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DAVIS Intensity Image events
Image >10ms latency
Events >0.02ms latency
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Motivation

« High temporal resolution for events;

« Inherent blurry effects for images;

Event cameras are more likely to capture a blur image as it is
designed for high dynamic motion scenery.

Possible Solution: reduce the exposure time - dark and
noisy image.
« Existing computer vision algorithms designed for

standard cameras cannot be applied to event cameras

directly. ;
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To reconstruct a high frame-rate, sharp video from a
single blurry frame and its event data.




LONG BEACH tral

CALIFORNIA VISION

L(T) (x.y)
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L is the intensity image, f is the reference timestamp.
The event is triggered when a change in the log intensity

exceeds a given threshold c. :
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log(L(T)) +  Events = log(L(1))
E) = | : e(s)ds

E(t) denotes the integral of events between time [, t].
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What is blur?

f+T/2
—j' L (t)dt

f-—T/2

B is the blur image, equals to the integral of the latent
images during the exposure time [T =T /2, T —T /2],
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Latent Images 3
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Model - First Integral

L(t) = L(f)exp(EBE())

E(t) = [, e(s)ds

Initial condition L(f) and threshold ¢ are unknown.
10
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Model - Second Integral

VISION

Blur Image Latent Images - L(t) sequence
B = Tij:/’jn_(t)dt combine | (t) = L(f)exp(c’ e(s)ds)

l

EDI | &= '-(Tf) jff+://22exp(c ) e(s)ds)dt

11



LONG BEACH J| Australian ezl e
ﬁ;}\,‘__ 7 N CI

CALIFORNIA

Model — Event-based Double Integral (EDI)

_ |_(f) f+T/2 t
B = = .ff_m exp(c_ff e(s)ds)dt

log(L(f)) = log(B) — log [[%j”me

f—T/2
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Fibonacci search 250 | -
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Blur Image

)

Events [2] Event & Image  Ours Event & Image

[1] C.Reinbacher, et al. Real-time intensity-image reconstruction for event cameras using manifold regularisation. BMVC, 2016
[2] C.Scheerlinck, et al. Continuous-time intensity estimation using event cameras. ACCV, 2018
[3] M.]Jin, et al. Learning to extract a video sequence from a single motion-blurred image. CVPR 2018 15
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Input blur image Output sharp video 16
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Input blur image Output sharp video 17
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Input blur image Output sharp video
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Average result of the reconstructed videos on dataset[4]

7N\
Baseline 1 Baseline 2 Scheerlinck er al. 2] Jin er al. [3] Ours
PSNR(dB) 25.52 26.34 25.84 25.62 28.49
SSIM 0.7685 0.8090 0.7904 0.8556 0.9199
N 4

When the input image is blur, a trivial solution would be:

« Baseline 1: Deblurring

+ Reconstruction

« Baseline 2: Reconstruction + Deblurring

[4]. S. Nah. Deep multi-scale convolutional neural network for dynamic scene deblurring. CVPR, 2017.

20
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Baseline 1 Baseline 2

t=f+1 t=f+2

Our
21
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Thank you
Poster number - 136

Code, Data, Demo, and Extension Work

https://github.com/panpanfei/Bringing-a-Blurry-Frame-
Alive-at-High-Frame-Rate-with-an-Event-Camera
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