CHAPTER 2

Thermodynamics – I

* Brief Resume of First and Second Law of Thermodynamics

There are four laws of thermodynamics that define the fundamental physical quantities like temperature, energy, and entropy that characterize thermodynamic systems at thermal equilibrium. These laws describe how these quantities behave under different conditions and rule out the possibility of some phenomena the perpetual motion. The zeroth law of thermodynamics states that If two systems are each in thermal equilibrium with a third system, they are in thermal equilibrium with each other; therefore, this law helps to define the concept of temperature. In this section, we will discuss the elementary ideas and mutual correlation between the first and second laws of thermodynamics.

> First Law of Thermodynamics

The first law of thermodynamics states that the energy can neither be created nor destroyed, but can be converted from one form to another.

The first law of thermodynamics is obtained on the experimental basis. In other words, we can say that the energy of an isolated system is always constant, which means that whenever some energy disappears from the system, an equal amount of energy in some other form is also produced. In 1847, Helmholtz explained this situation in his famous words, "it is impossible to construct a perpetual machine". The term perpetual machine refers to a device that can work continuously without any energy consumption. Furthermore, we all know that heat is always produced whenever some mechanical work is done. These correlations were studied by Joule (1840 - 1880); and he found that mechanical work is directly proportional to the heat produced. Mathematically, we can say that

$$W \propto Q \quad or \ W = JQ \tag{1}$$

Where J represents the proportionality constant and is called as "Joule's mechanical equivalent of heat". If Q = 1, W = J; making J as the amount of mechanical work required to produce one calorie of heat. The experimental value for J was found to be 4.184 joules, which is a very popular relation (1 calorie = 4.184 joule). The first law of thermodynamics can also be deduced from the equivalence of heat and work. Suppose there is now an equivalence between the work and heat; and let Q heat is converted into work. Now when the same amount of work is done to produce the heat Q'; considering $Q \neq Q'$, we can say that Q is either greater or less than Q'. This would eventually mean that a certain amount of energy has been destroyed or created in this process, which is against the first law of thermodynamics.

The mathematical formulation of the first law thermodynamics can be obtained from the increase in the internal energy of the system. The internal energy of the system can be increased in two ways; one is doing work on the system, and the second one involves the supply of heat. Suppose that the initial internal energy of

the system is E_1 , after supplying heat q and doing work w on the system, the final amount of internal energy can be formulated as:

$$E_2 = E_1 + q + w \tag{2}$$

$$E_2 - E_1 = q + w \tag{3}$$

$$\Delta E = q + w \tag{4}$$

$$q = \Delta E - w \tag{5}$$

If the work is done by the system, putting $w = -P\Delta V$ in equation (5), we get

$$q = \Delta E - (-P\Delta V) \tag{6}$$

$$q = \Delta E + P \Delta V \tag{7}$$

The physical significance of the equation (7) is that heat absorbed by a given system is converted work done by the system and to raise its internal energy.

It is also worthy to note that the general form of the first law of thermodynamics is applicable only in the case of chemical thermodynamics or physical processes. In 1905, Albert Einstein showed that energy and mass are just the faces of the coin, and can be transformed within each other. In other words, his findings showed that the mass can be converted into energy and the energy can back be converted into mass. Mathematically, the formulation is

$$E = mc^2 \tag{8}$$

Where m is the mass and c is the velocity of light. Since the velocity of light is a very large quantity (so the square), even the small disappearance of mass would generate a huge amount of energy. Such observations are pretty common in case of nuclear reactions and can be neglected here. Therefore, in a broad sense, it is the "law of energy-mass conservation".

Second Law of Thermodynamics

The second law of thermodynamics states that it is impossible to convert the heat completely into work without leaving some effect elsewhere.

