Brief Review of Probability

Nuno Vasconcelos
(Ken Kreutz-Delgado)

ECE Department, UCSD

Probability

- Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

- Examples:
- If I flip a coin 100 times, how many can I expect to see heads?
- What is the weather going to be like tomorrow?
- Are my stocks going to be up or down in value?

Sample Space = Universe of Outcomes

- The most fundamental concept is that of a Sample Space (denoted by Ω or \boldsymbol{S} or \mathbf{U}), also called the Universal Set.
- A Random Experiment takes values in a set of Outcomes
- The outcomes of the random experiment are used to define Random Events
- Event = Set of Possible Outcomes
- Example of a Random Experiment:
- Roll a single die twice consecutively
- call the value on the up face at the $n^{\text {th }}$ toss x_{n} for $n=1,2$
- E.g., two possible experimental outcomes:
- two sixes ($x_{1}=x_{2}=6$)
- $x_{1}=2$ and $x_{2}=6$
- Example of a Random Event:
- An odd number occurs on the $2^{\text {nd }}$ toss.

Sample Space = Universal Event

- The sample space \mathbf{U} is a set of experimental outcomes that must satisfy the following two properties:
- Collectively Exhaustive: all possible outcomes x_{2} are listed in \mathbf{U} and when an experiment is performed one of these outcomes must occur.
- Mutually Exclusive: only one outcomes happens and no other can occur (if $x_{1}=5$ it cannot be anything else).

- The mutually exclusive property of outcomes simplifies the calculation of the probability of events
- Collectively Exhaustive means that there is no possible event to which we cannot assign a probability
- The Universe U (= sample space) of possible experimental outcomes is equal to the event "Something Happens" when an experiment is performed. Thus we also call U the Universal Event

Probability Measure

- Probability of an event :
- A positive real number between 0 and 1 expressing the chance that the event will occur when a random experiment is performed.
- A probability measure satisfies the

Three Kolmogorov Axioms:

- $P(A) \geq 0$ for any event A (every event A is a subset of \mathbf{U})
$-P(\mathbf{U})=P($ Universal Event) $=1 \quad$ (because "something must happen")
- if $A \cap B=\varnothing$, then $P(A \cup B)=P(A)+P(B)$
- e.g.
$-P\left(\left\{x_{1} \geq 0\right\}\right)=1$

$-P\left(\left\{x_{1}\right.\right.$ even $\} \cup\left\{x_{1}\right.$ odd $\left.\}\right)=P\left(\left\{x_{1}\right.\right.$ even $\left.\}\right)+P\left(\left\{x_{1}\right.\right.$ odd $\left.\}\right)$

Probability Measure

- The last axiom of the three, when combined with the mutually exclusive property of the sample set,
- allows us to easily assign probabilities to all possible events if the probabilities of atomic events, aka elementary events, are known
- Back to our dice example:
- Suppose that the probability of the elementary event consisting of any single outcome-pair, $A=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\}$, is $\mathrm{P}(A)=1 / 36$
- We can then compute the probabilities of all events, including compound events:
- $\mathrm{P}\left(\mathrm{x}_{2}\right.$ odd $)=18 \times 1 / 36=1 / 2$
- $\mathrm{P}(\mathbf{U})=36 \times 1 / 36=1$
- $P($ two sixes $)=1 / 36$
- $P\left(x_{1}=2\right.$ and $\left.x_{2}=6\right)=1 / 36$

Probability Measure

- Note that there are many ways to decompose the universal event \mathbf{U} (the "ultimate" compound event) into the disjoint union of simpler events:
- E.g. if $A=\left\{x_{2}\right.$ odd $\}, B=\left\{x_{2}\right.$ even $\}$, then $\mathbf{U}=A \cup B$
- on the other hand

$$
\mathbf{U}=\{(1,1)\} \cup\{(1,2)\} \cup\{(1,3)\} \cup \cdots \cup\{(6,6)\}
$$

- The fact that the sample space is exhaustive and mutually exclusive, combined with the three probability measure (Kolmogorov) axioms makes the whole procedure of computing the probability of a compound event from the probabilities of simpler events consistent.

