Technology Day

Direct Drive Technology

Bringing Reliability To Cooling Towers

October 17th, 2013

Topics of Discussion

- History of cooling tower initiative & present day issues
- "A Convergence of Technologies"
- Field Testing Program & Installations
- Cooling Tower Motor Design Features
- Cooling Tower Adjustable Speed Drive
- Info for Application Review

Cooling Tower Types

Field Erect Units

Packaged Units

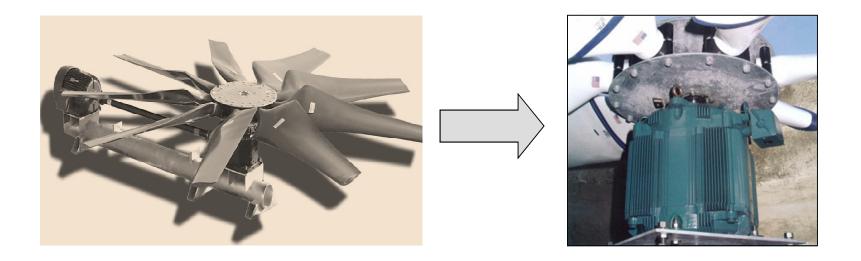
Beginning of CT Initiative – July 2005

Existing Gearboxes

New Gearbox Solution – Gear Development Project

- Better Sealing
- Lower Maintenance
- Higher Reliability

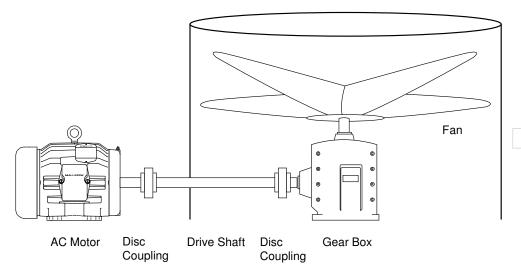
Industry Survey - Problems


- Mechanical Maintenance
- Lightly loaded majority of the time, inefficient operation
- Mechanical stresses with across the line starting
- Wind milling problems
- Long replacement time

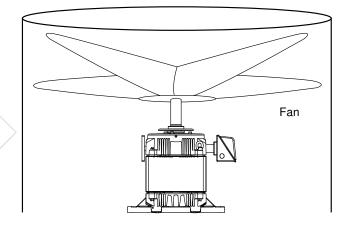
A MEMBER OF THE ABB GROUF

Survey Feedback

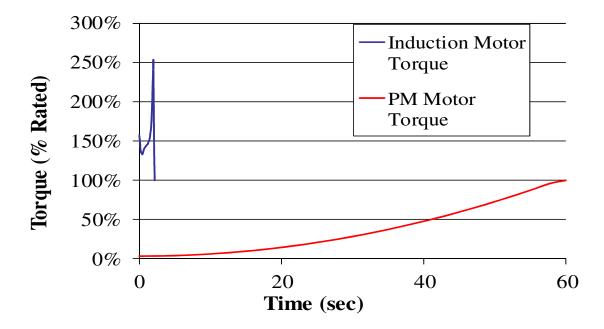
- New gearbox? NOT Interested
- The gearbox is the problem
- Heard it before
- Develop a solution that eliminates the problem



Direct Drive Solution – PM Motor & Drive


- Matched Performance drive and motor Solution
 - Drive designed for sensorless PM motor operation
 - High Torque Direct Drive PM Motor
- Improved efficiency over standard gearbox and motor

Existing Solution

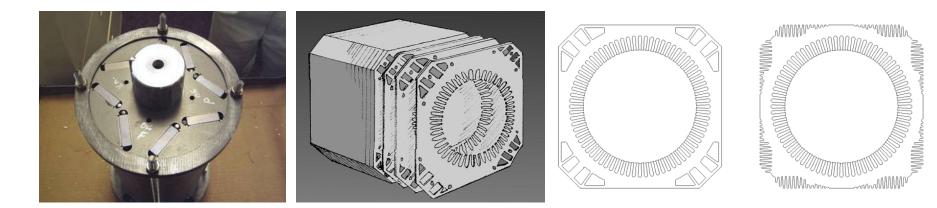


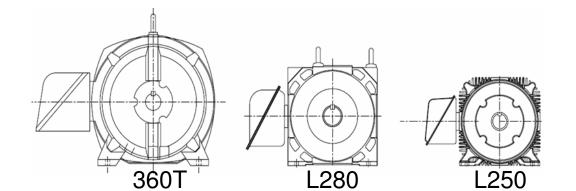
AC Motor

Direct Drive Solution – Benefits

- Eliminates gearbox and associated components
- Lower installation cost
- Eliminates gear oil in the cooling water
- Improves reliability & reduces maintenance
- Runs quieter and more efficient
- Reduced mechanical stress through soft start

Why Now: "Technology Convergence"


