Brewing yeast – theory and practice

Chris Boulton

Topics

What is brewing yeast?

Yeast properties, fermentation and beer flavour

Sources of yeast

Measuring yeast concentration

The nature of yeast

- Yeast are unicellular fungi
- Characteristics of fungi:
 - Complex cells with internal organelles
 - Similar to plants but non-photosynthetic
 - Cannot utilise sun as source of energy so rely on chemicals for growth and energy

Classification of yeast

Biology of ale and lager yeasts

- Two types indistinguishable by eye
- Domesticated by man and not found in wild
- Ale yeasts Saccharomyces cerevisiae
 - Much older (millions of years) than lager strains in evolutionary terms
 - Lot of diversity in different strains
- Lager strains *Saccharomyces pastorianus* (previously *S. carlsbergensis*)
 - Comparatively young (probably < 500 years)
 - Hybrid strains of *S. cerevisiae* and wild yeast (*S. bayanus*)
 - Not a lot of diversity

Characteristics of ale and lager yeasts

Ale

- Often form top crops
- Ferment at higher temperature (18 - 22°C)
 - Quicker fermentations (few days)
- Can grow up to 37°C
- Fine well in beer
- Cannot use sugar melibiose

Lager

- Usually form bottom crops
- Ferment well at low temperatures (5 – 10°C)
 - Slower fermentations (1 3 weeks)
- Cannot grow above 34°C
- Do not fine well in beer
- Can use sugar melibiose

Growth of yeast cells via budding

Yeast cells

- Each cell is ca 5 10 microns in diameter (1 micron = 1 millionth of a metre)
- Cells multiply by budding

Daughter cell - genetic clone of mother

Yeast and ageing - cells can only bud a certain number of times before death occurs.

DAUGHTERS

MOTHERS

GRANDMA

Yeast dispersion and flocculation

- Flocculation ability of yeast cells to bind together
- Flocculence inherent genetic property of yeast strain
 - Some are flocculent and some are not!
 - Most brewing strains are at least moderately flocculent
- Flocculation expression of flocculence
 - The process by which it occurs
 - Determined by expression of flocculation genes
 - Clumping characteristic turned on or off

How does flocculation work?

- Involves interaction between adjacent yeast surfaces
 - Calcium mediated process activate the flocculins
- Receptors are present in ALL yeast cells
 - Flocculent and non-flocculent

Effect of wort sugars

- Sugars present in the wort can also bind to the receptor sites
 - Prevents flocculins attaching and causes cells to 'deflocculate'

- Zymolectin protein (Flocculin)
- Mannan receptors
- Wort sugar

Flocculation works to advantage of brewer

- •Sugars (including glucose, maltose and sucrose) block receptor sites and cause yeast cells to deflocculate
 - Ensures cells are dispersed at start of fermentation

- •Disappearance of sugars allows flocculation (but requires the presence of calcium)
 - Crop formation occurs when all sugar has been fermented by yeast

Cropping characteristics

- Ale strains have more hydrophobic surface
 - Traps CO₂ bubbles
 - Causes clumps to rise
- Lager strains have less hydrophobic surface
 - Form clumps and drop out to bottom
- Differences are not absolute

Brewing yeast strains

- Many thousands of individual strains, both ale and lager
- Result of slight differences in genome (DNA)
- Differences produce differences in fermentation behaviour and beer properties
- Most brewing companies use own proprietary strains

What contributes to beer flavour?

Grist materials

- Hops
 - Bittering
 - Aroma types
- Liquor
- Yeast?

Contribution of yeast

 Conversion of sugar to alcohol and CO₂

- During fermentation
 - Yeast removes many undesirable wort components
 - Yeast produces many thousands of flavour-active beer components

Yeast beer flavour compounds

- Ethanol (alcohol)
- CO₂

- Higher alcohols
- Esters
- Organic acids
- Glycerol

- Warming
- Mouth tingle

- Wine, warming
- Fruity, floral
- Sharp
- Fullness

Does the yeast strain matter?

