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Preface

The motivation for this textbook came from many years of lecturing Mathematics at the Faculty of Informatics at the

Masaryk University in Brno. The programme requires introduction to genuine mathematical thinking and precision. The

endeavor was undertaken by Jan Slovák and Martin Panák since 2004, with further collaborators joining later. Our goal was

to cover seriously, but quickly, about as much of mathematical methods as usually seen in bigger courses in the classical

Science and Technology programmes. At the same time, we did not want to give up the completeness and correctness

of the mathematical exposition. We wanted to introduce and explain more demanding parts of Mathematics together with

elementary explicit examples how to use the concepts and results in practice. But we did not want to decide how much of

theory or practice the reader should enjoy and in which order.

All these requirements have lead us to the two column format of the textbook, where the theoretical explanation on one

side and the practical procedures and exercises on the other side are split. This way, we want to encourage and help the readers

to �nd their own way. Either to go through the examples and algorithms �rst, and then to come to explanations why the things

work, or the other way round. We also hope to overcome the usual stress of the readers horri�ed by the amount of the stu�.

With our text, they are not supposed to read through the book in a linear order. On the opposite, the readers should enjoy

browsing through the text and �nding their own thrilling paths through the new mathematical landscapes.

In both columns, we intend to present rather standard exposition of basic Mathematics, but focusing on the essence of

the concepts and their relations. The exercises are addressing simple mathematical problems but we also try to show the

exploitation of mathematical models in practice as much as possible.

We are aware that the text is written in a very compact and non-homogeneous way. A lot of details are left to readers,

in particular in the more di�cult paragraphs, while we try to provide a lot of simple intuitive explanation when introducing

new concepts or formulating important theorems. Similarly, the examples display the variety from very simple ones to those

requesting independent thinking.

We would very much like to help the reader:

• to formulate precise de�nitions of basic concepts and to prove simple mathematical results;

• to percieve the meaning of roughly formulated properties, relations and outlooks for exploring mathematical tools;

• to understand the instructions and algorithms underlying mathematical models and to appreciate their usage.

These goals are ambitious and there are no simple paths reaching them without failures on the way. This is one of the

reasons why we come back to basic ideas and concepts several times with growing complexity and width of the discussions.

Of course, this might also look chaotic but we very much hope that this approach gives a better chance to those who will

persist in their e�orts. We also hope, this textbook should be a perfect beginning and help for everybody who is ready to think

and who is ready to return back to earlier parts again and again.

To make the task simpler and more enjoyable, we have added what we call "emotive icons". We hope they will spirit the

dry mathematical text and indicate which parts should be read more carefully, or better left out in the �rst round.

The usage of the icons follows the feelings of the authors and we tried to use them in a systematic way. We hope the

readers will assign the meaning to icons individually. Roughly speaking, we are using icons to indicate complexity, di�culty

etc.:

Further icons indicate unpleasant technicality and need of patiance, or possible entertainment and pleasure:



Similarly, we use various icons in the practical column:

The practical column with the solved problems and exercises should be readable nearly independently of the theory.

Without the ambition to know the deeper reasons why the algorithms work, it should be possible to read mainly just this

column. In order to help such readers, some de�nitions and descriptions in the theoretical text are marked in order to catch

the eyes easily when reading the exercises. The exercises and theory are partly coordinated to allow jumping there and back,

but the links are not tight. The numbering in the two columns is distinguished by using the di�erent numberings of sections,

i.e. those like ?? belong to the theoretical column, while ?? points to the practical column. The equations are numbered

within subsections and their quotes include the subsection numbers if necessary.

In general, our approach stresses the fact that themethods of the so called discreteMathematics seem to bemore important

for mathematical models nowadays. They seem also simpler to get percieved and grasped.

However, the continuous methods are strictly necessary too. First of all, the classical continuous mathematical analysis

is essential for understanding of convergence and robustness of computations. It is hard to imagine how to deal with error

estimates and computational complexity of numerical processes without it. Moreover, the continuous models are often the

e�cient and e�ectively computable approximations to discrete problems coming from practice.

The rough structure of the book and the dependencies between its chapters are depicted in the diagram below. The darker

the color is, the more demanding is the particular chapter (or at least its essential parts). In particular, the chapters 7 and 9

include a lot of material which would perhaps not be covered in the regular course activities or required at exams in great

detail. The solid arrows mean strong dependencies, while the dashed links indicate only partial dependencies. In particular,

the textbook could support courses starting with any of the white boxes, i.e. aiming at standard linear algebra and geometry

(chapters 2 through 4), discrete chapters of mathematics (11 through 13), and the rudiments of Calculus (5, 6, 8).