- Permanent Magnet (PM) interior salient pole rotor technology provides increased efficiency, power factor and power density improvements
- Power Density Laminated frame construction
- PM drive technology simplified software designed for cooling tower control without feedback requirements


Designed Exclusively for Cooling Tower Applications

PM Motor Improvements

Motor power density and increased efficiency

75 HP, 1800 RPM

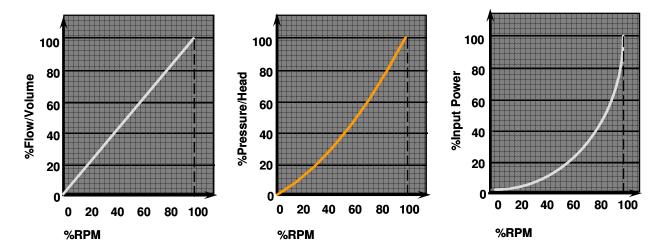
360T	9.00"
L280	7.00"
L250	6.25"

Motor Technology Comparison PM vs Induction at 100 HP

Frame Type	Cast Iron		Laminated Steel		
Product line	NEMA		Smooth	RPM AC FL Frame	
Rotor Type		Induction		Surface PM Interior PM	
Enclosure	TEFC	TEFC	TEBC	TEBC	TEBC
HP @ 1750 RPM	20	100	100	100	100
Frame Size	256T	405T	L2898	FL2586	FL2586
Weight	325 lbs	1160 lbs	1045 lbs	532 lbs	532 lbs
lbs/HP	16.25	11.60	10.45	5.32	5.32
F.L. Amps	25.5	115	121	117	119
F.L. Power Factor	78.9%	86.4%	81.4%	90.3%	93.4%
kW Losses	1.116	4.381	3.587	4.12	2.396
F.L. Efficiency	93.0%	94.5%	95.4%	94.8%	96.9%
Rotor Inertia	2.42 lb-ft ²	26.1 lb-ft ²	21 lb-ft ²	4.9 lb-ft ²	4.9 lb-ft ²
Temp Rise	80 C	80 C	91.2 C	120 C	77.6 C

Why we haven't done it before.... 200 HP, 120 RPM, 8753 lb-ft Both Motors Direct Drive – no gearbox

Motor Type	Height (in.)	Width (in.)	Wt. (lbs.)
Cast Iron Frame Induction	61	54	18685
Finned, Laminated Frame Permanent Magnet	50.47	37	7900


Note Reduced Height and Weight of Finned, Laminated Frame PM Motor

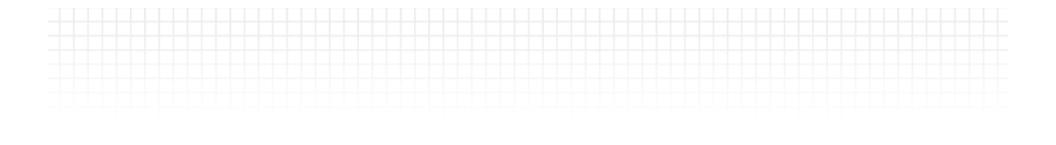
Efficiency Evaluation

- Affinity Fan Laws apply to Cooling Towers
 - Air Volume is Directly Proportional to Speed
 - Pressure varies as Square of Speed
 - HP varies as Cube of Speed

Speed	100%	90%	80%	70%	60%	50%	40%	30%
Volume	100%	90%	80%	70%	60%	50%	40%	30%
Pressure	100%	81%	64%	49%	36%	25%	16%	9%
HP Req'd	100%	73%	51%	34%	22%	13%	6%	3%

Example of Energy Savings (Intel facility)

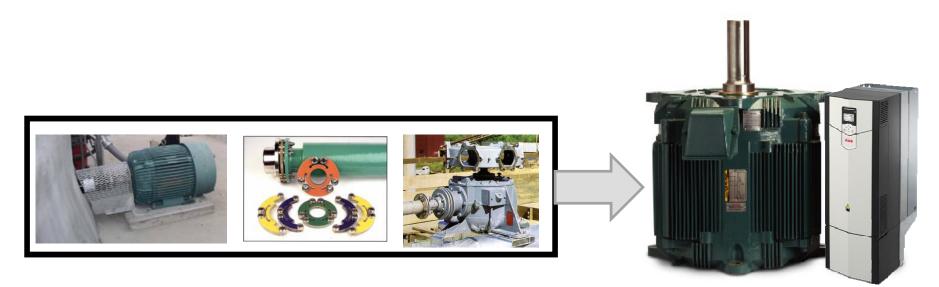
Conventional Cooling Tower Design (Single Speed Motor)


Avg. Operating hours		Fan Speed	Motor Hp	Motor Rating kW	Power Usage kWh	Energy cost CA Industrial 11.2 c/kWh
5110	Full speed	225	50	37.3	190,603	\$ 21,348
3650	Off	0	0	0	0	0
8760				Totals	190,603	\$ 21,348