Random Variables

- A random variable X
- is a function that assigns a real value to each sample space outcome
- we have already seen one such function: $P_{\mathbf{X}}\left(\left\{x_{1}, x_{2}\right\}\right)=1 / 36$ for all outcome-pairs ($\mathrm{x}_{1}, \mathrm{x}_{2}$) (viewing an outcome as an atomic event)
- Most Precise Notation:
- Specify both the random variable, \boldsymbol{X}, and the value, \boldsymbol{x}, that it takes in your probability statements. E.g., $X(u)=x$ for any outcome u in U.
- In a probability measure, specify the random variable as a subscript, $P_{\boldsymbol{X}}(\mathrm{x})$, and the value x as the argument.
For example

$$
P_{\boldsymbol{X}}(x)=P_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=1 / 36
$$

means $\operatorname{Prob}\left[X=\left(x_{1}, x_{2}\right)\right]=1 / 36$

- Without such care, probability statements can be hopelessly confusing

Random Variables

- Types of random variables:
- discrete and continuous (and sometimes mixed)
- Terminology relates to what types of values the RV can take
- If the RV can take only one of a finite or at most countable set of possibilities, we call it discrete.
- If there are furthermore only a finite set of possibilities, the discrete RV is finite. For example, in the two-throws-of-a-die example, there are only (at most) 36 possible values that an RV can take:

Random Variables

- If an RV can take arbitrary values in a real interval we say that the random variable is continuous
- E.g. consider the sample space of weather temperature
- we know that it could be any number between -50 and 150 degrees Celsius
- random variable $T \in[-50,150]$
- note that the extremes do not have to be very precise, we can just say that $P\left(T<-45^{\circ}\right)=0$

- Most probability notions apply equal well to discrete and continuous random variables

Discrete RV

- For a discrete RV the probability assignments given by a probability mass function (pmf)
- this can be thought of as a normalized histogram
- satisfies the following properties

$$
\begin{aligned}
& 0 \leq P_{X}(a) \leq 1, \quad \forall a \\
& \sum_{a} P_{X}(a)=1
\end{aligned}
$$

- Example of a discrete (and finite) random variable
- $X \in\{1,2,3, \ldots, 20\}$ where $X=i$ if the grade of student z on class is greater than $5(i-1)$ and less than or equal to $5 i$
- We see from the discrete distribution plot that $P_{\boldsymbol{X}}(15)=\alpha$

Continuous RV

- For a continuous RV the probability assignments are given by a probability density function (pdf)
- this is a piecewise continuous function that satisfies the following properties

$$
\begin{aligned}
& 0 \leq P_{X}(a) \quad \forall a \\
& \int P_{X}(a) d a=1
\end{aligned}
$$

- Example for a Gaussian random variable of mean μ and variance σ^{2}

$$
P_{x}(a)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(a-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

Discrete vs Continuous RVs

- In general the math is the same, up to replacing summations by integrals
- Note that pdf means "density of the probability",
- This is probability per unit "area" (e.g., length for a scalar rv).
- The probability of a particular value $X=t$ of a continuous RV X is always zero
- Nonzero probabilities arise as:

$$
\begin{aligned}
& \operatorname{Pr}(t \leq X \leq t+d t)=P_{X}(t) d t \\
& \operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} P_{X}(t) d t
\end{aligned}
$$

- Note also that pdfs are not necessarily upper bounded
- e.g. Gaussian goes to Dirac delta function when variance goes to zero

Multiple Random Variables

- Frequently we have to deal with multiple random variables aka random vectors
- e.g. a doctor's examination measures a collection of random variable values:
- x_{1} : temperature
- x_{2} : blood pressure
- x_{3} : weight
- x_{4} : cough
- ...

- We can summarize this as
- a vector $X=\left(X_{1}, \ldots, X_{n}\right)^{\top}$ of n random variables
- $\quad P_{X}\left(x_{1}, \ldots, x_{n}\right)$ is the joint probability distribution

Marginalization

- An important notion for multiple random variables is marginalization
- e.g. having a cold does not depend on blood pressure and weight
- all that matters are fever and cough
- that is, we only need to know $\mathrm{P}_{\mathrm{x} 1, \mathrm{x} 4}(\mathrm{a}, \mathrm{b})$

- We marginalize with respect to a subset of variables
- (in this case X_{1} and X_{4})
- this is done by summing (or integrating) the others out

$$
\begin{aligned}
& P_{X_{1}, X_{4}}\left(x_{1}, x_{4}\right)=\sum_{x_{3}, x_{4}} P_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& P_{X_{1}, X_{4}}\left(x_{1}, x_{4}\right)=\iint P_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{2} d x_{3}
\end{aligned}
$$

