

Guidance for Filling Out a Detailed H2A Production Case Study

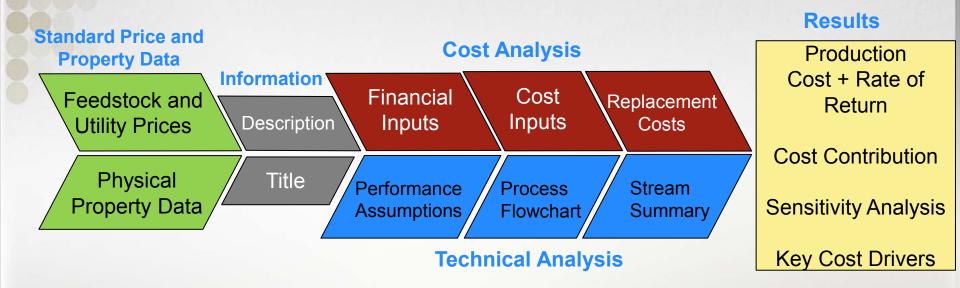
Brian D. James Jennie M. Moton Whitney G. Colella

The H2A Production Model described in this presentation was developed with support from the Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency & Renewable Energy (EERE), US Department of Energy.

9 July 2013

Outline and Purpose

- Explanation of H2A model capabilities, including comparing hydrogen (H₂) generation technologies and charting progress.
- As part of a DOE contract, one may be requested to prepare an H2A Case Study for a new H₂ generation technology.
- This presentation
 - Reviews elements of the H2A Excel Model;
 - Gives examples of fully detailed Case Studies;
 - Identifies key numbers, common pitfalls & errors;
 - Clarifies the level of depth, accuracy & transparency needed for a detailed analysis; and
 - Discusses metrics and common issues.



Overview of H2A

- H2A is a discounted cash flow analysis that computes the required price of H₂ for a desired after-tax internal rate of return (IRR)
- H2A uses custom macros within Microsoft Excel
- Latest analyses exist in H2A Version 3
 - Developed in 2012
- Two main types of H2A analyses:
 - production and delivery.
- Objective of H2A Analyses (production):
 - Establish a standard format for reporting the production cost of H₂, so as to compare technologies and case studies
 - Provide transparent analysis
 - Provide consistent approach

H2A Process Flow Diagram

H2A Model Description on Hydrogen and Fuel Cells Program website: http://www.hydrogen.energy.gov/h2a_analysis.html#data

Feedstock and utility prices (H2A default) linked to Annual Energy Outlook (AEO) Reference Case developed by DOE's Energy Information Administration (EIA) http://www.eia.gov/forecasts/aeo/index.cfm

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model from Argonne National Lab: http://greet.es.anl.gov/main

Types of H2A Production Case Studies

Distributed (forecourt/filling station): 1 to 5 metric tons H_2 per day **Central:** 100 to 500 metric tons H_2 per day

Current Case ("if you were fabricating today at production volume")

- Could be a short term projection from current technology
- Assumes already identified advances in technology are implemented
- Potential reduction in capital cost from currently accepted values (due to production volume and/or identified design changes)
- Plant lifetimes assumed are consistent with either measured or reported data for equipment lifetimes installed in either the field or the laboratory.

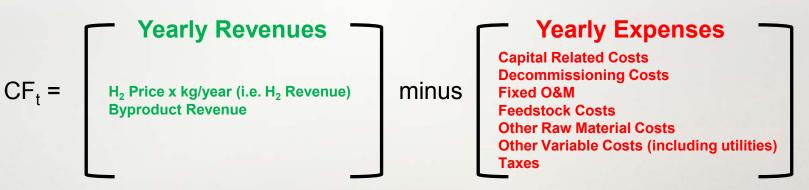
Future Case

- More advanced materials could be used that have not been discovered
- Increased efficiency to produce H₂
- Longer plant lifetimes assumed
- Improved replacement cost schedule
- Greater reductions in capital cost

Ultimate Target Case


- Assumptions based on expected thermodynamic, physical, or economic limits of the technology.
- Generally expected to approach DOE production target of \$2/kg H₂

H2A Governing Equations


Objective: Solve for required price of H_2 that returns a desired after-tax internal rate of return after adjusting for all expenses.

Method: Conduct <u>discounted cash flow analysis</u>, solving for required pump price that yields a zero net present value. (H2A spreadsheet automates entire process.)

$$0 = NPV = \sum_{t=1}^{n} \frac{CF_t}{(1 + IRR)^t}$$

t = year *n* = plant life CF = cash flow *IRR* = internal rate of return

H2A considers the entire life of plant and accounts for inflation, and interest rates if provided. (not seen in equation above)

H2A Version 3 User Guide PDF: <u>https://apps1.hydrogen.energy.gov/cfm/h2a_active_folder/h2a_production/03P_H2A_Cen</u> <u>tral_Hydrogen_Production_Model_User_Guide_Version_3_draft.pdf</u>

Different Technologies Demonstrated within H2A

Past Production Case Studies

Existing Technologies

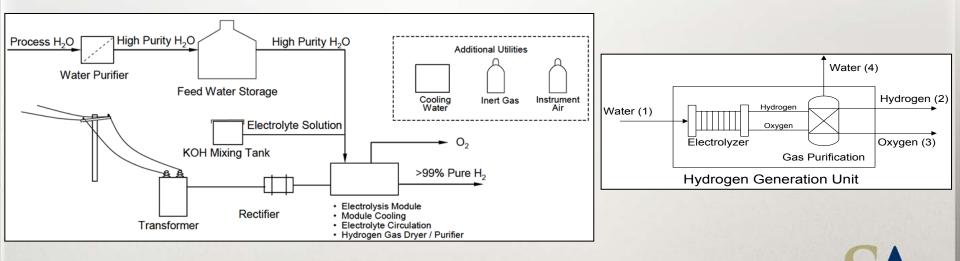
- Natural Gas Steam Methane Reforming (SMR) (Central/Forecourt)
- Electrolysis (Central/Forecourt)
- Ethanol Reforming (Forecourt)
- Biomass (Central)
- Coal Gasification (Central)
- Nuclear Powered Water Splitting (Central)

Emerging Technologies

- Photoelectrochemical (PEC) (Central)
- Photo-Biological H₂ (Central)
- Solar Thermochemical H₂ (STCH) (Central)

All production cases above can be found at: http://www.hydrogen.energy.gov/h2a_prod_studies.html

Type of Production Plants: Forecourt (distributed) and Central


- Next Generation of Production Case Studies
 - Increased level of detail
 - Focus on Emerging Technologies
 - Uniform primary metrics (with individual sub-metrics)
 - Sensitivities (Tornado Chart)
 - May involve multiple versions to chart technology progress

Today's presentation will use an electrolysis forecourt case study to illustrate issues to consider when using the model.

Electrolysis H2A Case: Current Forecourt

- Standalone grid powered electrolyzer system based on the Norsk Hydro bi-polar alkaline electrolyzer (Atmospheric Type No.5040 - 5150 Amp DC)
- Total production capacity of 1,500 kg H₂/day
- System Components:
 - Process water for electrolysis and system cooling
 - Transformer
 - Thyristor
 - Lye Tank
 - Feed Water Demineralizer

- Hydrogen Scrubber
- Gas Holder
- 2 Compressor Units to 30 bar (435 psig)
- Deoxidizer
- Twin Tower Dryer

H2A Electrolysis Model: http://www.hydrogen.energy.gov/h2a_prod_studies.html H2A Electrolysis Report (2009 Independent Review): http://www.hydrogen.energy.gov/pdfs/46676.pdf

Commonly Shared Features of H2A Across Technologies

(Using Electrolysis Current Forecourt as an Example)

