-line communities, such as SourceForge, GitHub, and

Thingiverse, and may be contacted through those services.

Directory: /Src/Hex

License: Public Domain (based on a declaration in the source code)

Source: A comment on the OpenSCAD language itself has example code that was extracted into its

own hex.scad file. The original comment is at

https://github.com/openscad/openscad/issues/877

Initial date: July 16, 2014 @ 10:33 PM EDT

http://www.gringene.org/
mailto:bioinformatics@gringene.org
https://github.com/gringer/bioinfscripts
https://github.com/openscad/openscad/issues/877

Breath Flute Project Guide Page 52 of 63 Printed August 10, 2018 at 2:31 PM

File date: (not applicable)

Release date: July 16, 2014 @ 10:33 PM EDT

Retrieval date: May 24, 2018

Local cache: /ThirdParty_Code/HexToDecimal_MichaelAtOz

Used: Service routines that have been used at various times in the code.

SimpleSupport

This software package has service routines for generating support structures.

Author(s): Brad J. Shannon

Contact: Brad J. Shannon of Brooklyn, New York, is a member of many on-line communities, such

as GitHub, Tumblr, and Thingiverse, and may be contacted through those services.

Directory: /Src/SimpleSupport

License: CC-BY

Source: https://www.thingiverse.com/thing:1688476

Initial date: July 25, 2016

File date: (not preserved)

Release date: July 25, 2016

Retrieval date: February 11, 2017

Local cache: /ThirdParty_Code/SimpleSupport_BradShannon

Used: Service routines for generating support structures. The code in this package is not used

directly, but is incorportated into /Src/Support.scad.

Wedge2D

This software package has service routines for generating two-dimensional wedges.

Author(s): Nicholas Williams

Contact: Nicholas Williams is a member of Thingiverse (user “WilliamsOb”) and may be contacted

through that service.

Directory: /Src/Wedge2D

License: CC-BY

Source: http://www.thingiverse.com/thing:1843282

Initial date: October 22, 2016

https://www.thingiverse.com/thing:1688476
http://www.thingiverse.com/thing:1843282

Breath Flute Project Guide Page 53 of 63 Printed August 10, 2018 at 2:31 PM

File date: (not preserved)

Release date: October 26, 2016

Retrieval date: February 7, 2017

Local cache: /ThirdParty_Code/OpenSCAD_WedgeModule_NicholasWilliams

Used: Service routines for generating two-dimensional wedges. The code in this package is not

used directly, but is incorportated into /Src/Wedges.scad.

Wedge3D

This software package has service routines for generating three-dimensional wedges.

Author(s): Alex English

Contact: Alex English of Walla Walla, Washington is a member of Thingiverse (user “AlexEnglish”)

and may be contacted through that service. He also has a web site at www.AlexEnglish.info.

Directory: /Src/Wedge3D

License: CC-BY-SA (declared in the source code file and reported by the source page on

Thingiverse as of 5/25/2018)

Source: https://www.thingiverse.com/thing:40245

Initial date: January 4, 2013

File date: (not preserved)

Release date: January 12, 2013

Retrieval date: February 7, 2017

Local cache: /ThirdParty_Code/OpenSCAD_WedgeModule_AlexEnglish

Used: Service routines for generating three-dimensional wedges. The code in this package is not

used directly, but is incorportated into /Src/Wedges.scad.

Zazouck

This software package has routines for converting between various formats of numbers.

Author(s): Nathanaël Jourdane

Contact: Software dev. at IRAP (CNRS), Toulouse, France. Email: nathanael@jourdane.net

Directory: /Src/Zazouck

License: GPLv3

Source: https://github.com/roipoussiere/Zazouck

http://www.alexenglish.info/
https://www.thingiverse.com/thing:40245
https://github.com/roipoussiere/Zazouck

Breath Flute Project Guide Page 54 of 63 Printed August 10, 2018 at 2:31 PM

Initial date: Initial commit of the Zazouck project on GitHub: December 3, 2013.

Initial commit of string.scad on GitHub: January 5, 2014.