Direct Drive Solution with ASD

Avg. Operating hours		Fan Speed	Motor Hp	Motor Rating kW	Power Usage kWh	Energy cost CA Industrial 11.2 c/kWh
1460	Full	225	47.25	35.2	51,463	\$ 5,764
730	90%	202.5	34.4	25.7	18,758	\$ 2,101
730	80%	180	24.2	18.0	13,174	\$ 1,476
730	70%	157.5	16.2	12.1	8,826	\$ 988
730	60%	135	10.2	7.6	5,558	\$ 622
730	50%	112.5	5.9	4.4	3,216	\$ 360
3650	Off	0	0	0	0	0
8760				Totals	100,996	\$ 11,312

Total of **\$10,036** Savings per Tower per Year (47%)



Field Testing Program

Solution Development Project

- Developed solution / concept and presented to CT OEM July 2007
- Beta Testing
 - > Presented solution to Clemson University Nov 2007
 - Installed solution June 2008 as retro-fit on existing Clemson tower
- Third party testing (CTI)
 - > Clean Air Engineering confirmed performance data

Case Study

On The Campus Of Clemson University Clemson, SC

- Constructed In 1986
- Two Identical Cells
- Fan 18'
- Motor 50 HP, 326T Frame, 1765/885 RPM
- Amarillo Gearbox 155, 8.5:1 Ratio

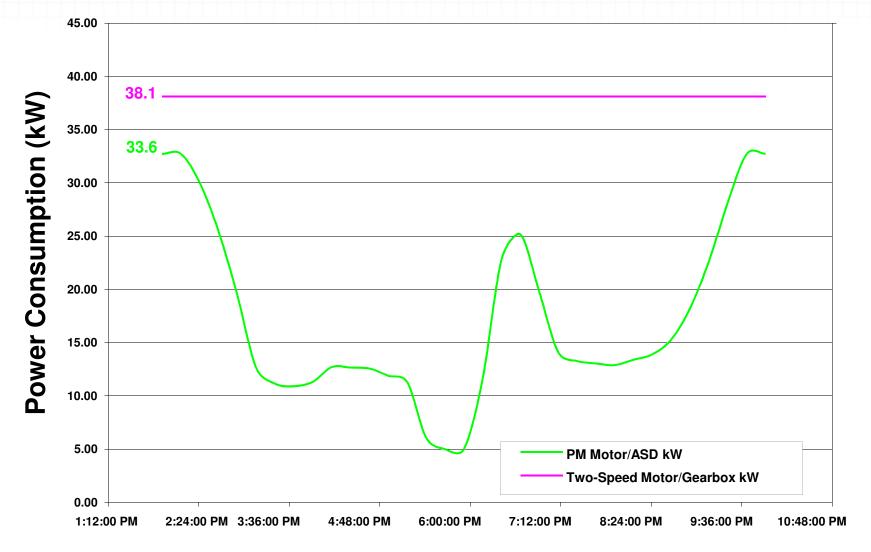
Clemson Installation

Existing Design Amarillo 155 Gearbox With Drive Shaft

Direct Drive Solution Drop-In Replacement No Pedestal Modification

Hudson 5 blade 18 ft Dia Fan Mounts directly to Motor Shaft

Clemson Installation Test Data


	2-Speed, 326T Induction Motor	RPM AC, FL4493 PM Motor
Fan Load	41.5 Hp	41.5 Hp
Gearbox and Couplings Efficiency	90.2%	N/A
Motor Horsepower	46.0 Hp	41.5 Hp
Motor Efficiency	90.0%*	93.1%
Drive	N/A	98.8%
Input kW	38.1	33.6 🔪
Total Efficiency	81.2%	92.0%

*Published Data

BALDOR A MEMBER OF THE ABB GROUP

Savings

Clemson Installation Test Data

June 18, 2008

Clemson Installation Test Data

Loaded Noise Levels					
Average	High Speed	Low Speed			
Induction NEMA Motor Tower	82.3 dBA	74.4 dBA			
Laminated Frame IPM Tower	77.7 dBA	69.0 dBA			

Data verified by Clean Air Engineering on site at Clemson University

- Tested per CTI standard ATC-128
- Sound pressure level measured at a distance of 5 feet

So What Did We Learn

- > Higher System Efficiency
- > Lower operating noise levels
- When performing maintenance, it is still a good practice to mechanically tie down the fan
- Gearbox Low Speed Lubrication Issues eliminated
- > No Driveshaft, couplings or guards

Clemson Beta Site Motor

(After approx 1-year in operation 2009)

- This test motor did not have E-coat or Flinger cover over Inpro seal
- After 1-year of operation still appeared to be in good condition