H2A Model Organization

2) Let 17 - 15 - 15 - 1 721 Nonel Drieft Reprillingont Formulas Oats Basiney View	810_Current_Forecourt_Hydrogen_F	roduction, from, Grid, Electrolysis, 1500, kg, pm, day, version, 2.8. (Compatibility Mos	odej - Microsoft Excel	The second se	101
🚺 🗛 Col Anal - 10 - A A = = 🕳 🗞 - 🔤 Wing Test General - 🕌	Normal 23 Normal 23 3 Normal 24 Normal 26 Bornal_D.	T Driefer Format Contente Fo			
Teder Janual Function ■ J U・□・魚・▲・ 新書道 使使 通过bege & Center・S・%・ 加点 Conditional Formal Format Function + Later	Normal_D, Normal_D, Percent 2 Normal Bad	nt Delete Format Ctar + Set & Find & Ctar + Fitter - Select -			
845 • (*					
A 8 0		E	F O H I J	K L M N O P	O R S F U V
2 Forecourt Alkaline Electrolysis Production - Project Informati					
Current (2010) Hydogen Production from Title: (Distributed Grid Abaline Electrolysis Authors: [Mark Ruh & Fold Ramiden					
7 Contact: Mark Ruth 8 Contact phone: 303-384-6874					
Contact + mail: and cataloges on Organization (hational Renewable Energy Laboratory (HPEL) Date (29-Feb.2)					
12 Web Site:					
Id Plant Design Capacity (kg/day): [1500 Start up Year: [2010 Drimser Pendur Landmerk Scarse (Pencess Wilse					
Primary Instact Feedback Sorrer Inscrete Water Secondary Feedback Sorrer (in Process Finary Source (ind Exercicy Industrual) Convention Lethology Adults Restoys:					
Convention Technology: Aladine Electrolysia Primary By Product; Noni Secondary By Product; Noni Secondary By Product; Noni					
Based on Number of Plants Installed par Year (par mandacturer), rink plant (-500 units/yr) 10 Onside Storage Type (10000 pairs 4/2 Compressed Gas Storage Assumed plant location; filteritorial installations					
Assumed plant location: distributed installations					
Reporting Spreadsheet Change Ristory: Date spreadsheet created / modified Name Comments					
229/2012 Mark Ruth. NREL Ported v2 case study into v3 template 227/2012 Darliene Steward, NREL vention 3 template, standard calculation	of capacity				
11 HDA Version 2 11/23/2009 Qualene M. Steward Robusing station calculation correction	tomado chart update	Tank for her Caster Laws Bar Dans	A THE REAL TO DESCRIPTION AND ADDRESS	NAME PROPERTY AND ADDRESS OF THE OWNER OWN	
ladj					
Information Title	Description ProcessF	low			
System Inputs Input	Sheet_Template Repl	acement Costs	Capital Costs	Plant Scaling	
			ouplial oosis	r lant coaling	
Results Results Torna	do Chart \mid Sensitivity Aı	nalysis 📙 Cash Flo	w Analysis		
Standard Price	ergy Feed & Utility Prices	Non-Energy Ma	aterial Prices		
and Property Data	HyARC Physical Proper	ty Data 🛛 AEO Da	ata		
and roperty Data	TIVAILE FITYSICAL FIOPEL	ly Dala ALO Da	ala		
the state of the state of the second state of the state of the second state of the sec					-
Financial					
Debt Fin	ancing Calculations De	preciation Lists	Constants an	nd Conversions	
Calculations					
					10 10

H2A Project Information

Forecourt Alkaline Electrolysis Production - Project Information

	Current (2010) Hydogen Production from Distributed		
	Grid Alkaline Electrolysis		
Authors:	Mark Ruth & Todd Ramsden		
Contact:	Mark Ruth		
Contact phone:	303-384-6874		
	mark.ruth@nrel.gov		
Organization:	National Renewable Energy Laboratory (NREL)		
Date:	29-Feb-12		
Web Site:			
Plant Design Capacity (kg/day):			
Start-up Year:	2010		
Primary Product Feedstock Source:	Process Water		
Secondary Feedstock Source:	none	Important to report	
Process Energy Source:	Grid Electricity (Industrial)		
Conversion Technology:	Alkaline Electrolysis	changes and version	
Primary By-Product:	None	J	
Secondary By-Product:	None	control	
Based on Number of Plants Installed			
per Year (per manufacturer):	nth plant (~500 units/yr)		
	10,000 psia H2 Compressed Gas Storage		
Assumed plant location:	distributed installations		
		K	
Reporting Spreadsheet Change History:			
	Name	Comments	
H2A Version 3			
2/29/2012	Mark Ruth, NREL	Ported v2 case study into v3 template	
2/27/2012	Darlene Steward, NREL	version 3 template, standard calculation of capacity	
H2A Version 2			
11/23/2009	Darlene M. Steward	Refueling station calculation correction, tornado chart update	
9/23/2008	Darlene Steward	Modified cooling water requirement per ASPEN modeling	
9/23/2008	Darlene Steward	H2A Version 2.1 updates	

Input Sheet

Initial H2A Version 2 draft

Tornado Charts added

H2A Forecourt Modeling tool v.2

Changes to process description

Title

5/19/2008 Todd Ramsden

5/27/2008 Darlene Steward

7/2/2008 Todd Ramsden

2/21/2008 Brian D. James/DTI

Case Study Technology Description

Central Hydrogen Production - Description Input Sheet

Purpose:

The purpose of this analysis was to analyze the technical and economic aspects of a process for production of hydrogen from the electrolysis of water using grid-based electricity.

System Description:

The system modeled is a standalone grid powered electrolyzer system with a total hydrogen production capacity of 52,300 kg/day. The system is based on the Hydro bi-polar alkaline electrolyzer system (Atmospheric Type No.5040 - 5150 Amp DC). The total electrolyzer system consists of 50 electrolyer units, each capable of producing 1,046 kg of hydrogen per day (485 Nm3 H2 per hour). The electrolyzer units use process water for electrolysis, and cooling water for cooling. KOH is needed for the electrolyte in the system. The system includes the follwing equipment: Transformer, Thyristor, Electrolyzer Unit, Lye Tank, Feed Water Demineralizer, Hydrogen Scrubber, Gas Holder, 2 Compressor Units to 30 bar (435 psig), Deoxidizer, Twin Tower Dryer

Analysis Methodology Summary:

Material and energy balances done manually, equipment costing and performance from projections and quotes.

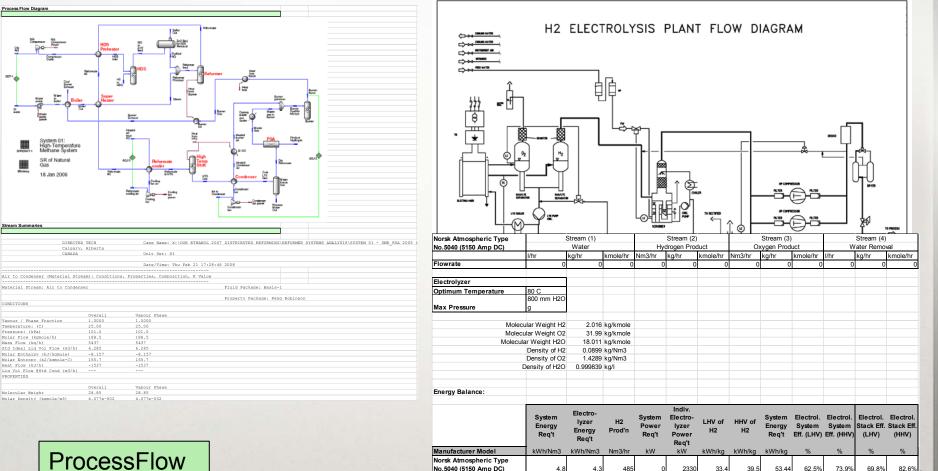
Plant Ownership and Entity Type Assumptions:	
	annanda an trua. Da aa
Corporate ownership, 100% equity financed.	agraph or two. Be as
des	criptive & detailed as
Relefences.	•
Norsk Hydro Electrolysers Quote, Offer #: 106602, August 8, 2002	veniently possible.
Hydro Website: http://www.electrolysers.com	

Hydro "Atmospheric Electrolysers" brochure, http://www4.hydro.com/electrolysers/library/attachments/Brochures/49444_ProductSheet_2.PDF Hydro NAS presentation, 2007. "NAS - Hydrogen" presented to NAS – Hydrogen Resource Committee, 4/19/07 (Knut Harg)

Norsk Hydro Electrolysers presentation, 2/13/2004.

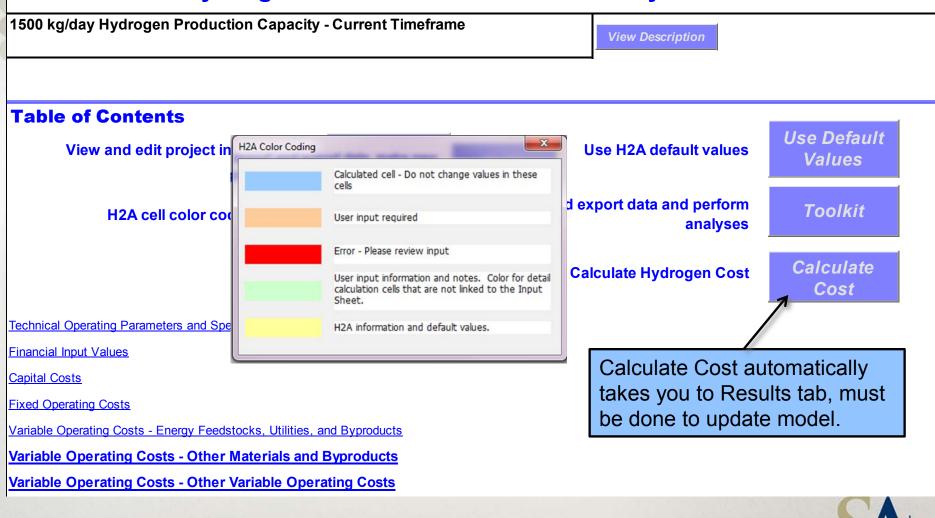
PEP Yearbook 2002

System Schematic Concisely Informs Reader


Include both a diagram and table of key parameters at salient operating point.