The second law of thermodynamics is actually a rational solution to the limitations of the first law. For instance, the first law talks about the exact equivalence between heat and work, but it is quite far from reality. In 1824, a French scientist Sadi Carnot showed that for every heat engine there is an upper limit to the efficiency of conversion of heat to work. In order to illustrate Carnot's conclusion, consider a locomotive engine that is supplied with a certain amount of heat; however, all of that heat will not be used to move the train but a part of it will always be consumed in some other processes like overcoming the friction. Let q_2 be the heat absorbed by the heat engine at temperature T₂, and w is the amount of the work done by the system; while q_1 is the heat returned to the sink at temperature T₁, then the Carnot's formulation can be given as:

$$\eta = \frac{w}{q_2} = \frac{q_2 - q_1}{q_2} = \frac{T_2 - T_1}{T_2}$$
(9)

Where η is the efficiency of the heat engine and is always less than one. Ideally, $\eta = 1$, which means that such a heat engine would convert 100% of the heat absorbed into work.

One more limitation of the first law is that it does not tell about the feasibility of the process, like whether the heat can flow from cold terminal to the hot one or not. It simply talks if the heat gained or heat lost but not the direction of the process. The second law of thermodynamics states that all the spontaneous processes are thermodynamically irreversible. The word "spontaneous" simply means a process that occurs by itself and external drive is required. In other words, we can also say that heat cannot flow from a cold body to hot, the water cannot uphill without any external drive.

Figure 2. The pictorial representation of the second law of thermodynamics.

The 2nd law of thermodynamics also states that the total entropy of an isolated system can never decline with time; in other words, combined entropy of a system and surroundings remains constant in ideal

cases where the system is undergoing a reversible process. In all processes, including spontaneous processes, that occur, the total entropy of the system and surroundings increases and the process is irreversible in the thermodynamic frame. The entropy-increase accounts for the irreversibility of all the natural processes, and the asymmetry between the past and the future. Overall, the 2nd law of thermodynamics can be labeled as an empirical finding that was accepted as a truism of thermodynamic theory. The microscopic origin of the law can be explained by statistical mechanics.

LEGAL NOTICE

This document is an excerpt from the book entitled "A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal", and is the intellectual property of the Author/Publisher. The content of this document is protected by international copyright law and is valid only for the personal preview of the user who has originally downloaded it from the publisher's website (www.dalalinstitute.com). Any act of copying (including plagiarizing its language) or sharing this document will result in severe civil and criminal prosecution to the maximum extent possible under law.

This is a low resolution version only for preview purpose. If you want to read the full book, please consider buying.

Buy the complete book with TOC navigation, high resolution images and no watermark.

Home: https://www.dalalinstitute.com/ Classes: https://www.dalalinstitute.com/classes/ Books: https://www.dalalinstitute.com/books/ Videos: https://www.dalalinstitute.com/videos/ Location: https://www.dalalinstitute.com/location/ Contact Us: https://www.dalalinstitute.com/contact-us/ About Us: https://www.dalalinstitute.com/about-us/

Postgraduate Level Classes		Undergraduate Level Classes	
(NET-JRF & IIT-GATE)		(M.Sc Entrance & IIT-JAM)	
Admission		Admission	
Regular Program	Distance Learning	Regular Program	Distance Learning
Test Series	Result	Test Series	Result

A Textbook of Physical Chemistry - Volume 1

"A Textbook of Physical Chemistry – Volume 1 by Mandeep Dalal" is now available globally; including India, America and most of the European continent. Please ask at your local bookshop or get it online here. READ MORE

Join the revolution by becoming a part of our community and get all of the member benefits like downloading any PDF document for your personal preview.