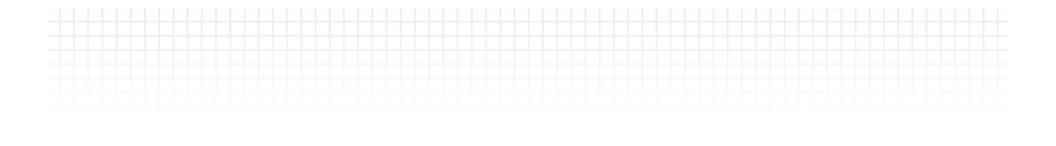
Clemson Motor Inspection Results

- Grease was still in excellent condition
- Bearings showed only minor wear
- Ingress of contamination was minimal
- Insulation was still in excellent condition
- White paper has been written and is available

New motor installed on site

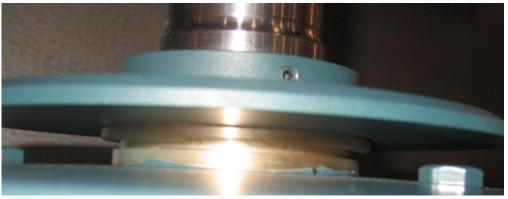
"Additional improvements made- version 2.0"


- Now with slinger over Inpro seal
- With E-Coating
- New end bracket draft design (no pooling of water)
- Assembled "wet"
- Synthetic grease
- Improved paint system



Cooling Tower Motor Installed Base

In excess of 400 units shipped since 2008


Direct Drive Design Features

Seal Design & Insulation System

Inpro Seal on Drive End

Slinger over Inpro Seal

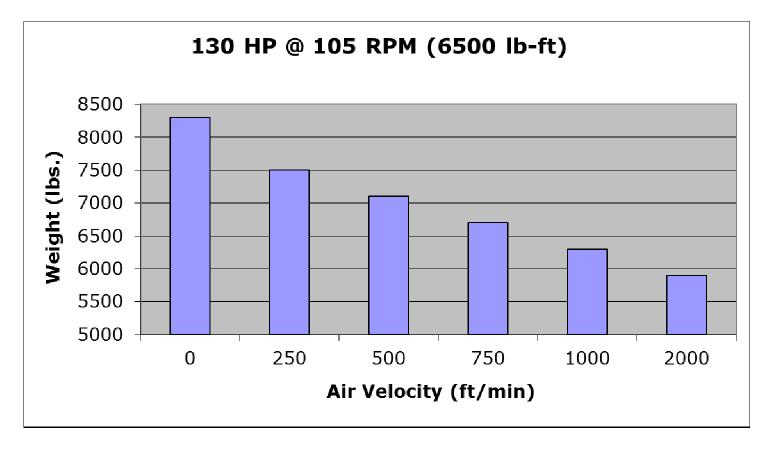
Class H VPI Insulation System

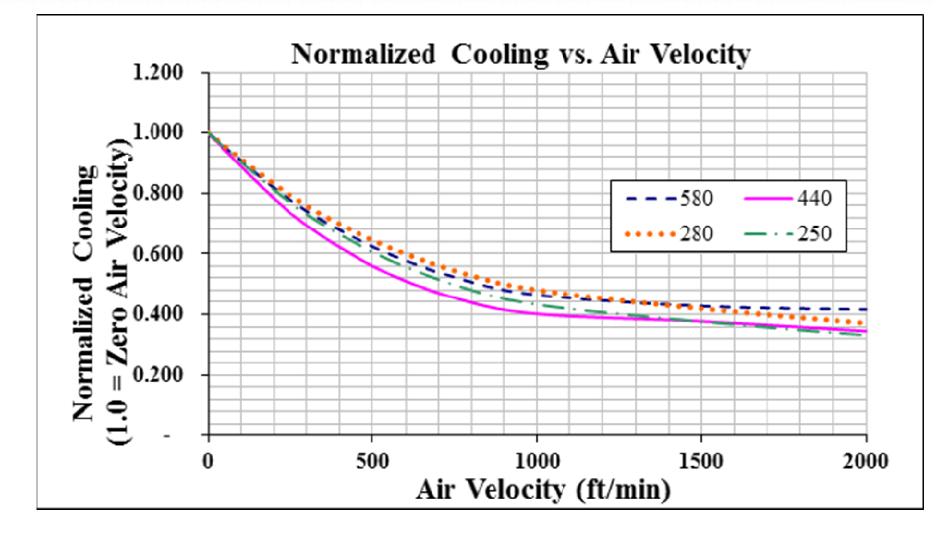
Motor Bearings & Grease

- 100% grease fill
- Synthetic grease
- Bearing L10 life min 100,000 hrs
- Relubrication interval for smaller units is at 2 years