Process Flow Diagram (PFD) (with output table) from Aspen/Hysys for Forecourt SMR

CONDITIONS


PROPERTIES

Process Flow Diagram (PFD) with user created output table for Forecourt Electrolysis

H2A Input Sheet

H2A Hydrogen Production Cash Flow Analysis Tool v3.0

Input_Sheet_Template

Importance of Distinguishing Different Year \$

Financial Input Values					
Reference year		2007			
Basis Year for production system costs	Basis Year for production system costs				
Assumed start-up year		2010			
		Specified			
Reference year = dollar year for which results are reported	ed (i.e. 2007\$)				
Basis year for costs = dollar year for entered capital cost					
that you manually enter) Your choice. Use whichever year H2A spreadsheet will adjust the s					
Assumed start-up year = year of plant start-up (used prin	narily in associ	iation			
with looking up the projected cost of feedstock and utilitie	es) Select year	appropriate to ic case study.			
 User must be cognizant of difference between year \$ value Easily updated in one location 		lo ouco ciudy.			

- Easily updated in one location
- Estimated costs for equipment can be in different year \$ than assumed start-up year or reference year
- General Rule of Thumb: start-up year is 5 years after technology has been demonstrated in the lab.

Input_Sheet_Template

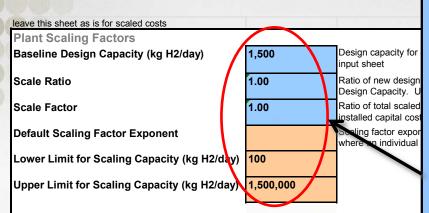
Other Financial Parameters

When comparing technologies or case studies be consistent with these financial parameters:

- Plant life:
 - 20 years for Forecourt (H2A Default)
 - 40 years for Central (H2A Default)
- Operating capacity factor: 90% (H2A Default)
- Construction Period: 1 year
- Start up time: 0.5 years

- After-tax real Internal Rate of Return (IRR): 10%
- Depreciation Schedule: 7 years Modified Accelerated Cost Recovery System (MACRS)
- State Taxes: 6% (H2A Default)
- Federal Taxes: 35% (H2A Default)
- Working Capital: 1% (of yearly change in operating cost)

These values do not need to be modified



Equipment and Installation Cost Calculation

PRODUCTION UNIT CAPITAL INV			in basis year, (2005) \$)	
Major pieces/systems of equipment	Uninstalled Costs \$2005 Dollars	Baseline Uninstalled Costs \$2007 Dollars	Installation Cost Factor	Baseline Installed Cos	sts Comments Data Source
units of 1563 kW Electrolyzer systems					
2 50 kWh/kg H2 (31.3 kg/hr units)		\$ -		\$	-
ncludes:		\$ -		\$	-
Stack	663,600	\$ 746,389	1.20	\$ 895,66	Current cost of stack in central case is \$213/kW (2005\$) (65% of \$327/kW). Stack costs are assumed to scale linearly so cost is kept at from Electrolysis Working Group \$213/kW resulting in 55.3% of system cost (3/8/2012)
					BOP costs scaled proportionally to cover non-stack portion of system cost (\$384-\$213=\$171/kW). H2 management is 15% of the current central system cost, thus 15/35=40% of the DOP cost and cost (15%)
Hydrogen Gas Management System	229,200	\$ 257,794	1.20	\$ 309,35	
				_	
				~	central system cost cost and scales to
Electrolyte Management System	138,000	\$ 155,217	1.20	\$ 186,26	• Use your judgment.
					portion of system • Add comments to
					Power electronics
Power Electronics				186.26	³⁰ and scales to 11.5 explain basis.
	n Capit	al Costs o	can be		BOP costs scaled I lse formulas (rather
		ximate m			
				- 10.11	system cost, thus than pasted-in values) to
Aechanical Balance COStS Of	concep	tual desig	gn. Good		better explain logic.
	orate tl	ne capital	cost int	O 1,619,65	
		•			
A SENSITI	vity stu	dy, brack	eting the	;	
Number of Electrolyz Maximum daily hydr	cost th	at can be	e drawn	75 at 68	F =HyARC reports H2 density of 0.08375 kg/m3 at 1 atm, 68 F
Maximum hourly hyd from ana	alogies	to similar	system		
Maximum hourly hyd				<u> </u>	Calculated to meet a design capacity of 1500 kg/day with 2 units. The design capacity Independent review panel estimated \$1.2M (2005\$) purchased capital cost for a
	1002.0				1500kg/day distributed electrolysis system. At 50 kWh/kg (the usage reported by the
Jninstalled capital cost of electrolyzer unit	384	432			independent review), the resulting electrolysis equipment cost is \$384/kW (2005\$).
Total uninstalled cost (per unit)	600,000				

Capital Costs

Plant Scaling is only for "Power Users"

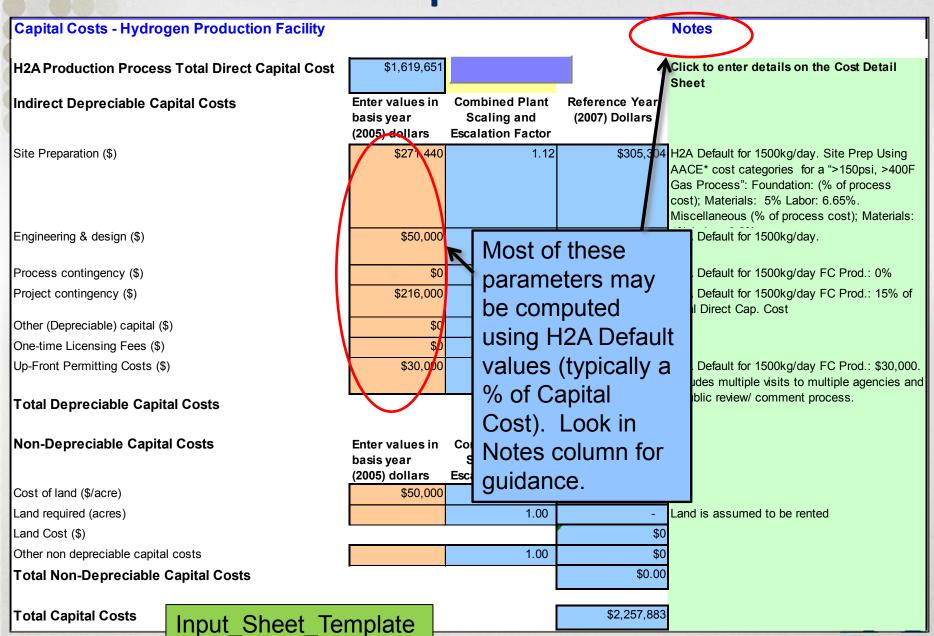
Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7								
Major pieces/systems of equipment Costs Exponent 2 units of 1563 kW Electrolyzer systems @ 50 kWh/kg h \$ - (31.3 kg/hr units) \$ - (31.3 kg/hr units) \$ - Includes: \$ - Stack \$ 746,389 1.00 Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - 0 - 0 \$ - 0 7 0 \$ - 0 0 0 \$ - 0 0 0 \$ - 0 0 0 0 \$ - 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPITAL INVESTMENT (Inputs REQUIRED in Reference Year, (2007) \$)							
2 units of 1563 kW Electrolyzer systems @ 50 kWh/kg I 2 (31.3 kg/hr units) \$ 1ncludes: \$ Stack \$ Stack \$ Hydrogen Gas Management System \$ Electrolyte Management System \$ Stack \$ Power Electronics \$ 10 \$ <		Baseline Uninstalled	Scaling Factor					
(31.3 kg/hr units) \$ - Includes: \$ - Stack \$ 746,389 1.0 Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - 0 0 0 \$ - 0 0 0 \$ - 0 0 0 \$ - 0 0 0 0 \$ - 0	Major pieces/systems of equipment	Costs	Exponent					
(31.3 kg/hr units) \$ - Includes: \$ - Stack \$ 746,389 1.0 Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - 0 0 0 \$ - 0 0 0 \$ - 0 0 0 \$ - 0 0 0 0 \$ - 0	2 units of 1563 kW Electrolyzer systems @ 50 kWh/kg H	2						
Stack \$ 746,389 1.0 Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - - 0								
Hydrogen Gas Management System \$ 257,794 0.7 Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - - 0	Includes:	\$-						
Electrolyte Management System \$ 155,217 0.7 Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - - <td>Stack</td> <td>\$ 746,389</td> <td>1.00</td>	Stack	\$ 746,389	1.00					
Power Electronics \$ 155,217 0.7 Mechanical Balance of Plant \$ 35,092 0.7 0 \$ - - 0 <	Hydrogen Gas Management System		0.70					
Mechanical Balance of Plant \$ 35,092 0.70 0 \$ - 0 \$<	Electrolyte Management System		0.70					
0 \$ - 0 \$ - </td <td>Power Electronics</td> <td></td> <td>0.70</td>	Power Electronics		0.70					
0 \$ - 0 \$ -	Mechanical Balance of Plant		0.70					
0 \$ - 0 \$ -	0							
0 \$ - 0 \$ -	0							
0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ - 0 \$ -	0							
0 \$ - 0 \$ -	0							
0 \$ -	0							
	0	\$-						
TOTALS (including scaling) \$ 1,349,709	0							
	TOTALS (including scaling)	\$ 1,349,709						

Plant Scaling

Scaling tab is an advanced feature that allows users to enter capital cost for one plant size, and then use automatic scaling to estimate capital cost at larger/smaller plant sizes.