Conditional Probability

- Another very important notion:
- So far, doctor has $P_{x 1, x 4}$ (fever,cough)
- Still does not allow a diagnosis
- For this we need a new variable Y with two states $Y \in\{$ sick, not sick\}
- Doctor measures the fever and cough levels. These are now no longer unknowns, or even (in a sense) random quantities.
- The question of interest is "what is the probability that patient is sick given the measured values of fever and cough?"
- This is exactly the definition of conditional probability
- E.g., what is the probability that " $Y=$ sick" given observations " $X_{1}=98$ " and " $X_{4}=$ high"? We write this probability as:

$$
P_{Y \mid X_{1}, X_{4}}(\text { sick } \mid 98, \text { high })
$$

Joint versus Conditional Probability

- Note the very important difference between conditional and joint probability
- Joint probability corresponds to an hypothetical question about probability over all random variables
- E.g., what is the probability that you will be sick and cough a lot?

Conditional Probability

- Conditional probability means that you know the values of some variables, while the remaining variables are unknown.
- E.g., this leads to the question: what is the probability that you are sick given that you cough a lot?

- "given" is the key word here
- conditional probability is very important because it allows us to structure our thinking
- shows up again and again in design of intelligent systems

Conditional Probability

- Fortunately it is easy to compute (via a consistent definition)
- We simply normalize the joint by the probability of what we know

$$
P_{Y \mid X_{1}}(\text { sick } \mid 98)=\frac{P_{Y, X_{1}}(\text { sick }, 98)}{P_{X_{1}}(98)}
$$

- Makes sense since the conditional probability is then nonnegative, and

$$
P_{Y \mid X_{1}}(\text { sick } \mid 98)+P_{Y \mid X_{1}}(\text { not sick } \mid 98)=1
$$

as a consequence of the definition and the marginalization equation,

$$
P_{Y, X_{1}}\left(\text { sick,98) }+P_{Y, X_{1}}(\text { not sick,98 })=P_{X_{1}}(98)\right.
$$

- The definition of conditional probability is such that
- Conditioned on what we know, we still have a valid probability measure
- In particular, the new (restricted) universal event of interest, \{sick\} U \{not sick\}, has probability 1 after conditioning on the temperature observation

The Chain Rule of Probability

- An important consequence of the definition of conditional probability
- note that the definition can be equivalently written as

$$
P_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) P_{X_{1}}\left(x_{1}\right)
$$

- By recursion on this definition, more generally we have the product chain rule of probability:

$$
\begin{aligned}
\boldsymbol{P}_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)= & P_{X_{1} \mid X_{2}, \ldots, X_{n}}\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) \times \\
& P_{X_{2} \mid X_{3} \ldots, X_{n}}\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \times \ldots \\
& \times \ldots \times P_{X_{n-1} \mid X_{n}}\left(x_{n-1} \mid x_{n}\right) P_{X_{n}}\left(x_{n}\right)
\end{aligned}
$$

- Combining this rule with the marginalization procedure allows us to make difficult probability questions simpler

The Chain Rule of Probability

- E.g. what is the probability that you will be sick and have $104^{\circ} \mathrm{F}$ of fever?

$$
P_{Y, X_{1}}(\text { sick,104 })=P_{Y \mid X_{1}}\left(\text { sick |104) } P_{X_{1}}(104)\right.
$$

- breaks down a hard question (prob of sick and 104) into two easier questions
- Prob (sick|104): everyone knows that this is close to one

The Chain Rule of Probability

- E.g. what is the probability that you will be sick and have 104° of fever?

$$
P_{Y, X_{1}}(\text { sick,104 })=P_{Y \mid X_{1}}(\text { sick } \mid 104) P_{X_{1}}(104)
$$

- Computing $\mathrm{P}(104)$ is still hard, but easier than $\mathrm{P}($ sick,104) since we now only have one random variable (temperature)
- $P(104)$ does not depend on sickness, it is just the question "what is the probability that someone will have 104° ?"
- gather a number of people, measure their temperatures and make an histogram that everyone can use after that

The Chain Rule of Probability

- In fact, the chain rule is so handy, that most times we use it to compute marginal probabilities
- e.g. $\boldsymbol{P}_{Y}($ sick $)=\int \boldsymbol{P}_{Y, X_{1}}($ sick, $) d t \quad$ (marginalization)

$$
=\int P_{Y \mid X_{1}}(\operatorname{sick} \mid t) P_{X_{1}}(t) d t
$$

- in this way we can get away with knowing
- $\boldsymbol{P}_{\mathrm{x} 1}(t)$, which we may know because it was needed for some other problem
- $P_{Y \mid \times 1}($ sick $\mid t)$, we can ask a doctor (a so-called domain expert), or approximate with a rule of thumb