All topics covered in the book have been included (with more or less details) in our teaching of large four semester courses

of Mathematics, complemented by numerical seminars, since 2005. In our teaching, the �rst semester covered chapters 1 and

2 and selected topics from chapters 3 and 4. The second semester fully included chapters 5 and 6 and selected topics from

chapter 7. The third semester was split into two parts. The �rst one was covered by chapter 8, while the rest of the semester

was devoted to chapter 10 (with only a few glimpses towards the more advanced topics from chapter 9). The last semester

provided large parts of the content of chapters 11 through 13, although the entire graph theory was skipped (since it was

tought elsewhere). Actually, the second semester could be o�ered in parallel with the �rst one, while the fourth semester

could follow immediately after the �rst one. Indeed, some students were advised to go for the second and fourth semester

simultaneously (those in the IT security programme).



In the previous chapter we warmed up by considering

relatively simple problems which did not require any sophis-

ticated tools. It was enough to use addition andmultiplication

of scalars. In this and subsequent chapters we shall add more

sophisticated thoughts and tools.

First we restrict ourselves to concepts and operations con-

sisting of a �nite number of multiplications and additions to a

�nite number of scalars. This will take us three chapters and

only then will we move on to in�nitesimal concepts and tools.

Typically we deal with �nite collections of scalars of a given

size. We speak about �linear objects� and �linear algebra�.

Although it might seem to be a very special tool, we shall see

later that even more complicated objects are studied mostly

using their �linear approximations�.

In this chapter we will work with �nite sequences of

scalars. Such sequences arise in real-world

problems whenever we deal with objects de-

scribed by several parameters, which we shall

call coordinates. Do not try much to imagine

the space with more than three coordinates. You have to live

with the fact that we are able to depict only one, two or three

dimensions. However, we will deal with an arbitrary number

of dimensions. For example, observing any parameter in a

group 500 students (for instance, their study results), our data

will have 500 elements and we would like to work with them.

Our goal is to develop tools which will work well even if the

number of elements is large.

Do not be afraid of terms like �eld or ring of scalars K.
Simply, imagine any speci�c domain of numbers. Rings of

scalars are for instance integers Z and all residue classes Zk.

Among �elds we have seen only R, Q, C and residue classes

Zk for k prime. Z2 is very speci�c among them, because the

equation x = −x does not imply x = 0 here, whereas in

every other �eld it does.

1. Vectors and matrices

In the �rst two parts of this chapter, we will work with

vectors and matrices in the simple context of �nite sequences

of scalars. We can imagine working with integers or residue

classes as well as real or complex numbers. We hope to il-

lustrate how easily a concise and formal reasoning can lead

to strong results valid in a much broader context than just for

real numbers.

CHAPTER 2

Elementary linear algebra

Can't you count with scalars yet?

� no worry, let us go straight to matrices...

A. Systems of linear equations and matrix manipulation

We approach vector spaces in a clever way. We begin

with something we know � systems of linear equations and

�nd that the vector spaces are hidden behind them.
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Later, we follow the general terminology where the no-

tion of vectors is related to �elds of scalars only.

2.1.1. Vectors over scalars. For now, a vector is for us an

ordered n-tuple of scalars from K, where the �xed n ∈ N is

called dimension.

We can add and multiply scalars. We will be able to add

vectors, but multiplying a vector will be possible only by a

scalar. This corresponds to the idea we have already seen in

the plane R2. There, addition is realized as vector composi-

tion (as composition of arrows having their direction and size

and compared when emanating from the origin). Multiplica-

tion by scalar is realized as stretching the vectors.

A vector u = (a1, . . . , an) is multiplied by a scalar c by
multiplying every element of the n-tuple u by c. Addition is
de�ned coordinate-wise.

Basic vector operations

u+ v = (a1, . . . , an) + (b1, . . . , bn)

= (a1 + b1, . . . , an + bn)

c · u = c · (a1, . . . , an) = (c · a1, . . . , c · an).
cu = c(a1, . . . , an) = (ca1, . . . , can).

For vector addition andmultiplication by scalars we shall

use the same symbols as for scalars, that is, respectively, plus

and either dot or juxtaposition.

The vector notation convention. We shall not, unlike many

other textbooks, use any special notations for vec-

tors and leave it to the reader to pay attention to

the context. For scalars, we shall mostly use let-

ters from the beginning of the alphabet, for the

vector from the end of the alphabet. The middle part of the

alphabet can be used for indices of variables or components

and also for summation indices.