It is for advanced users only.

It is strongly recommended that you enter capital costs only for the size plant for which you wish to compute H2 costs. In this manner, the scaling factor will be equal to 1 and the scaling feature will effectively not be used.


nments

Thus to avoid complication, make sure the "Baseline Design Capacity" on the Plant Scaling tab is equal to the "Hydrogen Production Facility Design Capacity" entered on the Input_Sheet_Template tab.

Replacement Material Cost

Unplanned Year	y Replaceme	nt Capital (Depi	reciable)			
		Notes				
Total Unplanned Replacement Capital Cost Factor (% of total depreciable capital costs/year)	0.00%	The yearly replacement Template	percentage is entered	on the Input Sheet		
Actual Year	Analysis Year	Operations Year	Specified Yearly Replacement Costs	Specified Yearly	Unplanned Replacement	Total Yearly Replacement Costs
			Percent of Production System Direct Capital Cost	Identify all replaceme	known ent items in	lated to Start-up Year
2009				this listing.		\$0
2010 2011	3	2			olacements costs	\$0 \$0
2012	5	4				\$0
2013	6	5			elsewhere as an	\$0
2014 2015	7	6		annual % of c	capital cost)	\$0 \$428,434
2010				\$0	\$0	\$0
2017	10	9		\$0	\$0	\$0
2018		10 11 12		E	ectrolysis Curi	rent
Z	0 Year Life			Eorec	ourt Case has	annual
	Plant	14		\$4		
2024	17	15		replac	ement cost of	/ years
2024		10	\/	\$0	\$0	\$0
2026	19	18		\$0	\$0	\$0
2027	20	19		\$0	\$0	\$0
2028	21	20		\$0	\$0	\$0
Replacem	ent Costs					19 19

Total Production Capital Cost Calculation

	able/Fi		rating	Costs er Other al and		ter Fixed ating	
Energy Feedstoo Select the Price AEO_2009_Reference Select the Use	Table to Use	AEO_2009_Re AEO_2009_Re AEO_2009_Hk AEO_2010_Re		ase			
feedstock Select the Feed	Туре	feedstock utility byproduct	edstock	Residential Nat Commercial Nat Industrial Natur Electric Utility	atural Gas ral Gas	If ther	e are multiple
<mark>feedstock</mark> Price in Startup Ye		ersion Factor (GJ/kWr Use H2A Default Usage (kWh/kg H2 Cost in Startup Yea	Industrial Electricity 0.0036 \$0.057 \$0 53.44 \$1,444,343	Bio Methane Woody Biomas Woody Biomas Woody Biomas Electric Utility Commercial El Industrial Elect Residential Elect	ss B2A ss MYPP Steam Coal lectricity tricity	delete delete feeds	tocks and need to one, H2A will all. Whatever tocks that need to luded must be re-
use	ks, utilities, and b	Lookup Price	Add			Delete	
RT_TOP	feedstock Industrial Electri heet_Ten		Price Conversion 0.0036	Price in Startup Us Year (\$2007)/kWh 0.057423148	age (kWh/kg H2) 50	Cost in Startup Year \$1,444,343	Lookup Prices yes

Energy Feedstocks, Utilities, Byproducts, and Variable/Fixed Operating Costs						
1. Enter Feedstock, Utility, and Byproducts	2. Enter Otl Material an Byproducts	d	3. Enter Fixed Operating Costs			
Other Materials and Byproducts						
Select the Material Compressed Inert	Cooling Wa	zed Water				
Feed or utility	Con Oxygen	id				
\$(2007)/kg Use H2A Default Usage per kg H2 (kg) Cost in Startup Year	Steam	ed Inert Gas	ter Price			
Lookup Prices	Yes		Add	Delete		
RT_NONE_TOP						
Feed or utility	\$(2007)/gal	Usage per kg H2 (gal)	Cost in Startup Year	Lookup Prices		
Process Water	0.001807666	(gar) 2.939	\$2,501	Yes		
Feed or utility	\$(2007)/gal	Usage per kg H2 (gal)	Cost in Startup Year	Lookup Prices		
Cooling Water	8.6275E-05	0.108	\$4	Yes		
Cooling Water Feed or utility	8.6275E-05 \$(2007)/kg			Yes Lookup Prices		

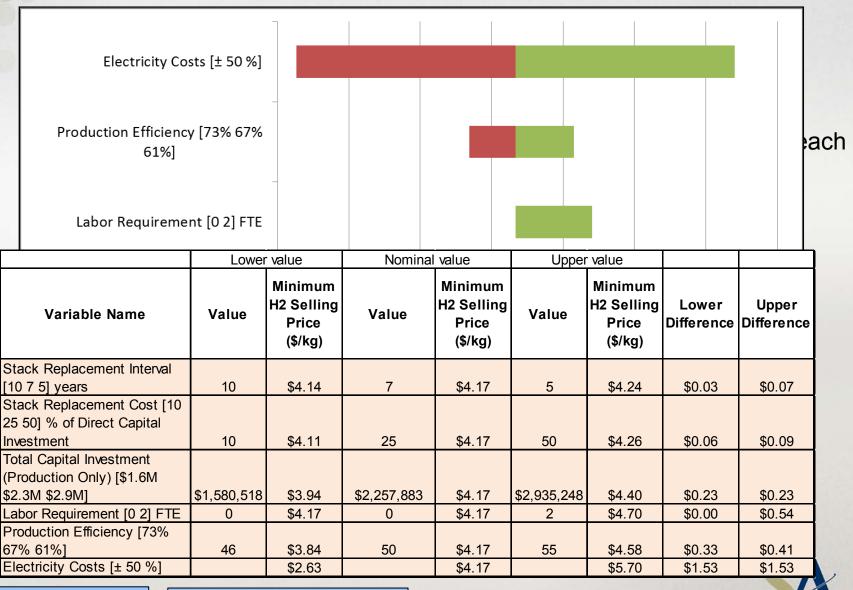
Input_Sheet_Template

1 Enter Fredeteck		Costs				
1. Enter Feedstock,		r Other		-	er Fixed	
Utility, and	Materia	al and		Opera	ting	
Byproducts	Byprod	ucts		Costs		
Fixed Operating Costs - Hydrogen Production	Enter values ir	n Combined Plant				
Facility	basis year (2005) dollars	Scaling and		rence Year)7) Dollars		
Production facility plant staff (number of FTEs)	<u> </u>	0 1.00	(_0,	'	Per Hydro "Atmosph	
Burdened labor cost, including overhead (\$/man-hr)	\$5	0.99	\$	49.69	brochure, plant is de	signed for automatic, inuous operation, so no
Production Facility Labor cost, \$/year	-			\$0		the production process.
G&A rate (% of labor cost)	209	📈 📝 Han Default			Labor only assumed	for storage/dispensing
G&A (\$/year)		Carafullu			operations (shown or	
Licensing, Permits and Fees (\$/year)		Carefully		062.20		kg/day FC Prod.: \$1000. equipment permits but wil
		consider F	ull		be site specific	
Property tax and insurance rate (% of total capital investment/year)		Time Equiv	/ale	nt	H2A Default for 1500 insurance rate, 1% p	kg/day FC Prod.: 1% roperty tax.
Property taxes and insurance (\$/year)		(FTE) emp	loy	e ^{5,158}	1	
Rent (\$/year)	\$4,1	requiremen	•		Per Hydro "Atmosph	
	L	requiremen	110.		broochure, electrolyz 4m area including roo	er unit requires 13.5m x
					maintenance. Based	
						rent for H2 dispensing
Material agents for maintanance and remains (fr/user)		1 12		¢0,00		ated on the Refueling tab.)
Material costs for maintenance and repairs (\$/year)	\$72.00	1.12 00 1.12		\$0.00		kg/day FC Prod.: 5% of
Production Maintenance and Repairs (\$/year)	\$72,00	1.12		Ф00,962.5 3		b Inv. (installed, deprec.)
Other Fees (\$/year)		1.12		\$0.00		
Other Fixed O&M Costs (\$/year)		1.12		\$0.00		
Total Fixed Operating Costs				\$131,205		