Independence

- Another fundamental concept for multiple variables
- Two variables are independent if the joint is the product of the marginals:

$$
P_{X_{1}, X_{2}}(a, b)=P_{X_{1}}(a) P_{X_{2}}(b)
$$

- Note: This is equivalent to the statement:

$$
P_{X_{1} \mid X_{2}}(a \mid b)=\frac{P_{X_{1}, X_{2}}(a, b)}{P_{X_{2}}(b)}=P_{X_{1}}(a)
$$

which captures the intuitive notion:

- "if X_{1} is independent of \boldsymbol{X}_{2}, knowing X_{2} does not change the probability of X_{1} "
- e.g. knowing that it is sunny today does not change the probability that it will rain in three years

Conditional Independence

- Extremely useful in the design of intelligent systems
- Sometimes knowing X makes Y independent of Z
- E.g. consider the shivering symptom:
- if you have temperature you sometimes shiver
- it is a symptom of having a cold

- but once you measure the temperature, the two become independent

$$
\begin{aligned}
P_{Y, X_{1}, S}(\text { sick }, 98, \text { shiver })= & P_{Y \mid X_{1}, S}(\text { sick } \mid 98, \text { shiver }) \times \\
& P_{S \mid X_{1}}(\text { shiver } \mid 98) P_{X_{1}}(98) \\
= & P_{Y \mid X_{1}}(\text { sick } \mid 98) \times \\
& P_{S \mid X_{1}}(\text { shiver } \mid 98) P_{X_{1}}(98)
\end{aligned}
$$

- Simplifies considerably the estimation of probabilities

Independence

- Useful property: if you add two independent random variables their probability distributions convolve
- I.e. if $Z=X+Y$ and X, Y are independent then

$$
P_{z}(z)=P_{x}(z) * P_{y}(z)
$$

where * is the convolution operator

- For discrete random variables, this is:

$$
P_{Z}(z)=\sum_{k} P_{X}(k) P_{Y}(z-k)
$$

- For continuous random variables, this is

$$
P_{Z}(z)=\int P_{X}(t) P_{Y}(z-t) d t
$$

Moments

- Moments are important properties of random variables
- They summarize the distribution
- The two most Important moments
- mean: $\mu=\mathrm{E}[X]$
- variance: $\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]$

	discrete	continuous
mean	$\mu=\sum_{k} P_{X}(k) k$	$\mu=\int P_{X}(k) k d k$
variance	$\sigma^{2}=\sum_{k} P_{X}(k)(k-\mu)^{2}$	$\sigma^{2}=\int P_{X}(k)(\mathrm{k}-\mu)^{2} d k$

- "Nice" distributions are completely specified by a very few moments. E.g., the Gaussian by the mean and variance.

Mean

- $\mu=E[x]$, is the center of probability mass of the distribution

	discrete	continuous
mean	$\mu=\sum_{k} P_{X}(k) k$	$\mu=\int P_{X}(k) k d k$

- Mean is a linear function of its argument
- if $Z=X+Y$, then $\mathrm{E}[Z]=\mathrm{E}[X]+E[Y]$
- this does not require any special relation between X and Y
- always holds

- The other moments are the mean of the powers of X
- $\mathrm{n}^{\text {th }}$ order (non-central) moment is $\mathrm{E}\left[X^{n}\right]$
- $\mathrm{n}^{\text {th }}$ central moment is $\mathrm{E}\left[(X-\mu)^{n}\right]$

Variance

- $\sigma^{2}=\mathrm{E}\left[(x-\mu)^{2}\right]$ measures the dispersion around the mean ($=2^{\text {nd }}$ central moment)

	Discrete	Continuous
variance	$\sigma^{2}=\sum_{k} P_{X}(k)(k-\mu)^{2}$	$\sigma^{2}=\int P_{X}(k)(\mathrm{k}-\mu)^{2} d k$

- in general, it is not a linear function
- if $Z=X+Y$, then $\operatorname{Var}[Z]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ only holds if X and Y are independent
- The variance is related to the $2^{\text {nd }}$ order non-central moment by $\sigma^{2}=E\left[(x-\mu)^{2}\right]=E\left[x^{2}-2 x \mu+\mu^{2}\right]$

$$
=E\left[X^{2}\right]-2 E[x] \mu+\mu^{2}=E\left[x^{2}\right]-\mu^{2}
$$