File date: January 11, 2014

Release date: January 11, 2014 @ 4:42 PM EDT

Retrieval date: May 24, 2018

Local cache: /ThirdParty_Code/Zazouck_NathanaelJourdane

Used: The routines in the string.scad module are used directly in various places. Prior to v75,

this code was incorporated in the BreathFluteLib.scad module in the main /Src

directory. However, while setting up for distrubution, I returned to the initial pristine

version of this code and moved the documentation to the ReadMe.txt file.

Plain Text File Format

One might hope (even “expect”) that structure of files containing “plain text” – 8-bit, ASCII-encoded

characters with no formatting, fonts, images, colors, etc. – would be straightforward. Well, we’re not quite

there yet. For various arcane technical and historical reasons (see https://en.wikipedia.org/wiki/Text_file

and https://en.wikipedia.org/wiki/Newline), there is an array of conventions for the structure of plain text

files across different system.

The different formats create angst and confusion – walls of run-on text with missing line breaks, mal-

functioning applications, and many other horror stories abound. This issue also affects the value of

checksums on files (e.g. the MD5 hash that we use to verify that a file has not been altered), since any

change in the bits of a file completely alters the checksum, even if the semantic meaning of the text of the

file has not changed.

The predominant plain-text standards today are Unix and DOS. There is also the older (pre-OS X) Apple

standard, which I’ll call “Mac”.

One area of confusion are the control character(s) used to separate lines of text, which are different in these

three standards: Unix (LF), DOS (CR +LF), and Mac (CR).

Another issue is the meaning of a newline character(s) in the file. Newlines either separate lines of text, or

they terminate lines of text. From the Wikipedia Newline text:

If a newline is considered a separator, there will be no newline after the last line of a file.

Some programs have problems processing the last line of a file if it is not terminated by a

newline. On the other hand, programs that expect newline to be used as a separator will

interpret a final newline as starting a new (empty) line. Conversely, if a newline is

considered a terminator, all text lines including the last are expected to be terminated by a

newline. If the final character sequence in a text file is not a newline, the final line of the file

https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Newline

Breath Flute Project Guide Page 55 of 63 Printed August 10, 2018 at 2:31 PM

may be considered to be an improper or incomplete text line, or the file may be considered

to be improperly truncated.

DOS-based systems (including Microsoft Windows) consider the CR +LF newline sequence to be a

separator, and it is common for the last line of text not to be terminated with a CR +LF marker. Many

DOS-based text editors (including Notepad and Wordpad) do not automatically insert a newline sequence

on the last line. The Unix standard is to terminate all lines with a newline sequence (a single LF

character). I do not know the Mac standard.

Some DOS-based tools – Notepad and Internet Explorer, in particular – display plain text from a file that

uses the Unix standard as a “wall of text” with no line breaks. Some Unix-based tools (vi, for example)

report errors when the final line of a plain-text file has no newline sequence.

Before v76 of the Breath Flute Project, multiple versions of plain-text files were maintained in parallel.

This caused heartburn because (a) two files need to be maintained, (b) the name of the Unix-flavor plain

text file had no “.txt” extension, causing issues, (c) it was not clear which is the original / master and they

could get out of step.

For these reasons, as of v76:

All plain-text files in the Breath Flute Project are provided in a single version, with

Name.txt as the naming convention, using the DOS convention (CR +LF) for the newlines

sequence, and using the newline sequence as a line terminator (the Unix convention). This

means that, without knowing the source of the file, it is ambiguous whether a file ending in

text followed by CR +LF represents an original file with an empty final line (i.e. it came

from a DOS-based system) or whether it represents a file where the final line was text.

Note that the zero-byte /Misc/Null.txt file (used for calibrating MD5 utilities) has no lines of text,

therefore has no newline sequences.

All plain-text files are converted from their original source to follow these conventions, and any

checksums provided are on this converted file format.

Breath Flute Project Guide Page 56 of 63 Printed August 10, 2018 at 2:31 PM

About the Breath Flute Project GPL License

This section provides some of the rationale and motivation for the way the Breath

Flute Project GPL License (“the License”) is written. It also provides some advice

on how to handle common licensing issues.

