Brent M. Wilson Amsted Rail February 12, 2010

What does Amsted Rail do??

CLASS AND	CAR	CONE	CUP
SIZE	CAPACITY	BORE	O.D.
	(TONS)	(in)	(in)
B (4 1/4 X 8)	30	4.0000	6.5000
C (5 X 9)	40	4.6875	7.6875
D (5 1/2 X 10)	50	5.1870	8.1875
E (6 X 11)	70	5.6870	8.6875
L (6 X 8)	70	5.6870	8.6564
F (6 1/2 X 12)	100	6.1870	9.9375
K (6 1/2 X 9)	100	6.1870	9.8375
G (7 X 12)	125	6.9996	10.8750
M (7 X 9)	125	6.4995	10.3750
EE	Passenger	5.4995	10 8780
	Car	5.9995	10.0700
66	Locomotive	6.4995	11 8780
		6.8745	11.0700

- A primary reason for bearings to be pulled is due to overheating
 - Bearing overheating is detected by a hot box scanner
 - Hot Box Trigger is @
 - $T > 190^{\circ}F$ above ambient

WMC 50 removals

a) Wheel flat b) Shell / Spallc) Shattered rim d) Built-up-tread

1. Control of Retained Austenite

- a) Transformation of retained austenite causes a 3-4% volume change at the surface of the bearing race.
- b) Transformation leads to cone bore growth, and can cause an "axle burn-off failure"

2. Microscopic Cleanliness

- a) Subsurface discontinuities act as stress risers and are the primary sites of fatigue initiation.
- b) Subsurface fatigue initiation leads to "spalling" type failures which generate heat and can cause derailments.
- 3. Wheel / Rail Interactions
 - a) Impact damage from "wheel flats" can lead to structural damage.
 - b) Early detection and energy absorbent structures are necessary.

Retained Austenite and Residual Stress

Volume Change as Austenite (A) Transforms to Martensite (M)

Amsted Rail

During service the cone will grow on the order of 0.001 to 0.002 inches.

25% Retained Austenite

3% Retained Austenite

Residual stress and retained austenite reflect the service history

Service Load Factor (SLF) :

Absolute residual stress (martensite) / %RA Normalized to new cones (42.5/22.5 = 1.88)

	Serviced Load Factor
New Product 0 lbs 0 miles	1.00
Typical Bench Test 34,500 lbs 250,000 miles	2.38
Typical Field Test 34,500 lbs 300,000 - 600,000	2.56
Failure Criterion 140ksi / 10% RA	7.50
Severe Overload	15.10

22

1 million miles

	Serviced Load Factor
1 million mile 66 OB *	6.56
1 million mile 66 IB	3.23
1 million mile 67 OB	3.40
1 million mile 67 IB	5.93
Failure Criterion 140ksi / 10% RA	7.50

1.2 million miles

	Serviced Load Factor
1 million mile 66 OB	10.67
1 million mile 66 IB	3.45
Failure Criterion 140ksi / 10% RA	7.50

* One measurement = 7.89

1 million

1.2 million

Retained Austenite of bearing cones, July 2004 – June 2005

Steel Cleanliness and Ultrasonic Testing

Objectives

- Phase 1 Develop an automatic inclusion detection system for the purpose of quality inspections. System is able to scan a cup/cone and rank the cleanliness based on total number of indications per inspected volume.
- Phase 2 Goal is to qualify premium components for certain heavy haul markets.
- Phase 3 Ultrasonic testing integrated into the manufacturing process.

Ultrasonic Scanning System

C-scan (top) and TOF (bottom) for Chinese Steel

C-scan (top) and TOF (bottom) for North European steel

C-scan (top) and TOF (bottom) for USA steel

C-scan (top) and TOF (bottom) for South European steel

C-scan (top) and TOF (bottom) for Russian steel

C-scan (top) and TOF (bottom) for Indian steel

C-scan (top) and TOF (bottom) for ABD setouts

C-scan (top) and TOF (bottom) for Korean steel

Advanced Analysis

- Any C-Scan image consists of pixels in a matrix format
- The pixels in grey indicate inclusions
- We need to form cluster of pixels which belongs to the same inclusion
- For every pixel, we look at its 8 neighboring pixels to decide which inclusion any particular grey pixel belongs to

- Fig. (a) C-Scan
- Fig (b) Post processing data from Fig. (a). Here each inclusion is denoted by individual color
- Fig (c) is the area of each inclusion
- Fig. (d) is the histogram of inclusion area distribution

Korean vs. USA

Total Scan Area $- 7.1 \times 10^4 \text{ mm}^2$, Total Inclusion Area $= 4,047 \text{ mm}^2$

Total Scan Area = $7.1 \times 10^4 \text{ mm}^2$, Total Inclusion Area = 44.5 mm^2

Amsted Rail

Amsted Rail

The Effects of Impacting Wheels

CO317H OB

X61H OB

Dynamic Testing Results

Bearing Acceleration at 6 Hz

Worst Case Hourglass Damage Area for Cumulative Impact Cycles

Bearing Trending

- Laboratory bearing testing has determined that the root cause of trending is due to roller misalignment caused by vibration
- Excessive tolerances and deformation of the cage can allow misalignment to occur ... multiple solutions under test:
- A collaborative field test with the UP validated the laboratory findings and future studies are underway.

Brent M. Wilson Amsted Rail February 12, 2010