Later we shall require that the scalars are from some spe-

ci�c �eld, but for now we will work with the more relaxed

properties of scalars as listed in ??. In the general theory in

the end of this chapter and later, wewill work exclusively with

�elds of scalars.

For vector addition in Kn, the properties (CG1)�(CG4)
(see ??) clearly hold with the zero element being (notice we

de�ne the addition coordinate-wise)

0 = (0, . . . , 0) ∈ Kn.

We are purposely using the same symbol for both the zero

vector element and the zero scalar element. Next, let us notice

the following basic properties of vectors:

5

2.A.1. A colourful example. A company of painters orders

810 litres of paint, to contain 270 litres each

of red, green and blue coloured paint. The

provider can satisfy this order by mixing the

colours he usually sells (he has enough in his

warehouse). He has

• reddish colour � it contains 50 % of red, 25 % of green

and 25 % of blue colour;

• greenish colour � it contains 12,5% of red, 75% of green

and 12,5 % of blue colour;

• bluish colour � it contains 20 % of red, 20 % of green

and 60 % of blue colour.

How many litres of each of the colours at the warehouse have

to be mixed in order to satisfy the order?

Solution. Denote by

• x � the number of litres of reddish colour to be used;

• y � the number of litres of bluish colour to be used;

• z � the number of litres) greenish colour to be used;

By mixing the colours we want a colour that contains 270

litres of red. Note that reddish contains 50 % red, greenish

contains 12,5 % red and bluish 20 % red. Thus the following

has to be satis�ed:

0, 5x + 0, 125y + 0, 2z = 270.

Similarly, we require (for blue and green colours respectively)

that

0, 25x + 0, 75y + 0, 2z = 270,
0, 25x + 0, 125y + 0, 6z = 270.

From the �rst equation x = 540− 0, 25y − 0, 4z. Substitute

for x into the second and third equations to obtain two linear

equations of two variables 2, 75y+0, 4z = 540 and 0, 25y+

2z = 540. From the second of these we express z = 270 −
0, 125y and substitute into the �rst one we obtain 2, 7y = 432,

that is, y = 160. Therefore z = 270 − 0, 125 · 160 = 250

and hence x = 540− 0, 25 · 160 + 0, 4 · 250 = 400.

An alternative approach is to deduce consequences from

the given equations by a sequence of adding them or multi-

plying them by non-zero scalars. This is easily handled in the

matrix notation (which we met when solving equations with

two variables in the previous chapter already). The �rst row

of the matrix consists of coe�cients of the variables in the

�rst equation, second of the coe�cients in the second equa-

tion and third of the coe�cients in the third. Therefore the
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Vector properties

For all vectors v, w ∈ Kn and scalars a, b ∈ K we have

a · (v + w) = a · v + a · w(V1)

(a+ b) · v = a · v + b · v(V2)

a · (b · v) = (a · b) · v(V3)

1 · v = v(V4)
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The properties (V1)�(V4) of our vectors are easily

checked for any speci�c ring of scalars K, since we need just
the corresponding properties of scalars as listed in ?? and ??,

applied to individual components of the vectors. In this way

we shall work with, for instance, Rn, Qn, Cn, but also with

Zn, (Zk)
n, n = 1, 2, 3, . . ..

2.1.2. Matrices over scalars. Matrices are slightly more

complicated objects, useful when working with vectors.

Matrices of typem/n

Amatrix of the typem/n over scalarsK is a rectangular

schema A withm rows and n columns

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...

am1 am2 . . . amn


where aij ∈ K for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. For a matrix
A with elements aij we also use the notation A = (aij).

The vector (ai1, ai2, . . . , ain) ∈ Kn is called the (i-
th) row of the matrix A, i = 1, . . . ,m. The vector

(a1j , a2j , . . . , amj) ∈ Km is called the (j-th) column of the

matrix A, j = 1, . . . , n.

Matrices of the type 1/n or n/1 are actually just vectors
in Kn.

All general matrices can be understood as vectors in

Kmn, we just consider all the columns.

In particular, matrix addition and matrix

multiplication by scalars is de�ned:

A+B = (aij + bij), a ·A = (a · aij)
where A = (aij), B = (bij), a ∈ K.

The matrix −A = (−aij) is called the additive inverse

to the matrix A and the matrix

0 =

0 . . . 0
...

...