Input_Sheet_Template

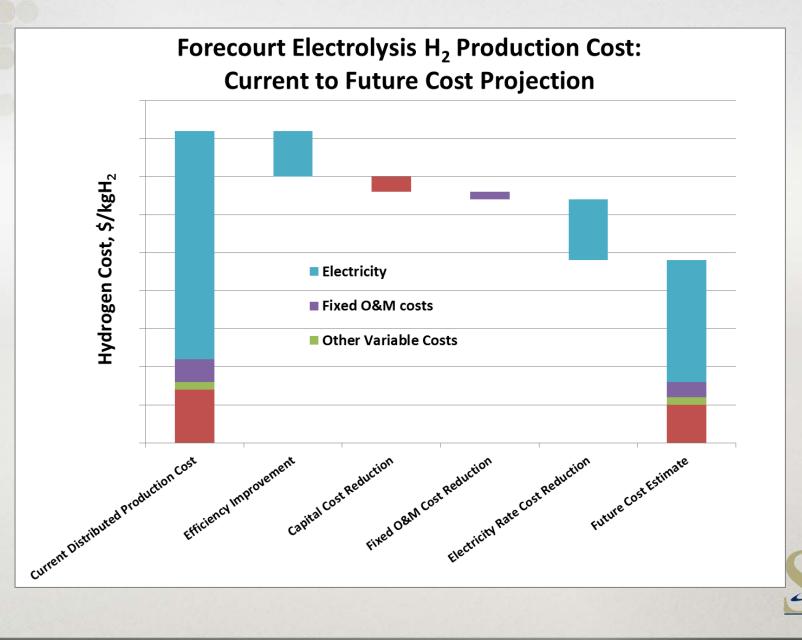
Electrolysis Current Forecourt Case

Levelized Cost of Hydrogen: \$6.63 / kg (2007\$) Production Cost Contribution: \$4.17/kg (2007\$) Compression/Storage/Delivery (CSD) Cost Contribution: \$2.46/kg (2007\$) Purchased Electrolyzer System Cost: \$432/kW (2007\$); \$384/kW (2005\$) Installed Production Equipment Cost: \$1,200,000 Total Capital Investment: \$2,300,000 Lang Factor = 1.67 Production Process Energy Efficiency: 66.8% Lower Heating Value (LHV) Basis Production & Dispensing Total Energy Efficiency: 61.4% LHV Electricity Use: 50 kWh / kg H₂ produced Electricity Price in Startup Year: 5.7¢/kWh Average Electricity Price over Analysis Period: 6.3¢/kWh


Breakdown of Levelized Costs:

Specific Item Cost Calculation		Total Cost of Delivered Hydrogen	\$6.63 /kgH ₂		
Cost Component	Hydrogen Production Cost Contribution (\$/kg)	Compression, Storage, and Dispensing Cost Contribution (\$/kg)*	Percentage of H2 Cost		
Capital Costs	\$0.76	\$1.53	34.5%		
Decommissioning Costs	\$0.01		0.1%		
Fixed O&M	\$0.28	\$0.55	12.5%		
Feedstock Costs	\$3.06		46.2%		
Other Raw Material Costs	\$0.05		0.7%		
Byproduct Credits	\$0.00		0.0%		
Other Variable Costs (including utilities)		\$0.39	6.0%		
Total	\$4.17	\$2.46			

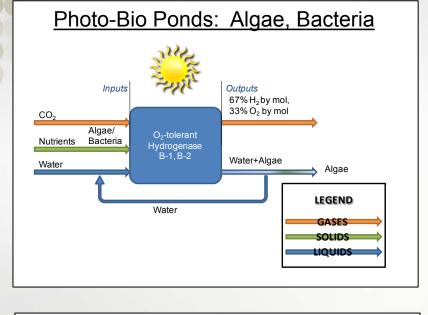
Results


24

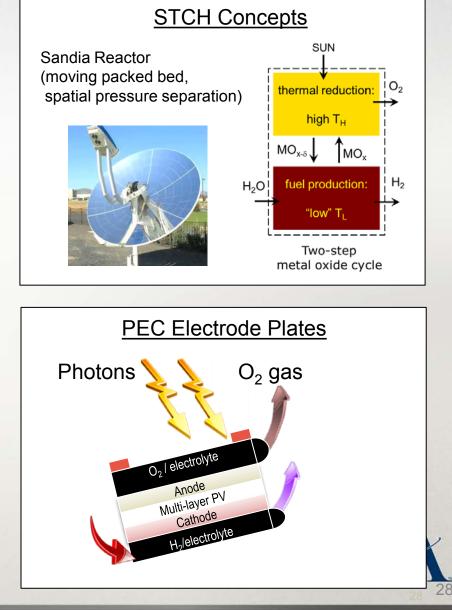
Current Forecourt Electrolysis Tornado Chart

Tornado Chart Sensitivity Analysis

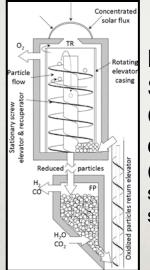
Waterfall Charts will be used in Future DOE Analyses


26

Alternative Examples for H2A Cases


(Technologies Utilizing Solar Energy for Hydrogen Production)

Examples of Solar Hydrogen H2A Analysis for Emerging Technologies


PEC Particle Colloidal Suspension Photons H_2 gas H_2 gas H_2 and O_2 Capture Water W

STCH Concept: Solar Dishes

Envisioned design has a reactor at the focal point, which is similar to the Sandia Counter Rotating Ring Receiver Reactor Recuperator (CR5)

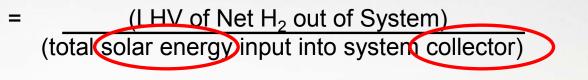
Latest Sandia Reactor Concept for beam down power tower (moving packed bed, spatial pressure separation)

Large field of STCH dishes:

- ~30,000 dishes (for 100TPD H₂)
- ~4,400 acres

Each dish:

- 11m (37ft) in diameter
- 88 m² of solar capture area
- ~3.2 kgH₂/day (average)


Line/Pipe connections for:

- H₂
- Power
- Water

Focus on Key Parameters: STH efficiency is key parameter for STCH, Bio, and PEC

STH Efficiency = Solar-to-Hydrogen Energy Conversion Efficiency

Full spectrum energy

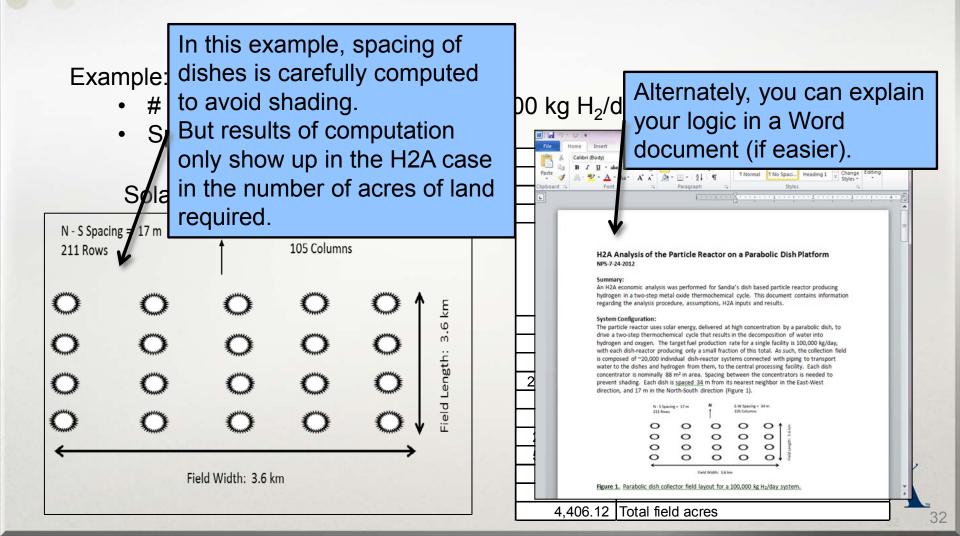
Full active area, not space in-between panels/beds

Key point is to make sure major terms are consistent with each other:

- solar energy/intensity
 Should consider: direct/indirect insol., tracking, blockage
- collection area
- H₂ Production Rate Must reconcile hourly peak, daily & seasonal variations

Focus on Key Parameters: STCH Efficiency Example

	Projecteo 2015	k	Projected 2020	Ultimate Target
Component Efficiency	Value	Definition	Value	Value
Optical Efficiency	75%	Energy fraction of total solar that is reflected to receiver	75%	75%
Receiver Thermal Efficiency	82%	Energy fraction of reflected light that is absorbed by active material	89%	91%
Reactor Conversion Efficiency	10%	Energy fraction of absorbed energy that is converted to H ₂ (LHV)	25%	50%
STH Efficiency	6.2%	Product of above three efficiencies.	16.7%	34.3%


- Component Efficiencies are also calculated:
 - Receiver thermal efficiency: scales with T⁴ thermal radiation losses
 - Reactor conversion efficiency: based on 70% heat recovery

Calculate STH efficiency from sub-component efficiencies. Explain basis for each estimate/value.

