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Probability 
• Probability theory  is a mathematical language to deal with 

processes or experiments that are non-deterministic 
 
 
 
 
 
 
 

• Examples: 
– If I flip a coin 100 times, how many can I expect to see heads? 
– What is the weather going to be like tomorrow? 
– Are my stocks going to be up or down in value? 



Sample Space = Universe of Outcomes 
• The most fundamental concept is that of a Sample Space 

(denoted by Ω  or S or U), also called the Universal Set. 
• A Random Experiment takes values in a set of Outcomes 

– The outcomes of the random experiment 
are used to define Random Events 
 Event = Set of Possible Outcomes 

• Example of a Random Experiment: 
– Roll a single die twice consecutively 
– call the value on the up face at  

the nth toss xn  for n = 1,2 
– E.g., two possible experimental outcomes: 

 two sixes (x1 = x2 = 6) 
 x1 = 2 and x2 = 6 

• Example of a Random Event:  
– An odd number occurs on the 2nd toss. 
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Sample Space = Universal Event 
• The sample space U is a set of experimental outcomes 

that must satisfy the following two properties: 
– Collectively Exhaustive: all possible outcomes  

are listed  in U and when an experiment is  
performed one of these outcomes must occur. 

– Mutually Exclusive: only one outcomes happens  
and no other can occur (if x1 = 5 it cannot be  
anything else).  
 

• The mutually exclusive property of outcomes simplifies 
the calculation of the probability of events 

• Collectively Exhaustive means that there is no possible 
event to which we cannot assign a probability 

• The Universe U (= sample space) of possible 
experimental outcomes is equal to the event “Something 
Happens” when an experiment is performed. Thus we 
also call U the Universal Event 

 



Probability Measure 
• Probability of an event :  

– A positive real number between 0 and 1 expressing the chance that 
the event will occur when a random experiment is performed. 

• A probability measure satisfies the 
. 

Three Kolmogorov Axioms: 
. 

– P(A) ≥ 0  for any event A  (every event A is a subset of U ) 
– P(U) = P(Universal Event) = 1    (because “something must happen”) 
– if A ∩ B = ∅, then P(A U B) = P(A) + P(B) 

 

• e.g.  
– P ({x1 ≥ 0}) = 1 

– P ({ x1 even } U { x1 odd }) = P ({ x1 even })+ P ({ x1 odd })  
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Probability Measure 
• The last axiom of the three, when combined with the 

mutually exclusive property of the sample set, 
– allows us to easily assign probabilities to all possible events if the 

probabilities of atomic events, aka elementary events, are known 
 

• Back to our dice example: 
– Suppose that the probability of the elementary  

event consisting of any single outcome-pair, 
A = {(x1,x2)},  is  P(A) = 1/36 

– We can then compute the probabilities of 
all events, including compound events: 
 P(x2 odd) = 18x1/36 = 1/2 
 P(U) = 36x1/36 = 1 
 P(two sixes) = 1/36 
 P(x1 = 2 and x2 = 6) = 1/36 

 



Probability Measure 
• Note that there are many ways to decompose the 

universal event U (the “ultimate” compound event) 
into the disjoint union of simpler events: 
 
– E.g. if A = {x2 odd}, B = {x2 even},  

then U = A U B 
 

– on the other hand  
 U = {(1,1)} U {(1,2)} U {(1,3)} U … U {(6,6)} 
 

– The fact that the sample space is exhaustive and mutually 
exclusive, combined with the three probability measure 
(Kolmogorov) axioms  makes the whole procedure of computing 
the probability of a compound event from the probabilities of 
simpler events consistent. 