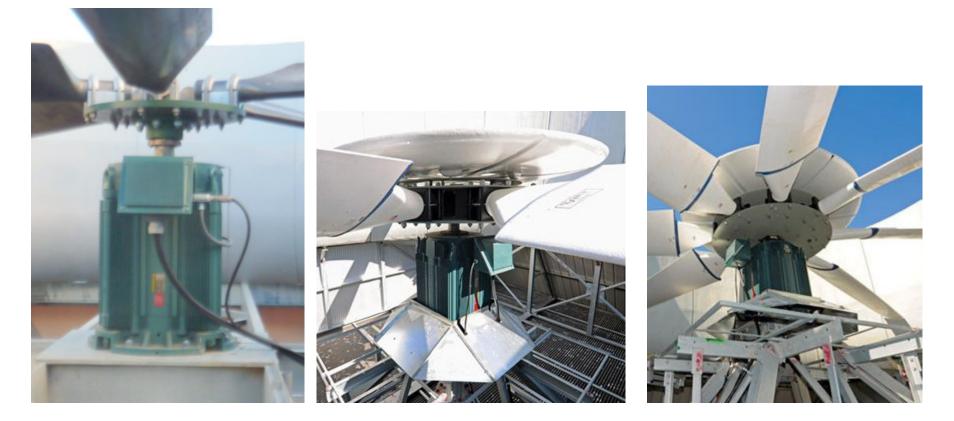
Condition Monitoring

Torque for 100 HP @ 180RPM = 1000HP @ 1800 RPM = 2000 HP @ 3600 RPM

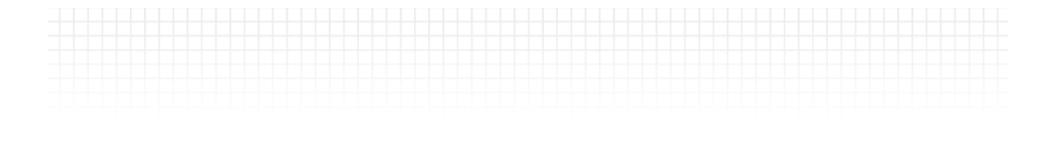

- Bearing RTD's
- Winding RTD's
- Vibration detection
- Data Analysis Unit
 - Data analyzed by embedded processor
 - 4 channels simultaneous vibration data
 - > 5 channels temperature data
 - > Wireless cell phone connection to server
 - Requires 115v wired to unit
- Condition Monitoring
 - Wired or wireless
 - Wireless provides accelerometer connection to server through gateway
 - Battery operated
 - Analyst software



Motor Sizing Air Velocity



Effects of Air Cooling



Impact of Fan Design

The fan design used can have an impact on the amount of airflow that is available to cool the motor

ASD Design

Cooling Tower Drive

- Matched Performance Drive & Motor
- Proven Technology Design focused on:
 - > Ease of startup
 - Minimal maintenance
 - > Efficiency of operation

Utilizes unique control algorithms

- > Interior Permanent Magnet (IPM) Motor Control
- Sensorless Vector algorithm
- > Smooth, low speed operation
- Maximize Efficiency (optimized control to motor)

Reduced parameter set

- Application specific design for cooling towers
- Reduced parameters set simplify startup

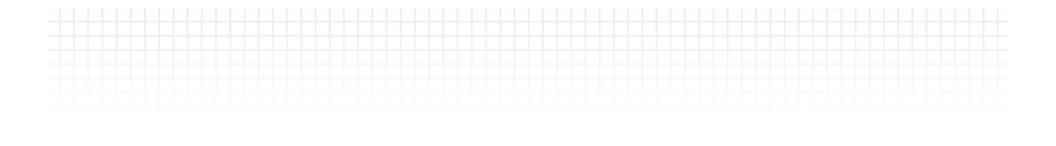
Predefined operating modes

> Provides automatic setup of drive

Trickle Current Heating

Maintains small amount current to motor when not in use

- Eliminates condensation in the motor
- Additional benefit of providing anti-wind milling torque


Automatic operation

- Manual operation available
- Modbus coil provided for building automation control systems

NO SPACE HEATERS REQUIRED

Application Considerations

Motor Sizing Know the Load

- Example (Traditional Method)
 - Fan BHP = 133 at 100 rpm
 - > Add loss for speed reducer
 - 133 * 1.05 = 140 HP
 - > Select NEMA motor > calculated HP

		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
		1800	1200	900
	125	1800	1200	900
1	150	1800	1200	900
	200	1800	1200	900
	250	1800	1200	900
		1800	1200	900