Sign Up

A TEXTBOOK OF PHYSICAL CHEMISTRY Volume I

MANDEEP DALAL

First Edition

DALAL INSTITUTE

Table of Contents

CHAP	TER 1	11
Qua	ntum Mechanics – I	11
*	Postulates of Quantum Mechanics	11
*	Derivation of Schrodinger Wave Equation	16
*	Max-Born Interpretation of Wave Functions	21
*	The Heisenberg's Uncertainty Principle	24
*	Quantum Mechanical Operators and Their Commutation Relations	29
*	Hermitian Operators – Elementary Ideas, Quantum Mechanical Operator for Linear Mom Angular Momentum and Energy as Hermitian Operator	entum,
*	The Average Value of the Square of Hermitian Operators	62
*	Commuting Operators and Uncertainty Principle (x & p; E & t)	63
*	Schrodinger Wave Equation for a Particle in One Dimensional Box	65
*	Evaluation of Average Position, Average Momentum and Determination of Uncertainty in F and Momentum and Hence Heisenberg's Uncertainty Principle	osition
*	Pictorial Representation of the Wave Equation of a Particle in One Dimensional Box Influence on the Kinetic Energy of the Particle in Each Successive Quantum Level	and Its 75
*	Lowest Energy of the Particle	80
*	Problems	82
*	Bibliography	83
CHAP	TER 2	84
Ther	rmodynamics – I	84
*	Brief Resume of First and Second Law of Thermodynamics	84
*	Entropy Changes in Reversible and Irreversible Processes	87
*	Variation of Entropy with Temperature, Pressure and Volume	92
*	Entropy Concept as a Measure of Unavailable Energy and Criteria for the Spontaneity of R	eaction 94
*	Free Energy, Enthalpy Functions and Their Significance, Criteria for Spontaneity of a Proce	ss 98
*	Partial Molar Quantities (Free Energy, Volume, Heat Concept)	104
*	Gibb's-Duhem Equation	108
*	Problems	111
*	Bibliography	112

CHAP	ГЕR 3	113
Cher	nical Dynamics – I	113
*	Effect of Temperature on Reaction Rates	113
*	Rate Law for Opposing Reactions of Ist Order and IInd Order	119
*	Rate Law for Consecutive & Parallel Reactions of Ist Order Reactions	127
*	Collision Theory of Reaction Rates and Its Limitations	135
*	Steric Factor	141
*	Activated Complex Theory	143
*	Ionic Reactions: Single and Double Sphere Models	147
*	Influence of Solvent and Ionic Strength	152
*	The Comparison of Collision and Activated Complex Theory	157
*	Problems	158
*	Bibliography	159
CHAP'	ГЕК 4	160
Elect	rochemistry – I: Ion-Ion Interactions	160
*	The Debye-Huckel Theory of Ion-Ion Interactions	160
*	Potential and Excess Charge Density as a Function of Distance from the Central Ion	168
*	Debye-Huckel Reciprocal Length	173
*	Ionic Cloud and Its Contribution to the Total Potential	176
*	Debye-Huckel Limiting Law of Activity Coefficients and Its Limitations	178
*	Ion-Size Effect on Potential	185
*	Ion-Size Parameter and the Theoretical Mean - Activity Coefficient in the Case of Ionic C Finite-Sized Ions	louds with 187
*	Debye-Huckel-Onsager Treatment for Aqueous Solutions and Its Limitations	190
*	Debye-Huckel-Onsager Theory for Non-Aqueous Solutions	195
*	The Solvent Effect on the Mobility at Infinite Dilution	196
*	Equivalent Conductivity (Λ) vs Concentration $C^{1/2}$ as a Function of the Solvent	198
*	Effect of Ion Association Upon Conductivity (Debye-Huckel-Bjerrum Equation)	200
*	Problems	209
*	Bibliography	210
CHAP'	ΓER 5	211
Qua	ntum Mechanics – II	211
*	Schrodinger Wave Equation for a Particle in a Three Dimensional Box	211