Random Variables 
• A random variable X 

– is a function that assigns a real value to each sample space outcome 
– we have already seen one such function: PX({x1,x2}) = 1/36 for all 

outcome-pairs (x1,x2) (viewing an outcome as an atomic event) 
 

• Most Precise Notation:  
– Specify both the random variable, X, and the value, x, that it takes in 

your probability statements. E.g.,  X(u) = x for any outcome u in U.  
– In a probability measure, specify the random variable as a subscript, 

PX (x) ,and the value x as the argument.   
For example  
 
    PX (x) = PX (x1,x2) = 1/36  
 
means Prob[X = (x1,x2)] = 1/36 

– Without such care, probability statements can be hopelessly confusing 



Random Variables 
• Types of random variables:  

– discrete and continuous (and sometimes mixed) 
– Terminology relates to what types of values the RV can take 

 

• If the RV can take only one of a finite or at most 
countable set of possibilities, we call it discrete. 
– If there are furthermore only a finite set of possibilities, the 

discrete RV is finite.  For example, in the two-throws-of-a-die 
example, there are only (at most) 36 possible values that an RV 
can take:  
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Random Variables 
• If an RV can take arbitrary values in a real interval we 

say that the random variable is continuous 
• E.g. consider the sample space of weather temperature 

– we know that it could be any  
number between -50 and  
150 degrees Celsius 

– random variable T ∈ [-50,150] 
– note that the extremes do  

not have to be very precise,  
we can just say that  
P(T < -45o) = 0 
 

• Most probability notions apply equal well to discrete and 
continuous random variables   



Discrete RV 
• For a discrete RV the probability assignments given by a 

probability mass function (pmf) 
– this can be thought of as a  

normalized histogram 
– satisfies the following 

properties  
 
 
 
 
 

• Example of a discrete (and finite) random variable  
– X ∈ {1,2,3, … , 20 } where X = i if the grade of student z on class 

is greater than 5(i -1) and less than or equal to 5i 
– We see from the discrete distribution plot that PX(15) = α 
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Continuous RV 
• For a continuous RV the probability assignments are 

given by a probability density function (pdf) 
– this is a piecewise continuous 

function that satisfies the following 
properties  
 
 
 
 
 

• Example for a Gaussian random variable of mean µ and 
variance σ2 
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Discrete vs Continuous RVs 
• In general the math is the same, up to replacing 

summations by integrals 
• Note that pdf means “density of the probability”, 

– This is probability per unit “area” (e.g., length for a scalar rv). 
– The probability of a particular value X = t 

of a continuous RV X is always zero  
 Nonzero probabilities arise as:  

 
  
 

 
 
 
– Note also that pdfs are not necessarily upper bounded 

 e.g. Gaussian goes to Dirac delta function when variance goes to zero 
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Multiple Random Variables 
• Frequently we have to deal with multiple random 

variables aka random vectors 
– e.g. a doctor’s examination measures a collection of  

random variable values: 
 x1: temperature 
 x2: blood pressure 
 x3: weight 
 x4: cough 
 … 

 
 

• We can summarize this as  
– a vector X = (X1, … , Xn)T of n random variables 

 
      PX (x1, … , xn) is the joint probability distribution 



Marginalization 
• An important notion for multiple random  

variables is marginalization 
– e.g. having a cold does not depend on  

blood pressure and weight 
– all that matters are fever and cough 
– that is, we only need to know PX1,X4(a,b) 

 

• We marginalize with respect to a subset of variables  
– (in this case X1 and X4) 
– this is done by summing (or integrating) the others out 
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Conditional Probability 
• Another very important notion: 

– So far, doctor has PX1,X4(fever,cough) 
– Still does not allow a diagnosis 
– For this we need a new variable Y  with  

two states Y ∈ {sick, not sick} 
– Doctor measures the fever and cough levels.  

These are now no longer unknowns, or even  
(in a sense) random quantities. 

– The question of interest is “what is the probability that patient is 
sick given the measured values of fever and cough?” 

• This is exactly the definition of conditional probability 
– E.g., what is the probability that “Y = sick” given observations   

“X1 = 98” and “X4 = high”?  We write this probability as: 
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Joint versus Conditional Probability 
• Note the very important difference between conditional 

and joint probability 
• Joint probability corresponds to an hypothetical question 

about probability over all random variables  
– E.g., what is the probability that you will be sick and cough a lot? 
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Conditional Probability 
• Conditional probability means that you know the values 

of some variables, while the remaining variables are 
unknown.  
– E.g., this leads to the question:  what is the probability that you 

are sick given that you cough a lot? 
 