However, this section does not provide authoritative legal advice, nor does it

modify or amend the terms of the License.

Motivation

The intent of this open-source approach is to foster a community of ongoing development and

refinement, and to allow those who fabricate Breath Flutes to benefit commercially. The Breath Flute

Project was built on many instances of this open-source approach: Linux, Apache, Firefox, WordPress,

BIND, LibreOffice, Audacity, the open STL file format, OpenSCAD, fonts licensed under SIL OFL, and

RepRap. There is also a predominant philosophy among the Native American flute community of open

sharing of ideas, designs, techniques, and resources.

The more people that you have access to, the better the selection of ideas at your disposal, and
the more you can recombine into something brand new. This is the key to cultural evolution.

Someone thinks of something. Someone else adapts it to a brand-new environment. Someone
incrementally improves on it. Copying, recombining, and learning from each other.

This is what humans are good at. And this is the key to our intelligence.

— Michael Muthukrishna, London School of Economics

To promote ongoing development and collaboration, the Breath Flute Package is copyrighted and

licensed under the GPL and the GFDL, which contain key permissions that promote sharing and

continued development. This license is a Free Cultural license (www.FreedomDefined.org), and contains

“Attribution” and “ShareAlike” conditions.

When distributing a release package (original or modified), physical objects generated using code from a

release package, or any item that is covered by the License, the license requires you to give appropriate

credit (“Attribution”) and provide a link to the license. You may do this by simply prominently displaying

the text contained in the License.txt file, including the link to www.BreathFlute.com. You must also

describe any modifications that have been made to the release package. You may do so in any reasonable

manner, but not in any way that suggests that any of the authors (see the Authors.txt file) endorse you

or your use.

If you modify or build upon the material in the Breath Flute Package, you must distribute your

contributions under the same license as the original (“ShareAlike”). Also, you may not apply legal terms or

technological measures that legally restrict others from doing anything the license permits.

http://www.freedomdefined.org/
http://www.breathflute.com/

Breath Flute Project Guide Page 57 of 63 Printed August 10, 2018 at 2:31 PM

What am I allowed to do with the Breath Flute Project?

Briefly, here are a few things that are allowed (and encouraged) under the License:

• You are free to download the software, use it to fabricate Breath Flutes, and even offer them for sale.

• You are free to modify the software or the design of the Breath Flute, fabricate your modified design,

and offer them for sale.

• You are not required to release any modifications you make. However, if you release the modified

version to the public in some way (e.g. by offering fabricated instruments based on your modified

design for sale), the GPL requires you to make the modified source code available to the program's

users, under the GPL. This promotes the continued, open development of the design by the

community, a core intention of this project.

• If you release your modified version of the Breath Flute Project, you are free (and encouraged) to add

your name to the Authors.txt file. Listing your name in the first (“### AUTHORS”) section adds you

to the copyright-holders of the project and offers you protections provided by the License. You do not

need to modify the copyright notices in the License.txt, source code files, or documentation files,

since the copyright notices in those files refer to the Authors.txt file.

• If you include code from third-party sources (see the What are the license terms for modifications
that I make? section (below) on when that is allowed), then you need to conspicuously identify the

complete details of its source and of any license or other restriction (including, but not limited to,

related patents, trademarks, and license agreements) of which you are personally aware. To satisfy any

“attribution” clause, you may modify the comments in the third-party code.

• You may also wish to add the names of others who have contributed to the Breath Flute Project, as

described in the sections marked “### CONTRIBUTORS”, “### ADVISERS”, or “###

APPRECIATION” in the Authors.txt file. Please obtain their permission prior to doing so. Also,

please keep the list of Contributors in alphabetical order of their project title, and Advisers in

alphabetical order by name. In the case of code from third-party sources, the authors of that code are

typically listed in the “### CONTRIBUTORS” section, unless they wrote code specifically for the Breath

Flute Project.

