GLC

Bringing AAA graphics to mobile platforms

Niklas Smedberg
Senior Engine Programmer, Epic Games

GAME DEVELOPERS CONFERENCE

Who Am |

e A.k.a. "Smedis”

o Platform team at Epic Games
e« Unreal Engine

e 15 years Iin the industry
e 30 years of programming
e C64 demo scene

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Content

e Hardware

e How it works under the hood

o Case study: ImgTec SGX GPU
o Software

« How to apply this knowledge to bring console
graphics to mobile platforms

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Mobile Graphics Processors

e The feature support is there:
o Shaders
e« Render to texture
e Depth textures
e MSAA

e But Is the performance there?
e Yes. And it keeps getting better!

Mobile GPU Architecture

o Tile-based deferred rendering GPU
e Very different from desktop or consoles
« Common on smartphones and tablets
« ImgTec SGX GPUs fall into this category
e There are other tile-based GPUs (e.g. ARM Mali)

e Other mobile GPU types

e NVIDIA Tegra is more traditional

Tile-Based Mobile GPU

TLDR Summary:

o Split the screen into tiles
e E.g. 16x16 or 32x32 pixels

e The GPU fits an entire tile on chip

e Process all drawcalls for one tile
o Repeat for each tile to fill the screen

e Each tile i1s written to RAM as it finishes

(For illustration purposes only)

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

ImgTec Process
Software }—> Command —»| _Vertex Vertex
Buffer Frontend Processing
Ciling —> Parameter —> _ PDf[e' g P_, ; Pixel
Buffer ronten rocessing

Buffer

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Vertex Frontend

Vertex Verte>_<
Frontend Processing

T Nrucvcocourl IU
! Nruuvcocoogrlt IU

Software —> Command ——>
Buffer

e Vertex Frontend reads from GPU command buffer

e Distributes vertex primitives to all GPU cores
e Splits drawcalls into fixed chunks of vertices
e GPU cores process vertices independently
e Continues until the end of the scene

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Vertex processing (Per GPU Core)

Verte>_<
Processing

Vertex Setup . Shader (Vertex)
(VDM) —> Pre-Shader ——— (USSE))

Gﬂg Parameter
(TA) Buffer

__

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Vertex Setup

Recelves commands from Vertex Frontend

' Vertex Setup Shader (Vertex) i
1 é - 1
i (VDM Pre-Shader —— (USSE)) l

| Gﬂg Parameter
i (TA) Buffer i

__

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Vertex Pre-Shader

Fetches input data (attributes and uniforms)

Vertex Setup _ Shader (Vertex)
(VDM) Pre-Shader —> (USSE))
Gﬂg Parameter
(TA) Buffer

__

Vertex Shader

Universal Scalable Shader Engine
Executes the vertex shader program, multithreaded

Vertex Setup Pre-Shader Shader (Vertex)

(VDM) (USSE)
Gﬂg Parameter
(TA) Buffer

__

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Tiling
Optimizes vertex shader output
Bins resulting primitives into tile data

' Vertex Setup) Shader (Vertex) i
5 (VDM) Pre-Shader —— (USSE)) |

Tiling s Parameter -
(TA) Buffer

__

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Parameter Buffer

Stored Iin system memory
You don’t want to overflow this buffer!

Vertex Setup . Shader (Vertex)
(VDM) Pre-Shader —> (USSE))
Gﬂg Parameter
(TA) Buffer

__

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Pixel Frontend
Parameter —> - P|>::el d _— P Plxel_ Frame
Buffer ronten - rocessmq Buffer

e Reads Parameter Buffer

e Distributes pixel processing to all cores
e One whole tile at a time
e A tile is processed in full on one GPU core
e Tiles are processed in parallel on multi-core GPUs

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Pixel processing (Per GPU Core)