- Example (Direct Drive)
 - Fan BHP = 133 @ 100 rpm
 - No speed reducer loss

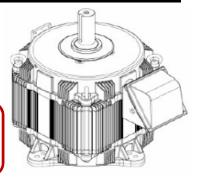
133 * 1.0 = 133 HP

Options for 133 HP, 100 rpm Direct Drive, 250 ft/min air velocity

Height (in.)	Weight (lbs.)
48.47	7500
50.47	7900
52.47	8300

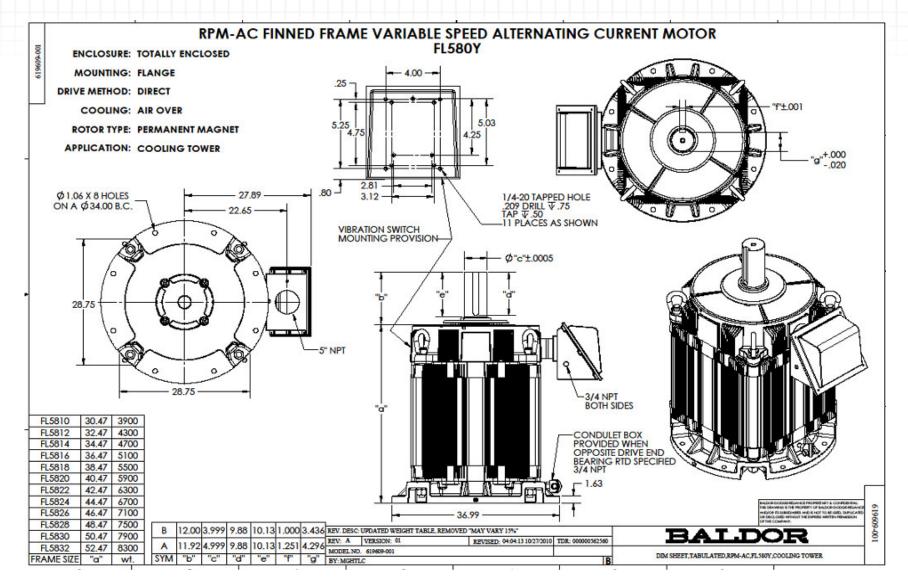
Guidelines for Max Motor RPM Based on a maximum tip speed of 12,000 fpm

Fan Diameter	Max RPM
36 ft.	106 rpm
34 ft.	112 rpm
32 ft.	119 rpm
30 ft.	127 rpm
28 ft.	137 rpm
24 ft.	160 rpm
20 ft.	191 rpm
18 ft.	212 rpm
16 ft.	238 rpm
14 ft.	273 rpm


Direct Drive Solution Motor Weights

Baldor CT							
Motor							
Model	Weight						
FL-2554	360						
FL-2562	425						
FL-2570	500						
FL-2578	570						
FL-2873	590						
FL-2882	690						
FL-2890	775						
FL-4472	1300						
FL-4477	1465						
FL-4485	1720						
FL-4493	1975						
FL-4402	2255						
FL-4413	2660						
FL-4421	2855						
FL-4429	3145						
FL-4440	3450						

Gearbox	Mech assy wt (lbs)	Baldor Solution	Motor Wt	Wt difference
Marley 22.3	350+16+140 = 506 lbs	FL-4472	1300	794
Marley 32.2	1700+58+680 = 2438 lbs	FL-4429	3145	707
Amarillo-175	825+42+330 = 1197 lbs	FL-4485	1720	523
Amarillo-110	325+13+130 = 468 lbs	FL-2873	590	122
Amarillo-155	675+35+270 = 980 lbs	FL-4493	1975	995


 Mech assy wt (Gearbox, Oil 6.4 lbs / gal, + driveshaft wt) + torque tube (2000 lbs) if app

Typically a 33% to 2x increase in total wt over the gearbox solution

Motor Weight

			L	a	rg	e	er	H								60	lut	ion	S
									A	ma	arill	o G	iear	'bo	X				Ht sh
size																		5810	30
wt	875	5	137	5	1690		2025)	212	25	277	'5	4530) (6690			5812	32
F	,		t-,	NORMAL	ROTATION: E	отн зн	AFTS CLO	CKWISE			r tt		TE: Some of					5814	34
Contact the factory to verify accurate dimen-												5816	36						
sions for your high ratio applications.													5818	38					
S	L L L	_	-"P"NPT		÷.	ł	F #	"к"ке	YWAY					Ê				5820	40
		s t		uñk 😡 -V−−	OIL DRAI	N F		- a	Ĩ			2))	10.00	-1	PTIONAL OIL INMUM CLEA	RANCE	malista	5822	42
	TABL	E VII		-	SIONS				1					hall Contact	factory for add fed dimensiona	tional informati-		5824	44
	Mode	Α	B	С	C with Non- Beverse	D	E	F	G	н	J	к	L	М	N	0		5826	46
	1008	281/2	26	33,4	21,4	10	1,874	3,499	81/2	25 ¹ /4	17/8	3/8 x 3/16		18½	11/16	21/8		5020	40
	1110 1311	325/8 343/8	293,4 307/16	33,4 415/16	21,4 31,4	12 12	1.874 2.436	3.999 4.499	91/2 101/4	301,4 331,4	17/8 17/8	3/8 x 3/16 5/8 x 5/16		205/8 223/8	11/16 15/16	21/8 11/2		5828	48
	1311W*	357/8	307/16	415/16	0,1	12	2,436	4,499	1134	331/2	11/2	5/8 x 5/16		237/8	15/16 15/16	3		5020	40
	1712	357/8	333,4	415/16	31,4	12	2.436	4,999	11	363,4	17/8	5/8 x 5/16		237/8	15/16	111/16		5000	
	1712W*	373/8	3334	415/16	0.4	12	2.436	4.999	121/2	37	11/2	5/8 x 5/16			1 ⁵ /16	33/16		5830	50
	1712.5	367/8 383/8	35 ³ ,4 35 ³ ,4	5 ¹³ /16 5 ¹³ /16		12 12	2,936	4,999	12	3634 37	17/8 11/2	3,4 x 3,8 3,4 x 3,8	114 x 58		15/16 15/16	111/16 33/16			
	1712.5W 1713	38% 381/8	35%	5 ¹³ /16	0.12	12	2,936		13½ 12	37 407/8	11/2	34 x 38 34 x 38	114 x 58 114 x 58		19/16 15/16	3%16 13/4		5832	52
	1710140	205-	9714	513 m	01-	10	0.000	5,400	101-	41	11.	2	11- 5-	075-	15/10	01			