• If you are adding a new file in your release, please include a header, a copyright notice, and a license

statement near the beginning of the file. Here is an example of a typical header in the OpenSCAD files

of the project:

// The Breath Flute Project - XXX Module – FFFF.scad

//
// The Breath Flute is a wind instrument that lets players with limited musical
// experience create music using only their breath. The Breath Flute Project
// generates a Constructed Solid Geometry model in OpenSCAD for fabricating a

// Breath Flute headjoint, typically by 3D printing. The headjoint is combined
// with a body tube (e.g. 1.25” PVC) to make a complete instrument. See
// ReadMe.txt and www.BreathFlute.com for more information.

//
// This module implements ...

Breath Flute Project Guide Page 58 of 63 Printed August 10, 2018 at 2:31 PM

Please use the text below for the copyright notice and license statement. You may change the text to set

the appropriate year(s) for the copyright (see the section below on How should the year or years given in
a copyright notice be set?) and adjust the text for the comment conventions of the programming

language for that file, but the remaining text should remain unchanged:

// Copyright 2016-2018 the Breath Flute Project Authors (see Authors.txt).

//
// This software is part of the Breath Flute Project (www.BreathFlute.com).
// You may copy, use, modify, and distribute this software under the terms of

// the GNU General Public License version 3 (“the GPL”) or any later version,

// as published by the Free Software Foundation. See the License.txt and
// GPL.txt files for details.

//

// This software is distributed in the hope that it will be useful, but

// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GPL for more details.

//
// The GPL is distributed in plain text with this software. It is also
// available at <http://www.GNU.org/>.

• If you are adding a new documentation file, please copy the copyright statement and license in

BreathFlute_DevGuide.pdf.

Some important things you are not allowed to do under the License:

• You may not distribute (free or commercially) fabricated versions of modified Breath Flutes without

releasing the source code under the same license.

• You may not strip out the copyright notices in the source code of versions you distribute.

• You may not remove Authors.txt, ChangeLog.txt, License.txt, ReadMe.txt, or other files from

the top-level directory of the distribution.

• You may not remove or modify the GPL.txt or GFDL.txt files.

• You may not remove or modify the license files in any subdirectory of /Src – for example, the

/Src/Bioinfscripts/License.txt file.

• You may not apply additional restrictions when you redistribute original or modified versions of the

software. One example of an additional restriction would be to provide the software to others under a

non-disclosure agreement.

To confirm that the static files in a given distribution have not been modified, first confirm that your MD5

utility provides these checksum values on the /Misc/Null.txt file in the distribution package. You can

use either the Hex or Base64 versions of the checksum:

Breath Flute Project Guide Page 59 of 63 Printed August 10, 2018 at 2:31 PM

 Null.txt Size: 0

 MD5 Hex: d41d8cd98f00b204e9800998ecf8427e

 Base64: 1B2M2Y8AsgTpgAmY7PhCfg

Then check the MD5 checksums on these static files:

 GPL.txt Size: 35,823

 MD5 Hex: e62637ea8a114355b985fd86c9ffbd6e

 Base64: 5iY36ooRQ1W5hf2Gyf+9bg

 GFDL.txt Size: 23,415

 MD5 Hex: a5a587b3f95d049d6df40d1e30206baf

 Base64: paWHs/ldBJ1t9A0eMCBrrw

For more details and examples, see GPL Frequently Asked Questions at https://www.gnu.org/licenses/gpl-

faq.en.html.

What are the license terms for modifications that I make?

You may submit modifications to the Breath Flute Project that satisfy any combination of one or more of

these conditions:

• Modifications that you personally author, as long as you agree with the terms of the License (see The
Breath Flute Project GPL License section above or License.txt).