N Plxel_ N
Processing

Pixel Setup . , Shader (Pixel) i
(PDM) Pre-Shader — (USSE)J i

(Pixel Back-end > Frame Buffer

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Pixel Setup

Receives tile commands from Pixel Frontend
Fetches vertexshader output from Parameter Buffer
Triangle rasterization; Calculate interpolator values
Depth/stencil test; Hidden Surface Removal

| Pixel Setup , Shader (Pixel) |
5 (PDM) —> Pre-Shader —> (USSE)J i

| (Pixel Back-end > Frame Buffer |

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Pixel Pre-Shader

Fills in interpolator and uniform data
Kicks off hon-dependent texture reads

Pixel Setup) Shader (Pixel) i
(PDM) Pre-Shader — (USSE)J i

(Pixel Back-end > Frame Buffer

Pixel Shader

Multithreaded ALUs
Each thread can be vertices or pixels
Can have multiple USSEs in each GPU core

Pixel Setup i | Shader (Pixel) i
(PDM) Pre-Shader —m> (USSE) i

(Pixel Back-end > Frame Buffer

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Pixel Back-end

Triggered when all pixels in the tile are finished
Performs data conversions, MSAA-downsampling
Writes finished tile color/depth/stencil to memory

Pixel Setup } | Shader (Pixel)
(PDM) H’ s (USSE)J i

(Pixel Back-end ———> Frame Buffer

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Shader Unit Caveats

o« Shader programs without dynamic flow-control:
e 4 vertices/pixels per instruction

o« Shader programs with dynamic flow-control:
o 1 vertex/pixel per instruction

o Alpha-blending is in the shader
o Not separate specialized hardware
e Shader patching may occur when you switch state
e (More on how to avoid shader patching later)

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Rendering Techniques

« How to take advantage of this GPU?

Mobile Is the new PC

o Wide feature and performance range
e Scalable graphics are back

e User graphics settings are back
o« Low/medium/high/ultra
e Render buffer size scaling

e Testing 100 SKUs is back

Graphics Settings

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Render target is on die

e MSAA iIs cheap and use less memory
e« Only the resolved data in RAM
« Have seen 0-5 ms cost for MSAA
o« Be wary of buffer restores (color or depth)

o« No bandwidth cost for alpha-blend
o« Cheap depth/stencil testing

“Free” hidden surface removal

e Specific to ImgTec SGX GPU

e Eliminates all background pixels
e Eliminates overdraw

e Only for opaque

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Mobile vs Console

e Very large CPU overhead for OpenGL ES API
e Max CPU usage at 100-300 drawecalls

o Avoid too much data per scene
o Parameter buffer between vertex & pixel processing
e Save bandwidth and GPU flushes

e Shader patching

e Some render states cause the shader to be modified and
recompiled by the driver

e E.g. alpha-blend settings, vertex input, color write masks, etc

Alpha-test / Discard

o Conditional z-writes can be very slow

e Instead of writing out Z ahead of time,
the “Pixel setup” (PDM) won't submit more
fragments until the pixelshader has
determined visibility for current pixels.

o Use alpha-blend instead of alpha-test
o Fit the geometry to visible pixels

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Alpha-blended, form-fitted geometry

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Alpha-blended, form-fitted geometry

Render Buffer Management (1 of 2)

e« Each render target is a whole new scene
e Avoid switching render target back and forth!

e Can cause a full restore:

e Copies full color/depth/stencil from RAM into Tile
Memory at the beginning of the scene

e Can cause a full resolve:

e Copies full color/depth/stencil from Tile Memory into
RAM at the end of the scene

Render Buffer Management (2 of 2)

o Avoid buffer restore
e Clear everything! Color/depth/stencil
e A clear just sets some dirty bits in a register

o Avoid buffer resolve
e Use discard extension (GL_EXT_discard_framebuffer)
e See usage case for shadows

e Avoid unnecessarily different FBO combos

o« Don't let the driver think it needs to start resolving and
restoring any buffers!