 
 
 
 
 
 
 

– “given” is the key word here 
– conditional probability is very important because it allows us 

to structure our thinking 
– shows up again and again in design of intelligent systems   
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Conditional Probability 
• Fortunately it is easy to compute (via a consistent definition) 

– We simply normalize the joint by the probability of what we know 
 
 
 

– Makes sense since the conditional probability is then nonnegative, and  
 
 
as a consequence of the definition and the marginalization equation, 
 
 

– The definition of conditional probability is such that 
 Conditioned on what we know, we still have a valid probability measure 
 In particular, the new (restricted) universal event of interest,  

{sick} U {not sick}, has probability 1 after conditioning on the temperature 
observation 
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The Chain Rule of Probability 
• An important consequence of the definition of  

conditional probability 
– note that the definition can be equivalently written as 

 
 

– By recursion on this definition, more generally we have the  
product chain rule of probability: 
 
 
 
 
 

 

• Combining this rule with the marginalization procedure allows  
us to make difficult probability questions simpler 
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The Chain Rule of Probability 
• E.g. what is the probability that you will be sick  and have 

104o F of fever?  
 
 
– breaks down a hard question (prob of sick and 104)  

into two easier questions 
– Prob (sick|104): everyone knows that this is close to one 
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The Chain Rule of Probability 
• E.g. what is the probability that you will be sick  and have 

104o of fever?  
 
– Computing P(104) is still hard, but easier than P(sick,104) since 

we now only have one random variable (temperature) 
 P(104) does not depend on sickness, it is just the question “what is 

the probability that someone will have 104o?” 
 gather a number of people, measure their temperatures and make an 

histogram that everyone can use after that 
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The Chain Rule of Probability 
• In fact, the chain rule is so handy, that most times we use 

it to compute marginal probabilities 
– e.g. 

 
 
 

– in this way we can get away with knowing  
 PX1(t), which we may know because it was needed for some other 

problem 
 PY|X1( sick | t ), we can ask a doctor (a so-called  domain expert), or 

approximate with a rule of thumb 
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Independence 
• Another fundamental concept for multiple variables 

– Two variables are independent  if the joint is the product of the 
marginals: 
 
 
 

– Note: This is equivalent to the statement: 
 
 
 
 
 

     which captures the intuitive notion: 
 “if X1 is independent of X2, knowing X2 does not change the 

probability of X1” 
– e.g. knowing that it is sunny today does not change the probability that it 

will rain in three years 
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Conditional Independence 
• Extremely useful in the design of intelligent 

systems 
– Sometimes knowing X makes Y independent of Z 
– E.g. consider the shivering symptom: 

 if you have temperature you sometimes shiver 
 it is a symptom of having a cold  
 but once you measure the temperature, the two become independent 

 
 
 
 
 
 
 
 

• Simplifies considerably the estimation of probabilities 
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Independence 
• Useful property: if you add two independent random 

variables their probability distributions convolve 
– I.e. if Z = X + Y and X,Y are independent then 

 
 
 
where * is the convolution operator 

– For discrete random variables, this is: 
 
 
 

– For continuous random variables, this is 
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Moments 
• Moments are important properties of  

random variables 
– They summarize the distribution 

  

• The two most Important moments 
– mean: µ = E[X] 
– variance: σ2 = Var(X) = E[(X-µ)2] 

 
 
 
 
 
 

• “Nice” distributions are completely specified by a very few  
moments.  E.g., the Gaussian by the mean and variance. 
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Mean 
•   µ = E[x], is the center of probability mass of the distribution 

 
 
 
 

• Mean is a linear function of its argument 
– if Z = X + Y, then E[Z] = E[X] + E[Y] 
– this does not require any special  

relation between X and Y 
– always holds 

 

• The other moments are the mean of the powers of X 
– nth order (non-central) moment is E[Xn] 
– nth central moment is E[(X-µ)n] 

discrete continuous 

mean ∑=
k

X kkP  )(µ ∫= dkkkPX   )(µ

µ 

2σ 



Variance 
•  σ 2 = E[(x -µ ) 2 ] measures the dispersion around the    

 mean ( = 2nd central moment ) 
 
 
 
 
 

• in general, it is not a linear function 
– if Z = X + Y, then Var[Z] = Var[X] + Var[Y] 
    only holds if X and Y are independent 
 

• The variance is related to the 2nd order  
   non-central moment by  
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