• Modifications from other sources that are openly available under licensing terms that are compatible

with the License. Some examples that are compatible with the License are (as long as any licensing

terms, such as “attribution”, are met):

o Apache 2.0

o Artistic License 2.0

o BSD “Modified” or “Three-clause”

o CC-0 or other statement placing the code in the public domain

o CC-BY

o FreeBSD (also known as the “BSD Two-clause”)

o GPLv3

o GPLv2 with an “or later version” clause,

o MPL 2.0

o X11

o XFree86 1.1

Some examples that are not compatible with the License are:

o No license. Most source code that does not carry a written license is granted a restrictive copyright

by default. There are specific exemptions to this rule, but the rules are complex. It is best to avoid

incorporating such code.

o AGPL 1.0

o Apache 1.0

https://www.gnu.org/licenses/gpl-faq.en.html
https://www.gnu.org/licenses/gpl-faq.en.html

Breath Flute Project Guide Page 60 of 63 Printed August 10, 2018 at 2:31 PM

o Apache 1.1

o Artistic License 1.0

o BSD “Original” or “Four-clause”

o CC-BY-NC

o CC-BY-ND

o GPLv2 without an “or later version” clause

o The JSON license. This license has a clause mandating “The Software shall be used for Good, not

Evil.”, which makes it incompatible with GPLv3. We could, as some others have (eg. IBM), obtain a

special exemption allowing us to “use JSON for evil”, but that’s probably not a good idea.

o MPL 1.1

o Open Public License

o Reciprocal Public License

See https://www.gnu.org/licenses/license-list.en.html for additional examples and a discussion of license

compatibility.

If I change just the Fabricator Code and print a flute, does that mean I need to release the source
code?

No. Changing the fabricator code (the two letters printed on the side of the flute that indicates who

fabricated that instrument) can be done by executing OpenSCAD from the command line and providing

an appropriate override for the FabricatorCode variable. There is no change to the code in this case, so

this situation, in and of itself, does not trigger the GPL requirement to release your source code.

Why does the free, open-source license for the Breath Flute Project have a copyright statement?

A central concept of the Open Source movement is how it uses existing copyright

law to guarantee the free and open access to and redistribution of software. This may

seem counterintuitive, since copyrights have traditionally been used to restrict the

rights of access and redistribution.

The Breath Flute Project provides access to the software to anyone, in exchange for

abiding by the terms of the GPL. The GPL uses copyright law to guarantee that no

party may restrict or curtail anyone else’s right to copy, use, modify, and redistribute

the software. A party that violates the terms of the GPL (for example, by restricting the rights of others)

loses their rights under the License, places them in violation of copyright law, and opens the possibility of

prosecution.

To further promote open collaboration and development, the guarantees of the GPL extend to the source

code of the software.

Why isn’t this software simply released into the Public Domain?

While it might appear that releasing software into the public domain would be a more noble approach,

this path tends not to serve the community as well as the GPL.

• The concept of public domain is not universally recognized.

https://www.gnu.org/licenses/license-list.en.html

Breath Flute Project Guide Page 61 of 63 Printed August 10, 2018 at 2:31 PM

• The mechanism of making a public domain declaration is problematic in many situations, and even

illegal in some countries.

• The authors cannot apply a warranty clause and open themselves to litigation by making the code

available under a Public Domain declaration.

• Public domain places no restrictions on use. This freedom allows anyone to apply legal restrictions that

prevent others (even the original authors) from using the software. Anyone may even claim authorship

of the software, making the history of its development unclear. There are many notable cases of these

perverse situations involving public domain content.

• Many commercial enterprises avoid using public domain content, because it opens them to subsequent

litigation by others who have subsequently applied copyright and trademark restrictions.

For these reasons, I am using the well-established tradition of the GPL to promote continued, open

development of the Breath Flute Project.

Why is version 3 of the GPL used?

Version 3 is the most recent and robust of the GPL licenses,

providing protection from such as tivoization, digital rights

management, and restrictive patent agreement attacks on GPL-

licensed code that have become part of case law since GPL version

2 was drafted. I use a “version 3 or later” style of license, to allow combination of this software with other

software that may be licensed under a later version of the GPL.

Note, however, code licensed under GPL version 2 only (rather than “GPL version 2 or later”) is

incompatible with the Breath Flute Project License and cannot be combined with this software.

Why is the documentation under a different license?

The GNU Free Documentation License (the GFDL) shares the

basic intent and design as the GPL, but is specifically designed to

cover documentation.