Encouraged to Include Supporting Calculations in an Added Tab at end of Workbook

- Entering calculations can facilitate scaling factors while running different cases
- Create separate tab in workbook to make calculations

DOE Multi-Year Research, Development, and Demonstration (MYRDD) Technical Target Tables: STCH

https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Table 3.1.7 Technical Targets: Solar-Driven High-TemperatureThermochemical Hydrogen Production a									
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target				
Solar-Driven High-Temperature Thermochemical Cycle Hydrogen Cost ^b	\$/kg	NA	14.80	3.70	2.00				
Chemical Tower Capital Cost (installed cost) $^{\rm c}$	\$/TPD H ₂	NA	4.1MM	2.3MM	1.1MM				
Annual Reaction Material Cost per TPD H_2^{d}	\$/ yrTPD H ₂	NA	1.47M	89K	11K				
Solar to Hydrogen (STH) Energy Conversion Ratio ^{e,f}	%	NA	10	20	26				
1-Sun Hydrogen Production Rate ^g	kg/s per m²	NA	8.1E-7	1.6E-6	2.1E-6				

Table of Targets

Table 3.1.7.A Example Parameter Values to Meet Cost Targets: Solar-Driven High-Temperature Thermochemical Hydrogen Production

Characteristics	Units	2011 Status	2015 Target	2020	Ultimate
Solar to Hydrogen (STH) Energy Conversion Ratio	%	NA	10	20	26
Cycle Time	minutes/ cycle	NA	5	3	1
Reaction Material Cost	\$/kg	270	270	270	270
Reaction Material Replacement Lifetime	years	NA	1	5	10
Heliostat Capital Cost (installed cost) ^a	\$/m ²	200	140	75	75

_Supporting Assumptions

Footnotes for STCH Tables

Table 3.1.7

- ^a The targets in this table are for research tracking with the Ultimate Target values corresponding to market competitiveness. Targets are based on an initial analysis utilizing the H2A Central Production Model 3.0 with standard H2A economic parameters (<u>http://www.hydrogen.energy.gov/h2a_production.html</u>). Projections assume a ferrite high-temperature cycle with a central production capacity of 100,000 kg H₂/day. Further analysis assumptions may be found in "Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles, TIAX LLC, Final Report to U.S. Department of Energy, 22 February 2011" (<u>http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/solar_thermo_h2_cost.pdf</u>).
- ^b Hydrogen cost represents the complete system hydrogen production cost for purified, 300 psi compressed gas. System level losses such as heliostat collector area losses, replacement parts, operation, and maintenance are included in the cost calculations which are documented in the H2A v3 Future Case study for Solar-thermochemical Production of Hydrogen (http://www.hydrogen.energy.gov/h2a_prod_studies.html).
- ^c The chemical tower capital cost is the projected total installed cost for the ferrite cycle conversion of water into hydrogen.
- ^d Reaction material cost is defined as the effective annual cost of the active (ferrite) material within the thermochemical process per metric ton rated hydrogen capacity of the system. The value is calculated as the expected annual purchase price of the material in its usable form (e.g., ferrite coated on a substrate) divided by the material lifetime under expected use condition (i.e., nearly continuous usage during the sunlight hours with an annual capacity factor of 90%); divided by the net rated hydrogen production capacity of the system [in metric tons per day (TPD)] (For example, 100,000 kg H₂/day = 100 TPD). Material cost improvements are expected to result from a combination of decreased material usage, improved cycle time, and increased material lifetime.
- ^e STH energy conversion ratio is defined as the energy of the net hydrogen produced (LHV) divided by full-spectrum solar energy consumed. For systems utilizing solar energy input only, the consumed energy is calculated based on the incident irradiance over the total area of the solar collector. For hybrid systems, all additional non-solar energy sources (e.g., electricity) must be included as equivalent solar energy inputs added to the denominator of the ratio.
- f Due to the developmental nature of the technology, the STH energy conversion ratio has not yet been measured for the complete solar to hydrogen reaction. Consequently, STH targets are calculated based on partial laboratory measurements using artificial light sources with extrapolation to overall system performance.
- 8 The hydrogen production rate in kg/s per total area of solar collection under full-spectrum 1-sun incident irradiance (1,000 W/m²). Under ideal conditions, STH can be related to this rate as follows: STH = H₂ Production Rate (kg/s per m²) * 1.23E8 (J/kg) / 1.00E3 (W/m²). Measurements of the 1-sun hydrogen production rate can provide an invaluable diagnostic tool in the evaluation of loss mechanisms contributing to the STH ratio.

Table 3.1.7.A

⁴ Heliostat capital costs encompass all capital costs, including installation, with the solar reflector system needed to focus solar energy onto the chemical tower reactor. Cost is stated per square meter of solar capture area. Heliostat capital cost status for 2010 and the capital cost targets for 2015 and 2020 are consistent with the current viewpoint of the EERE Solar Program as reflected in the "Power Tower Technology Roadmap and Cost Reduction Plan" SAND2011-2419, April 2011, (<u>http://prod.sandia.gov/techlib/access-control.cgi/2011/112419.pdf</u>) and the DOE SunShot Vision Study (<u>http://www1.eere.energy.gov/solar/pdfs/47927_chapter5.pdf</u>), respectively.

DOE MYRDD Plan Technical Target Tables: Bio H₂

https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Table 3.1.10 Technical Targets: Photolytic Biological Hydrogen Production ^a								
Characteristics	Units	2011 Status	2015 Target [°]	2020 Target ^d	Ultimate Target ^e			
Hydrogen Cost ^b	\$/kg	NA	NA	9.20	2.00			
Reactor Cost ^f	\$/m ²	NA	NA	14	11			
Light utilization efficiency (% incident solar energy that is converted into photochemical energy) ^g	%	25 ^h	28	30	54			
Duration of continuous H_2 production at full sunlight intensity $^{\rm i}$	Time Units	2 min ^j	30 min	4 h	8 h			
Solar to H ₂ (STH) Energy Conversion Ratio ^k	%	NA	2%	5%	17%			
1-Sun Hydrogen Production Rate ¹	kg/s per m²	NA	1.6E-7	4.1E-7	1.4E-6			

Table 3.1.11 Technical Targets: Photosynth	hetic Bacterial Hydrogen Production ^a
--	--

Characteristics	Units	2011 Status	2015 Target	2020 Target ^b
Efficiency of Incident Solar Light Energy to H_2 (E0*E1*E2) ^c from organic acids	%	NA	3	4.5
Molar Yield of Carbon Conversion to H_2 (depends on nature of organic substrate) E3 d	% of maximum	NA	50	65
Duration of continuous photoproduction ^e	Time	NA	30 days	3 months

Footnotes for Bio Tables

Table 3.1.10

- ^a The targets in this table are for research tracking with the Ultimate Target values corresponding to market competitiveness. Targets are based on an initial analysis utilizing the H2A Central Production Model 3.0 with standard H2A economic parameters (<u>www.hydrogen.energy.gov/h2a_production.html</u>.)
- ^b Hydrogen cost represents the complete system hydrogen production cost for purified, 300 psi compressed gas. Projections assume photolytic production of hydrogen gas by genetically engineered organisms (algal or bacterial) suspended in a water solution under solar illumination, modeled as algae, with an O₂-tolerant hydrogenase, grown in large, raceway-type, shallow bed reactors that are covered by a thin, optically transparent film, and provided with nutrients, CO₂, and sunlight. The evolved gas will be collected, purified to 99.999+ hydrogen purity by pressure swing adsorption (PSA), and compressed to 300 psi for hydrogen pipeline transport. Plant capacity is 50,000 kg H₂/day for all years. All targets are expressed in 2007 dollars. Cost calculations are documented in the H2A v3 Future Case Study for Photolytic Biological Production of Hydrogen

(http://www.hydrogen.energy.gov/h2a_prod_studies.html). Further analysis assumptions may be found in "Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production," Directed Technologies, Inc., Final Report to U.S. Department of Energy, 31 August 2009 (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/46674.pdf).