*	The Concept of Degeneracy Among Energy Levels for a Particle in Three Dimensional Box	215
*	Schrodinger Wave Equation for a Linear Harmonic Oscillator & Its Solution by Polynomial N	Method 217
*	Zero Point Energy of a Particle Possessing Harmonic Motion and Its Consequence	229
*	Schrodinger Wave Equation for Three Dimensional Rigid Rotator	231
*	Energy of Rigid Rotator	241
*	Space Quantization	243
*	Schrodinger Wave Equation for Hydrogen Atom: Separation of Variable in Polar Sp	herical
	Coordinates and Its Solution	247
*	Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values	268
*	Probability Distribution Function	276
*	Radial Distribution Function	278
*	Shape of Atomic Orbitals $(s, p \& d)$	281
*	Problems	287
*	Bibliography	288
CHAP	ГЕR 6	289
Ther	modynamics – II	289
*	Clausius-Clapeyron Equation	289
*	Law of Mass Action and Its Thermodynamic Derivation	293
*	Third Law of Thermodynamics (Nernst Heat Theorem, Determination of Absolute E	ntropy,
	Unattainability of Absolute Zero) And Its Limitation	296
*	Phase Diagram for Two Completely Miscible Components Systems	304
*	Eutectic Systems (Calculation of Eutectic Point)	311
*	Systems Forming Solid Compounds A _x B _y with Congruent and Incongruent Melting Points	321
*	Phase Diagram and Thermodynamic Treatment of Solid Solutions	332
*	Problems	342
*	Bibliography	343
CHAP	TER 7	344
Cher	nical Dynamics – II	344
*	Chain Reactions: Hydrogen-Bromine Reaction, Pyrolysis of Acetaldehyde, Decomposit	tion of 344
*	Photochemical Reactions (Hydrogen-Bromine & Hydrogen-Chlorine Reactions)	
*	General Treatment of Chain Reactions (Ortho-Para Hydrogen Conversion and Hydrogen-B	romine
•	Reactions)	358

*	Apparent Activation Energy of Chain Reactions	362
*	Chain Length	364
*	Rice-Herzfeld Mechanism of Organic Molecules Decomposition (Acetaldehyde)	366
*	Branching Chain Reactions and Explosions (H2-O2 Reaction)	368
*	Kinetics of (One Intermediate) Enzymatic Reaction: Michaelis-Menten Treatment	371
*	Evaluation of Michaelis's Constant for Enzyme-Substrate Binding by Lineweaver-Burk Pl Eadie-Hofstee Methods	lot and 375
*	Competitive and Non-Competitive Inhibition	378
*	Problems	388
*	Bibliography	389
CHAP	ГЕР 8	390
Elect	rochemistry – II: Ion Transport in Solutions	390
*	Ionic Movement Under the Influence of an Electric Field	390
*	Mobility of Ions	393
*	Ionic Drift Velocity and Its Relation with Current Density	394
*	Einstein Relation Between the Absolute Mobility and Diffusion Coefficient	398
*	The Stokes-Einstein Relation	401
*	The Nernst-Einstein Equation	403
*	Walden's Rule	404
*	The Rate-Process Approach to Ionic Migration	406
*	The Rate-Process Equation for Equivalent Conductivity	410
*	Total Driving Force for Ionic Transport: Nernst-Planck Flux Equation	412
*	Ionic Drift and Diffusion Potential	416
*	The Onsager Phenomenological Equations	418
*	The Basic Equation for the Diffusion	419
*	Planck-Henderson Equation for the Diffusion Potential	422
*	Problems	425
*	Bibliography	426
INDEX	r	427

Mandeep Dalal (M.Sc, Ph.D, CSIR UGC - NET JRF, IIT - GATE) Founder & Director, Dalal Institute Contact No: +91-9802825820 Homepage: www.mandeepdalal.com E-Mail: dr.mandeep.dalal@gmail.com Mandeep Dalal is an Indian research scholar who is primarily working in the field of Science and Philosophy. He received his Ph.D in Chemistry from Maharshi Dayanand University, Rohtak, in 2018. He is also the Founder and Director of "Dalal Institute", an India-based educational organization which is trying to revolutionize the mode of higher education in Chemistry across the globe. He has published more than 40 research papers in various international scientific journals, including mostly from Elsevier (USA), IOP (UK) and Springer (Netherlands).

Main Market, Sector-14, Rohtak, Haryana-124001 (+91-9802825820, info@dalalinstitute.com) www.dalalinstitute.com