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Texture Lookups

o Don’t perform texture lookups in the pixel shader!
e Let the “pre-shader” queue them up ahead of time
e l.e. avoid dependent texture lookups

o Don’t manipulate texture coordinate with math
e Move all math to vertex shader and pass down

o« Don't use .zw components for texture coordinates
o Will be handled as a dependent texture lookup
e Only use .xy and pass other data in .zw

Mobile Material System

o Full Unreal Engine materials are too complicated

Mobile Material System

e INitial idea:
e Pre-render into a single texture

-

Mobile Material System

e Current solution:

e Pre-render components into
separate textures

o Add mobile-specific settings
o Feature support driven by artists

Mobile Material Shaders

o« One hand-written ubershader
o Lots of #ifdef for all features
e« EXposed as fixed settings in the artist Ul
e Checkboxes, lists, values, etc

Material Example: Rim Lighting

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Material Example: Vertex Animation

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Shader Offline Processing

e Run C pre-processor offline
e« Reduces in-game compile time
o Eliminates duplicates at off-line time

Shader Compiling

« Compile all shaders at startup

e Avoids hitching at run-time
e Compile on the GL thread, while loading on Game thread

o« Compiling Is not enough
e Must issue dummy drawcalls!
e Remember how certain states affect shaders!

e May need experimenting to avoid shader patching
E.g. alpha-blend states, color write masks

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

God Rays

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

e Initially ported Xbox straight to PS Vita
« Worked, but was very slow

e But for Infinity Blade Il, on a cell phone!?
o We first thought it was impossible
o But let’s have a deeper look

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

e Port to OpenGL ES 2.0

o Use fewer texture lookups
o« Worse quality
o And still very slow

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Optimizations For Mobile

e Move all math to vertex shader
e No dependent texture reads!

e Pass down data through interpolators
o But, now we're out of interpolators ®

o Split radial filter into 4 draw calls
e 4 X 8 = 32 texture lookups total (equiv. 256)

e Went from 30 ms to 5 ms

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

vold BlurLightShaftsMain(
float2 InUW @ TEXCOORDE,

- -
Iﬂ I1 out float4 OQutColor : COLORE
i

float4 BlurredValues = float4(e,e,8,8);
f Scale the UVs so that the blur will be the same pixel distance in x and v

float2 AspectCorrectedUV = InUV * AspectRaticAndInvAspectRatioc.zw;
float2 BlurVector = (TextureSpaceBlurlrigin.xy - AspectCorrectedUV);
float BlurLength = length{BlurVector) * 8.5f;

/ Shorten the length of the vector to limit undersampling
BlurVector = BlurVector / BlurLength * min(sgrt(BlurLength) #* .5f, Blurlength);
BlurVector *= LightShaftParameters.z / (flocat)(NumSamples);

float2 LinearWeight = 2 #(NumSamples.xx - float2(@, 1)) / (float)(NumSamples.xx)}
float2 LinearWeightDelta = -float2(4, 4) / (float)(NumSamples.xx);

float4 SamplelVs = AspectCorrectedUV.xyxy + BlurVector.xyxy * floatd{e, @, 1, 1);
floatd SamplelVsDelta = BlurVector.xyxy * 2}
SamplelUVs *= AspectRaticAndInvAspectRatio.xyxy;
SampleUVsDelta *= AspectRatioAndInvAspectRatio.xyxy;
/ Operate on two samples at a time to minimize ALU instructions
for (int 1 = @; 1 « NumSamples; 1 += 2)
i
/ Use a weight that is linearly increasing away from the blur origin
/ This allows the tail of an occluder to blend out smoothly
float2 Weight = min{4.8f * LinearWeight # LinearWeight, LinearWeight);
/ Clamp the sample position to make sure we only sample valid parts of the texture
Mote: the result of the texture loockup is compressed to fit in the fixed point buffer
But we don't need to expand it since we're just averaging and not compressing the result
/ Undo the aspect ratio scaling before sampling
float4 ClampedUVs = clamp(SampleUVs, UVMinMax.xyxy, UVMinMax.zwzw);
BlurredValues += tex2D(SourceTexture, ClampedUVs.xy) * floatd({Weight.xxx, LinearWeight.x);
BlurredValues += tex2D(SourceTexture, ClampedUVs.zw) * floatd({Weight.yvy, LinearWeight.v);