12

15

15

2.936 5.499 131/2

3.124 6.498 141/2

3.499 7.498 16

52³,4 3

441,4 21,2

41

11/2

34 x 38 114 x 58 275/8

34 x 38 11/2 x 34 2934

7/8 x 7/16 184 x 7/8 335/8 113/16

15/16

1%16

31/4

25/8

2

1814

2016

1713W*

395,8

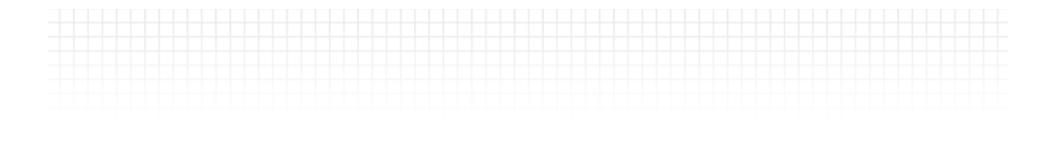
443,4

485/8

3714

391,4

43³4


513/16 31/2

57/8

6

57/8

6

Resources

CT 841 Specification

Specification CT841 - 2012

Standard for Petroleum and Chemical Industry Definite Purpose, Severe-Duty, Totally Enclosed Air Over (TEAO) Permanent Magnet Synchronous Cooling Tower Direct Drive Motors Up to and Including 370 kW (500 hp)

- 1. Overview
- 1.1 Scope

This standard applies to Totally Enclosed Air Over (TEAO), vertical, shaft up or down variable speed, definite purpose, permanent magnet polyphase synchronous, motors up to and including 370KW (500HP), and 600V nominal, for petroleum, chemical, and other severe duty, direct drive cooling tower and air cooled heat exchanger applications. Excluded from the scope of this standard are motors with sleeve bearings and additional specific features required for explosion-proof motors.

1.2 Purpose

The purpose of this standard is to define a specification that deals with mechanical and electrical performance, electrical insulation systems, corrosion protection, and electrical and mechanical testing for severe-duty TEAO permanent magnet polyphase synchronous motors, up to and including 370 kW (500 hp), for petroleum and chemical industry cooling tower and air cooled heat exchanger applications. Many of the specified materials and components in this standard stem from experience with severely corrosive atmospheres and the necessity for safe, quiet, reliable, definite purpose, adjustable speed motors.

Normative references

This standard shall be used in conjunction with the following standards. When the following standards are superseded by an approved revision, the new revision shall apply.

ABMA 9-1990, Load Ratings and Fatigue Life for Ball Bearings.

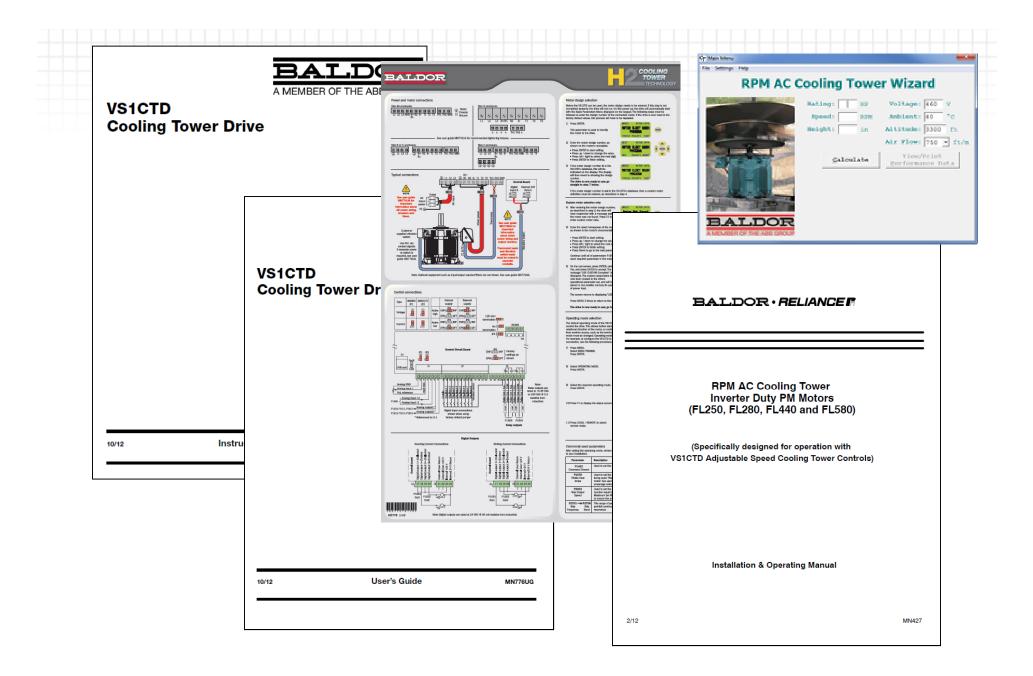
ABMA 11-1990, Load Ratings and Fatigue Life for Roller Bearings.