- Identical samples of filtered green beer (made with same yeast strain)
- Bottled after seeding with different yeast strains
- Bottle conditioned under identical conditions

Yeast strain	Tasting notes
UK Ale 1	Fruity, warming
UK Ale 2	Estery, floral
UK Ale 3	Sulphidic, dry
US West coast ale	Vanilla, sweet
Nottingham ale	Thin, bland
Munich strain	Malty, mellow
Lager 1	Herbal
Lager 2	Bland, faint ester
Champagne strain	Catty, antiseptic
Cider strain	Sweet, toffee
Belgian Saison	Fruity, estery

Choice of yeast strain

- Need to consider all attributes of strain
 - Ability to ferment
 - Impact on flavour
 - Cropping behaviour
 - Flocculation characteristics
 - Temperature dependence
 - Alcohol tolerance
 - Genetic stability
- Impact on beer
 - Appropriate strain for chosen beer style
 - Could be single pure strain or mixture of yeast and possibly bacteria
- Impact on process
 - Choice of fermentation system
 - Strain used for primary fermentation not always best for cask or bottle conditioned beers

Sources of yeast

- Traditional process uses "wet yeast"
 - Sourced either in bulk or as a pure lab culture
 - Purchase from brewery
 - Commercial brewing yeast suppliers
 - Yeast culture collections
- Dried yeast
 - Many brewing strains available in dried form
 - Suitable strains for most beer styles
 - Supplied in vacuum packs in various sizes to suit brewing scale

Wet yeast handling

Wet yeast handling

- Complex and testing operation
 - Big emphasis on good hygiene
 - Cropped yeast must be stored appropriately
 - $2 4^{\circ}C$, 5 days max
 - Brewery propagation plant
 - Requires lab facilities
 - Wort must be oxygenated / aerated

- "Free" yeast supply
- Independent of dried yeast suppliers
- Wide choice of strain
- Can contract out propagation to third party supplier

Dried yeast operation

Dried yeast handling

- Much simpler operation
 - Unopened vacuum packs stable for ca 1 year if held in fridge
 - Pitching rate control via addition of known weight
 - No need to crop and store
 - No need for wort oxygenation / aeration

- Constant on-cost of yeast
- Quality dependent on supplier
- More limited choice of strain
- Exposure to air in dried form results in rapid death
 - Store opened packs wrapped to exclude air and in deep freeze
- Must carry out rehydration step properly

Ideal rehydration procedure

- Use 10x boiled tap water or treated brewing liquor at ca 30°C for ale strains [DO NOT USE DEIONISED WATER OR WORT]
- Sprinkle yeast on surface [DO NOT STIR]
- Leave for 15 min
- Stir gently and leave for 5 min
- Dilute with water to lower temp to pitching temp.
- Pitch
- NEVER PITCH DRIED YEAST DIRECTLY INTO WORT

Yeast and oxygen

- Yeast requires oxygen for proper growth in fermentation
- Consequence of serial cropping and repitching
- Oxygen is used for synthesis of membrane lipids in initial aerobic phase
- Subsequent growth in anaerobic phase dilutes lipids between mother and daughter cells
- Resultant lack of proper membrane function eventually limits growth
- Dried yeast is pre-loaded with lipids and does not require wort oxygenation if only used once

Measuring yeast concentration

- Required for:
 - Control of pitching rate
 - Monitoring end fermentation counts
 - Control of cask / bottle conditioning counts
- Measured directly via microscopic yeast counts or indirectly as wet cell mass (wt/vol or wt/wt or vol/vol)
- Additional determination of proportion of living cells (viability) allows correction for pitching rates and monitor of yeast quality

Assessing yeast concentrations

- Typical pitching rate:
 - 1lb pressed yeast per UK barrel @1040
 - Equivalent to 2.8g/litre
 - In terms of cell numbers:
 - Roughly equivalent to 10 million cells per ml
 - Can use either cell mass or cell count

Analysis of slurry for solids

- Usual to use centrifuge
 - Spin known weight slurry
 - Pour off barm ale
 - Weigh packed yeast
- Quick method
 - Take known weight of slurry
 - Place in graduated container
 - Allow yeast to settle and assess solids content

Analysis based on yeast weight

Example:

```
Total weight slurry = 50g
Weight yeast = 20g
```

Yeast concentration = 20/50 x 100

= 40% w/w

Analysis of slurries by cell count

- Use microscope to count individual yeast cells in sample of slurry
- Use special slide haemocytometer
 - Contains chambers of known volume
 - Contains grids to make counting easier
- Can use with dyes which differentiate between live and dead cells
 - Allows calculation of viability
 - <u>Dead cells</u> x 100 = % viability
 Total cells

Haemocytometer

Assessment of viability

Industry standard method uses dye, methylene blue

- Live cells are colourless
- Dead cells stain blue

Use of haemocytometer

- Prepare diluted suspension of slurry
- Mix slurry with equal volume of methylene blue solution
- Count total number of cells
- Count blue stained cells
- Calculate no. cells in original slurry
- Calculate viability

Summary

 Yeast is the brewery's most precious asset!

- Choose the correct strain
 - Beer style
 - Brewery plant
 - Brewing process
- Guard its welfare carefully