LinearkWeight += LinearWeightDelta;
SamplelVs += SampleUVsDelta;
H

OutColor = BlurredValues / NumSamples;

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

{ BlurLightShaftsMain

MObi Ie '\u'l:ld main{}
i

vecd BlurredValues = vecd(8,8,8,8);

BlurredValues += texture2D(SourceTexture, TexCoord®.xy);
S h ad e r BlurredvValues += texture2D({SourceTexture, TexCoordl.xy);
Blurredvalues += texture2D(SourceTexture, TexCoord?.xy);

BlurredvValues += texture2D({SourceTexture, TexCoord3.xy);
Blurredvalues += textureZD{SourceTexture, TexCoordd.xy);
Blurredalues += texture2D{SourceTexture, TexCoordS.wy);
Blurredalues += texture2D{SourceTexture, TexCoords.wy);
BlurredValues += texture2D({SourceTexture, TexCoord?.xy):
gl _Fraglfolor = BlurredValues /7 16.8;

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

e Original Scene
e NO God Rays

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

1st Pass

e Downsample Scene
Identify pixels

e RGB: Scene color

e A: Occlusion factor

Resolve to texture:
e "Unblurred source”

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

2nd Pass

e Average 8 lookups
e From “Unblurred source”
e 1St quarter vector
e Uses 8 .xy interpolators

o« Opaque draw call

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

3rd Pass

e Average +8 lookups
e From “Unblurred source”
e 2Md quarter vector
e Uses 8 .xy interpolators

o Additive draw call

e Resolve to texture:
e "Blurred source”

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

4t Pass

e Average 8 lookups

e From “Blurred source”
e 1St half vector
e Uses 8 .xy interpolators

o« Opaque draw call

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

5th Pass

e Average +8 lookups

e From “Blurred source”
e 2Md half vector
e Uses 8 .xy interpolators

e Additive draw call
e Resolve final result

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

6th Pass

e Clear the final buffer
e Avoids buffer restore

e Opague fullscreen
e Screenblend apply

e Blend in pixelshader

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character
Shadows

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character Shadows

e Ported one type of shadows from Xbox:
e Projected, modulated dynamic shadows

e Fairly standard method
o« Generate shadow depth buffer
e Stencil potential pixels
e Compare shadow depth and scene depth
o Darken affected pixels

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character Shadows

1. Project character depth from light view

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character Shadows

2. Reproject into camera view

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character Shadows

3. Compare with SceneDepth and modulate

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Character Shadows

4. Draw character on top (no self-shadow)

Shadow Optimizations (1 of 2)

o« Shadow depth first in the frame
e Avoids a rendertarget switch (resolve & restore!)
e Resolve SceneDepth just before shadows™*
o Write out tile depth to RAM to read as texture
o« Keep rendering in the same tile
o Unfortunately no API for this in OpenGL ES

Shadow Optimizations (2 of 2)

e Optimize color buffer usage for shadow
e We only need the depth buffer!
o« Unnecessary buffer, but required in OpenGL ES
o Clear (avoid restore) and disable color writes
o Use glDiscardFrameBuffer() to avoid resolve
e Could encode depth in F16 / RGBAS8 color instead

e Draw screen-space quad instead of cube
e Avoids a dependent texture lookup

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM
T I T - -
OO0l 11PS.:

e Use an OpenGL ES wrapper on PC
e Almost "WYSIWYG"
e Debug in Visual Studio

o Apple Xcode GL debugger, I0S 5

e Full capture of one frame

e Shows each drawcall, states in separate pane

o« Shows all resources used by each drawecall

e« Shows shader source code + all uniform values

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Next Generation

ImgTec "Rogue” (6xxXx series):

20X

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

ImgTec 6XxXxX series

e 100+ GFLOPS (scalable to TFLOPS range)
e DirectX 10, OpenGL ES "“Halti”

e PVRTC 2

o Improved memory bandwidth usage

e IMmproved latency hiding

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Questions?