- ^c The 2015 target is based on analysis of the best technologies projected to be available in 2015 and assumes integration into a single, non-hybrid organism. Specifically, the 2015 target is based on a model of a *Chlamydomonas reinhardtii* strain with an O₂-tolerance hydrogenase system and a reduced chlorophyll antennae light harvesting complex (LHC), in which all the improvements listed in the table have been integrated.
- ^d For 2020, all assumptions of the 2015 target system apply (such as reactor system design and organism type) except the organism is assumed to be further improved in the target parameters indicated in the table.
- For the 2015 and 2020 targets, the organism modeled is assumed to be an algal strain with a native photosynthesis system (i.e., with Photosystems I and II). For the Ultimate Target, previous assumptions (such as reactor system design) apply, but the modeled organism is both optimized and has a genetically modified hybrid photosynthetic system combining the native algal Photosystem II with a bacterial Reaction Center, achieving greater hydrogen production rates by extending the light spectrum that can be collected and improving the efficiency of other conversion steps. Fundamental genetic engineering advances are required to reach the hybrid organism's ultimate target efficiency values. If the hybrid organism was not successfully genetically engineered, performance would be limited to a light utilization efficiency of 34%, an STH ratio of 9.8%, and a cost of \$2.6/kg H₂.
- ^f Installed cost per square meter of organism bed reactor equipment includes the containment structure, film covering, and any reactor interior flow control equipment. It does not include cost of complementary equipment

Footnotes for Bio Tables

Table 3.1.10 (continued)

such as compressors, PSA, Control Room, etc. Square meters are defined as the solar capture area. Future designs for the reactors will need to address safety measures to deal with the co-production of hydrogen and oxygen (e.g., replacing PSA systems with Temperature Swing Apparatus systems), which may increase costs. Due to the early stage of development, photobioreactor designs and the required organismal characteristics will likely undergo modifications before widespread commercial use to address issues such as temperature, salinity, and pH control.

⁸ The light utilization efficiency is the conversion efficiency of incident solar energy into photochemically available energy and is the product of two values: the light collection efficiency and the photon use efficiency at full sunlight intensity. The first value, light collection efficiency, is the fraction of solar incident light that is within the photosynthetically active radiation (PAR) wavelength band of the organism. For green algae, the light collection efficiency is estimated to be 45% ("Light and photosynthesis in aquatic ecosystems," Kirk, Cambridge University Press, 1994), and is considered fixed for the 2015 and 2020 targets; the hybrid organism modeled for the ultimate target is estimated to have a light collection efficiency of up to 64% ("Integrated biological hydrogen production," Melis and Melnicki, International Journal of Hydrogen Energy, September 2006)

http://www.sciencedirect.com/science/article/pii/S0360319906002308). The second value, photon use efficiency, is the efficiency of converting the absorbed photon energy into chemical energy through photosynthesis at full sunlight intensity (2,500 micromol photons per square meter per second). At low-light conditions (i.e., with no light saturation), the average photon use efficiency for algae is 85% ("Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in *Chlorella vulgaris*." Ley and Mauzerall, Biochim. Biophys. Acta 1982). Experimentally, photon use efficiency is determined by measuring the rate of photosynthesis (via oxygen evolution) per photon at different light intensities and comparing the rates at full sunlight and at sub-saturating light levels, with the maximum value set at the 85% efficiency level.

^h "Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures," Melis, 2008 Annual Progress Report for DOE's Hydrogen Program

(http://www.hydrogen.energy.gov/pdfs/progress08/ii f 2 melis.pdf).

- For purposes of conversion efficiencies and duration reporting, full sunlight (2,500 micromol photons per square meter per second) conditions are assumed. Since in actual practice light intensity varies diurnally, only 8 hours of continuous duration is needed for a practical system. The duration values assume a system where the enzyme is regenerated at night with respiration scavenging oxygen.
- Brand et al., 1989, Biotechnol. Bioeng.
- STH energy conversion ratio is defined as the energy of the net hydrogen produced (LHV) divided by net fullspectrum solar energy consumed. For systems utilizing solar energy input only, the consumed energy is calculated based on the incident irradiance over the total area of the solar collector. For hybrid systems, all additional nonsolar energy sources (e.g., electricity) must be included as equivalent solar energy inputs added to the denominator of the ratio. For photolytic biological hydrogen production, this can be thought of as the product of three components: $E_0*E_1*E_2$. The maximum potential value is calculated by determining the highest possible conversion efficiencies at three steps: E_0 , the percent of solar energy (at sea level) that is absorbed by the organism; E_1 , the percent of absorbed energy that is utilized for charge separation by the photosystems; and E_2 , the energy for charge separation that is utilized for water splitting. The E_2 value is reduced by 20% to account for the fact that some photon energy will go to other processes, such as cellular maintenance, rather than hydrogen production. The hydrogen cost calculation takes into consideration reductions due to reactor light transmittance (10% loss) and the loss of production over a full production day due to durations less than 8 h. Cost calculations are documented in the H2A v3 Future Case Study for Photolytic Biological Production of Hydrogen (http://www.hydrogen.energy.gov/h2a_prod_studies.html).
- The hydrogen production rate in kg/s per total area of solar collection under full-spectrum 1-sun incident irradiance $(1,000 \text{ W/m}^2)$. Under ideal conditions, STH can be related to this rate as follows: STH = H₂ Production Rate (kg/s per m²) * 1.23E8 (J/kg) / 1.00E3 (W/m²). Measurements of the 1-sun hydrogen production rate can provide an invaluable diagnostic tool in the evaluation of loss mechanisms contributing to the STH ratio.

DOE MYRDD Technical Target Tables: PEC (Photoelectrode)

https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production:Photoelectrode System with Solar Concentration ^a							
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target		
Photoelectrochemical Hydrogen Cost ^b	\$/kg	NA	17.30	5.70	2.10		
Capital cost of Concentrator & PEC Receiver (non-installed, no electrode) ^c	\$/m ²	NA	200	124	63		
Annual Electrode Cost per TPD H ₂ ^d	\$/ yr-TPDH ₂	NA	2.0M	255K	14K		
Solar to Hydrogen (STH) Energy Conversion Ratio ^{e, f}	%	4 to 12%	15	20	25		
1-Sun Hydrogen Production Rate ^g	kg/s per m ²	3.3E-7	1.2E-6	1.6E-6	2.0E-6		

Table 3.1.8.A Example Parameter Values to Meet Cost Targets: Photoelectrochemical Hydrogen Production (Photoelectrode System)

Characteristics	Units	2011 Status	2015	2020	Ultimate
Solar to Hydrogen (STH) Energy Conversion Ratio	%	NA	15	20	25
PEC Electrode cost ^a	\$/m ²	NA	300	200	100
Electrode Cost per TPD H ₂ ^b	\$/ TPD	NA	1.0M	510K	135K
Electrode Replacement Lifetime ^c	Years	NA	0.5	2	10
Balance of Plant Cost per TPD H ₂ ^d	\$/ TPD	NA	420K	380K	310K

Footnotes for PEC (Photoelectrode) Tables

Table 3.1.8

The targets in this table are for research tracking with the Ultimate Target values corresponding to market competitiveness. Targets are based on an initial analysis utilizing the H2A Central Production Model 3.0 with the standard H2A economic parameters (www.hydrogen.energy.gov/h2a_production.html). Targets are based on photoelectrode-type PEC systems wherein a solar trough collector concentrates light onto a PEC receiver assembly. The PEC receiver consists of a flat panel PEC electrode (submerged in an electrolyte bath) and the collection housing and manifolds to collect and separate the evolved hydrogen and oxygen gases. Solar concentration is assumed to be 15:1 for the ultimate target case and 10:1 for all others. Further analysis assumptions may be found in "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production", Directed Technologies Inc., Final Report to the Department of Energy, December 2009

(http://www.hydrogen.energy.gov/pdfs/review09/pd_23_james.pdf). Plant assumed capacity is 50,000 kg H₂/day for all years. All targets are expressed in 2007 dollars.