ABMA 20-2011, Radial Bearings of Ball, Cylindrical Roller and Spherical Roller Types-Metric Design.

ASME B 1.1-2003, Unified Inch Screw Threads (UN and UNR Thread Form) including Appendix C.

ASTM B 117-2011, Standard Practice for Operating Salt Spray (Fog) Apparatus.

IEEE Std 117-1974[™] (R 1991), IEEE Standard Test Procedure for Evaluation of Systems of Insulating Materials for Random-Wound AC Electric Machinery.


NEMA MG 1-2011 Motors and Generators.

NFPA 70-2011, National Electrical Code (NEC).

1 CT841 - 2012

User: Project:		EPC:	20	OEM: Tag No:		
		Location:				
Specification: CT841	-2012	RFQ Pr	oposal 🗆 A	s Built		
Altitude:	ft		Fan Information:			
Ambient: Max	°C Min	°C	Fan Diameter:	ft Fan Speer	: RPM	
Area Class:				cfm Static Press:		
Nonhazardous	T Code:			HP Air Densit		
	216			Fan P/N		
Motor info:			No of fan blades:	Height Re	striction: Y / N	
Rating: HP		Max RPM	Dist "A" motor/gea	ar base to bottom of f	an:	
Insulation: Class H, V	PI Winding:	Random				
Enclosure: TEAO	Vertical, shaft:	up down	6" from		Ť	
SF: 1.0 Thrust loa	ad: Ibs	s 🗆 up 🗆 down	Motor / gearbox	• · ·		
Space heaters: Y / N					1	
Space heater leads:			Air Flow		"A"	
Winding RTDs, 2/ph, 10	0 ohm: Y / N				29474	
Bearing RTDs, 1/brg, 10	0 ohm: Y / N				our o	
Shaft Requirements:	Straight Shaft:	Y/N	Air Flow	471101.17	L C 1.80	
Diam: in +/-				C. Reading D		
Tapered Shaft: Y / N		·	For Retrofit:			
B D	-	in		HP	RPM	
		in		P/N:		
F				Match existing b		
L' i \L	F=	X in		ving of existing gearbo		
		in	Airflow 6" from get	arbox vertical surface	ft/m	
	L2=	in				
· c	• _		ASD info:			
			Approximate cable	length from motor to	ASD:	
Testing:	Required	Witnessed		control room		
Factory test per 9.2				hase/Hz/Volts: 3		
Shop inspection						
Full load test			Additional requirer	ments / notes:		
Noise test						
Test with job ASD						
Additional testing:						
		14				

Summary

Higher Reliability

- Eliminate components
- Reduce vibration
- Reduce maintenance
- Eliminate windmilling

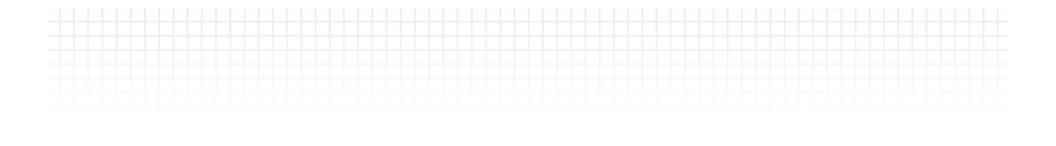
Lower Operating Cost

- Higher efficiency at full speed
- Cost savings with variable speed

Lower Environmental Impact

- No gear oil leaks in cooling water
- Lower noise

Thank You



Contact information

If you have further questions, please contact us

- David Kaunitz
 Industry Account Manager
 864.525.5292
 david.kaunitz@baldor.abb.com
- Todd Huston
 Industry Engineer
 864.373.4690
 todd.huston@baldor.abb.com

BALDOR A MEMBER OF THE ABB GROUP