How does the License address issues of patent law?

The Breath Flute Project makes every effort not to use patented technology.

Also, the open publication of the Breath Flute design and software establishes a “prior art” defense against

anyone who might endeavor to restrict access using patent law. If you modify the design of the Breath

Flute (by modifying the code of the Breath Flute Project, or by other means), we encourage you to openly

publish all those ideas to prevent their being patented by others.

To further promote the goals of open source software, you may consider the Open Invention Network

(OIN) – a group of individuals, organizations, and companies to free existing patents and to prevent

known or obvious ideas from being patented. You may also be interested in the concept of Free Patents

and the efforts of the Ask Patents initiative (http://patents.stackexchange.com/).

http://patents.stackexchange.com/

Breath Flute Project Guide Page 62 of 63 Printed August 10, 2018 at 2:31 PM

How should the year or years given in a copyright notice be set?

Based on legal advice form Epiphany Law, we set the Year component of the copyright notice for a work

(a document or file) using the format “StartYear-EndYear”. StartYear is the year portion of the

date of the oldest content still contained in the work and EndYear is the last year that the work was

revised. If StartYear is the same as EndYear, then the format is simply “Year”.

How does the License apply to the fonts that are included in the distribution package?

Licensing of open source fonts is often handled under a different license from other software components.

The GPL does provide an optional Font Exception (https://www.gnu.org/licenses/gpl-

faq.en.html#FontException). This allows people to embed GPL-licensed fonts in documents (such as PDF

files), without the fonts themselves causing the whole document to be covered under the GPL.

However, we have chosen not to include the Font Exception in the Breath Flute Project GPL License,

because:

• The only place that the fonts are uses is on the Breath Flute models themselves, which are already

covered by the GPL.

• A GPL + Font Exception license does not address the complex issues of font licensing as

comprehensively as other open-source licenses that have designed specifically for the complex issues of

font licensing. See, for example, the SIL Open Font License version 1.1 (the “SIL OFL” – see

http://scripts.sil.org/ofl_web).

• The Kurinto Sans fonts used by the Breath Flute Project is licensed under SIL OFL, which allows are

extremely limited in coverage of character sets, and of little use outside of inscribing text on FDM

models.

The SIL OFL 1.1 license allows inclusion of the Kurinto Sans fonts in this GPL-licensed package,

according to this OFL-FAQ web version (1.1-update5) published by SIL International. From

http://scripts.sil.org/ofl-faq_web, retrieved June 8, 2018:

Question: 1.2 Can the fonts be included with Free/Libre and Open Source Software

collections such as GNU/Linux and BSD distributions and repositories?

Answer: Yes! Fonts licensed under the OFL can be freely included alongside other software

under FLOSS (Free/Libre and Open Source Software) licenses. Since fonts are typically

aggregated with, not merged into, existing software, there is little need to be concerned

about incompatibility with existing software licenses. You may also repackage the fonts and

the accompanying components in a .rpm or .deb package (or other similar packaging

formats or installers) and include them in distribution CD/DVDs and online repositories.

(Also see section 5.9 about rebuilding from source.)

https://www.gnu.org/licenses/gpl-faq.en.html#FontException
https://www.gnu.org/licenses/gpl-faq.en.html#FontException
http://scripts.sil.org/ofl_web
http://scripts.sil.org/ofl-faq_web

Breath Flute Project Guide Page 63 of 63 Printed August 10, 2018 at 2:31 PM

Resources

In addition to the documentation included with the release of the Breath Flute Project, here are additional

resources that are not part of the release:

• The web site http://www.BreathFlute.com/

• Videos on YouTube and Vimeo. You can search for “Breath Flute” and find a number of playlists that

you can browse.

References

[3DMatter 2015] 3D Matter, What is the influence of infill %, layer height and infill pattern on my 3D

prints?, retrieved 4/28/2018 from http://my3dmatter.com/influence-infill-layer-height-pattern/.

http://www.breathflute.com/
http://my3dmatter.com/influence-infill-layer-height-pattern/