- ^b Hydrogen cost represents the complete system hydrogen production cost for purified, 300 psi compressed gas. System level losses and expenses due to solar collection/concentration, window transmittance/refraction, replacement parts, operation, and maintenance are included in the cost calculations which are documented in the H2A v3 Future Case study for Type 4 (Photoelectrode System with Concentration) Photoelectrochemical (PEC) Production of Hydrogen (<u>http://www.hydrogen.energy.gov/h2a_prod_studies.html</u>).
- ^c Capital cost includes solar concentration and associated tracking (if any), the optical window, and the water/electrolyte/gas containment subsystem. The cost of the PEC electrode is not included. All areas refer to total solar capture area. While improvements beyond the current status are needed to meet these cost goals, this area is not presently a research focus of the Fuel Cell Technologies Program.
- ^d Annual electrode cost refers to the annual replacement cost of the PEC photoelectrode panel normalized by the design capacity of the system (in metric tons H₂ per day). Electrode cost includes both the material and manufacturing cost of the PEC electrode used within the reactor.
- ^e STH energy conversion ratio is defined as the energy of the net hydrogen produced (LHV) divided by full-spectrum solar energy consumed. For systems utilizing solar energy input only, the consumed energy is calculated based on the incident irradiance over the total area of the solar collector. For hybrid systems, all additional non-solar energy sources (e.g., electricity) must be included as equivalent solar energy inputs added to the denominator of the ratio.
- ^f The 2011 Status of STH ratio is in the range of 4% and 12% for different semiconductor material systems exhibiting different levels of operational durability. Thin film material systems have been demonstrated with STH > 4% for hundreds of hours (A. Madan, Fuel Cell Technologies Program 2011 Annual Progress Report: http://www.hydrogen.energy.gov/pdfs/progress11/ii <u>5</u> madan 2011.pdf); Crystalline material systems have been demonstrated with STH > 12% for tens of hours. [O. Khaselev, J.A. Turner, Science 280, 425 (1998)].
- The hydrogen production rate in kg/s per total area of solar collection under full-spectrum 1-sun incident irradiance (1,000 W/m²). Under ideal conditions, STH can be related to this rate as follows: STH = H₂ Production Rate (kg/s per m²) * 1.23E8 (J/kg) / 1.00E3 (W/m²). Measurements of the 1-sun hydrogen production rate can provide an invaluable diagnostic tool in the evaluation of loss mechanisms contributing to the STH ratio.

Table 3.1.8.A

- PEC photoelectrode cost refers to the material and manufacturing cost of the PEC electrode. Area is based on the actual area of the electrode itself.
- ^b This parameter is the PEC photoelectrode cost (as defined above) normalized by the metric tons per day of hydrogen design capacity of the electrode.
- Electrode replacement lifetime denotes the projected total duration of the electrode being immersed in electrolyte and under cyclic solar illumination until process energy efficiency drops to 80% of its original values. Thus, a 10 year electrode replacement lifetime refers to 10 years of operation under diurnal cycles and approximately 5 years of actual hydrogen production.
- ^d This parameter denotes non-electrode, non-concentrator/PEC receiver, non-installation balance of plant costs normalized by the metric tons per day of hydrogen design capacity of the electrode.

DOE MYRDD Technical Target Tables: PEC (Colloidal, Dual Bed)

https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Table 3.1.9 Technical Targets: Photoelectrochemical Hydrogen Production: Dual Bed Photocatalyst System ^a						
Characteristics	Units	2011 Status	2015 Target	2020 Target	Ultimate Target	
Photoelectrochemical Hydrogen Cost ^b	\$/kg	NA	28.60	4.60	2.10	
Annual Particle Cost per TPD H_2 ^c	\$/ yr-TPDH ₂	NA	1.4M	71K	4K	
Solar to Hydrogen (STH) Energy Conversion Ratio ^{d,e}	%	NA	1	5	10	
1-Sun Hydrogen Production Rate ^f	kg/s per m²	NA	8.1E-8	4.1E-7	8.1E-7	

Table 3.1.9.A Example Parameter Values to Meet Cost Targets: Photoelectrochemical Hydrogen Production (Dual Bed Photocatalyst)

Characteristics	Units	2011 Status	2015	2020	Ultimate
Solar to Hydrogen (STH) Energy Conversion Ratio	%	NA	1	5	10
PEC particle cost ^a	\$/kg	NA	1000	500	300
Particle Replacement Lifetime ^b	Years	NA	0.5	1	5
Capital cost of reactor bed system (excluding installation and PEC particles) ^c	\$/m ²	NA	7	7	5
Balance of Plant Cost per TPD H ₂ ^d	\$/ TPD	NA	6.4M	1.0M	0.6M

Footnotes for PEC (Dual Bed) Tables

Table 3.1.9

The targets in this table are for research tracking with the Ultimate Target values corresponding to market competitiveness. Targets are based on an initial analysis utilizing the H2A-Central Production Model 3.0 with standard H2A economic parameters (www.hydrogen.energy.gov/h2a_production.html). Targets are based on a dual-bed PEC nanoparticle slurry-type system wherein clear thin film polymer bag-style reactors are filled with water and photocatalytically active nanoparticles. The hydrogen evolution half-reaction occurs in one bag reactor section and the oxygen evolution half-reaction occurs in an adjacent reactor section. The reactor sections are connected by a porous ionic bridge which permits ion exchange to complete the electrochemical circuit but prevents gas mixing. Solar energy energizes both reactions. No solar concentration is used. Further analysis assumptions may be found in "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production," Directed Technologies Inc., Final Report to the Department of Energy, December 2009 (http://www.hydrogen.energy.gov/pdfs/review09/pd_23_james.pdf). Plant capacity is 50,000 kg H₂/day for all years. All targets are expressed in 2007 dollars.

^b Hydrogen cost represents the complete system hydrogen production cost for purified, 300 psi compressed gas.
 System level losses and expenses due to solar window transmittance/refraction, replacement parts, operation, and maintenance are included in the cost calculations which are documented in the H2A v3 Future Case study for Type 2 (PEC Dual Bed Photocatalyst System) Photoelectrochemical Production of Hydrogen (http://www.hydrogen.energy.gov/h2a prod studies.html).

- ^c PEC particle cost refers to the annual replacement cost of the PEC nanoparticles normalized by the design capacity of the system (metric tons H₂ per day). Particle cost includes both the material and manufacturing cost of the PEC nanoparticles used within the reactor. Although different chemical reactions occur in the two bed sections, particle cost is combined for purposes of cost reporting.
- ^d STH energy conversion ratio is defined as the energy of the net hydrogen produced (LHV) divided by full-spectrum solar energy consumed. For systems utilizing solar energy input only, the consumed energy is calculated based on the incident irradiance over the total area of the solar collector. For hybrid systems, all additional non-solar energy sources (e.g., electricity) must be included as equivalent solar energy inputs added to the denominator of the ratio. In a dual bed system, this requires two material systems each with half reactions operating at twice the stated net STH energy conversion ratio.
- Dual bed systems are less mature than photoelectrode PEC systems. The current status STH energy conversion ratio is still under investigation.
- ^f The hydrogen production rate in kg/s per total area of solar collection under full-spectrum 1-sun incident irradiance $(1,000 \text{ W/m}^2)$. Under ideal conditions, STH can be related to this rate as follows: STH = H₂ Production Rate (kg/s per m²) * 1.23E8 (J/kg) / 1.00E3 (W/m²). Measurements of the 1-sun hydrogen production rate can provide an invaluable diagnostic tool in the evaluation of loss mechanisms contributing to the STH ratio.

Table 3.1.9.A

- PEC particle cost refers to the material and manufacturing cost of the PEC nanoparticles used within the reactor. While different chemical reactions occur in the two bed sections, the particle costs are combined for purposes of cost reporting. Particle mass is based on the total particle mass (including inert substrate if used).
- ^b Particle replacement lifetime denotes the projected total duration of the nanoparticles being immersed in electrolyte and under cyclic solar illumination until process energy efficiency drops to 80% of its original values. Thus, a 5 year particle replacement lifetime refers to 5 years of operation under diurnal cycles and approximately 2.5 years of actual hydrogen production.
- c Reactor system capital cost includes only the high density polyethylene clear plastic film reactor bed assembly and its associated ionic transfer bridges. Installation, fluid piping, and the photocatalytic nanoparticles are not included. All areas refer to total solar capture area.
- ^d This parameter denotes the non-installed balance of plant costs exclusive of reactor beds and PEC particles. It includes piping, controls, sensors, pumps, and compressors and is normalized by the metric tons per day of hydrogen design capacity of the system.

Reference Information

This presentation available after WebEx.

H2A Model Description on Hydrogen and Fuel Cells Program website: http://www.hydrogen.energy.gov/h2a_analysis.html#data

H2A Production Models and Case Studies http://www.hydrogen.energy.gov/h2a_production.html

H2A Version 3 User Guide PDF: https://apps1.hydrogen.energy.gov/cfm/h2a_active_folder/h2a_production/03P_H 2A_Central_Hydrogen_Production_Model_User_Guide_Version_3_draft.pdf

Feedstock and utility prices (H2A default) linked to Annual Energy Outlook (AEO) Reference Case developed by DOE's Energy Information Administration (EIA) http://www.eia.gov/forecasts/aeo/index.cfm

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model from Argonne National Lab: http://greet.es.anl.gov/main