0 . . . 0


is called the zero matrix. By considering matrices as mn-
dimensional vectors, we obtain the following:

Proposition. The formulas for A+B, a · A, −A, 0 de�ne

the operations of addition and multiplication by scalars for

the set of all matrices of the type m/n, which satisfy axioms

(V1)�(V4).
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matrix of the system is 0, 5 0, 125 0, 2
0, 25 0, 75 0, 2
0, 25 0, 125 0, 6

 ,

The extended matrix of the system is obtained from the matrix

of the system by inserting the column of the right-hand sides

of the individual equations in the system: 0, 5 0, 125 0, 2 270
0, 25 0, 75 0, 2 270
0, 25 0, 125 0, 6 270


By doing elementary row transformations sequentially

(they all correspond to adding rows and multiplication by

scalars with the equations, see 2.1.7) we can eliminate the

variables in the equations, one by one:(
0, 5 0, 125 0, 2 270
0, 25 0, 75 0, 2 270

0, 25 0, 125 0, 6 270

)
∼

(
1 0, 25 0, 4 540
1 3 0, 8 1 080

1 0, 5 2, 4 1 080

)
∼

(
1 0, 25 0, 4 540

0 2, 75 0, 4 540
0 0, 25 2 540

)
∼

(
1 0, 25 0, 4 540

0 11 1, 6 2 160
0 1 8 2 160

)
∼(

1 0, 25 0, 4 540

0 1 8 2 160
0 11 1, 6 2 160

)
∼

(
1 0, 25 0, 4 540

0 1 8 2 160
0 0 −86, 4 −21 600

)
.

By back substitution, we compute successively

z =
−21 600

−86, 4
= 250,

y = 2160− 8 · 250 = 160,

x = 540− 0, 4 · 250− 0, 25 · 160 = 400.

Thus it is necessary to mix 400 litres of reddish, 160 litres of

bluish and 250 litres of greenish colour. □

2.A.2. Solve the system of simultaneous linear equations

x1 + 2x2 + 3x3 = 2,
2x1 − 3x2 − x3 = −3,

−3x1 + x2 + 2x3 = −3.

Solution. Wewrite the system of equations in the form of the

extended matrix of the system 1 2 3 2
2 −3 −1 −3
−3 1 2 −3

 .

Every row of the matrix corresponds to one equation. As in

the previous example, equivalent transformation of the equa-

tions correspond to the elementary row operations on the ma-

trix and we use them to transform it into the row echelon form 1 2 3 2
2 −3 −1 −3
−3 1 2 −3

 ∼

 1 2 3 2
0 −7 −7 −7
0 7 11 3

 ∼
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2.1.3. Matrices and equations. Many mathematical mod-

els are based on systems of linear equations. Matrices are

useful for the description of such systems. In order to see

this, let us introduce the notion of scalar product of two vec-

tors, assigning to the vectors (a1, . . . , an) and (x1, . . . , xn)
their product

(a1, . . . , an) · (x1, . . . , xn) = a1x1 + · · ·+ anxn.

This means, wemultiply the corresponding coordinates of the

vectors and sum the results.

Every system ofm linear equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be seen as a constraint on values of m scalar products

with one unknown vector (x1, . . . , xn) (called the vector of

variables, or vector variable) and the known vectors of coor-

dinates (ai1, . . . , ain).
The vector of variables can be also seen as a column in a

matrix of the type n/1, and similarly the values
b1, . . . , bn can be seen as a vector u, and that is
again a single column of the matrix of the type

n/1. Our system of equations can then be formally written as

A · x = u as follows:

a11 . . . a1n
...

...

am1 . . . amn

 .

x1

...

xn

 =

 b1
...

bm


where the left-hand side is interpreted asm scalar products of

the individual rows of the matrix (giving rise to a column vec-

tor) with the vector variable x, whose values are prescribed
by the equations. That means that the identity of the i-th co-
ordinates corresponds to the original i-th equation

ai1x1 + · · ·+ ainxn = bi

and the notation A · x = u gives the original system of equa-

tions.

2.1.4. Matrix product. In the plane, that is, for vectors of

dimension two, we developed a matrix calculus.

We noticed that it is e�ective to work with (see

??). Now we generalize such a calculus and we

develop all the tools we know already from the

plane case to deal with higher dimensions n.
It is possible to de�ne matrix multiplication only when

the dimensions of the rows and columns allow it, that is, when

the scalar product is de�ned for them as before:
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∼

 1 2 3 2
0 1 1 1
0 0 4 −4

 ∼

 1 2 3 2
0 1 1 1
0 0 1 −1

 .

First we subtracted from the second row twice the �rst row,

and to the third row we added three times the �rst row. Then

we added the second row to the third row and multiplied the

second row by−1/4. Nowwe restore the system of equations

x1 + 2x2 + 3x3 = 2,
x2 + x3 = 1,

x3 = −1.

We see immediately that x3 = −1. If we substitute x3 = −1

into the equation x2 + x3 = 1, we obtain x2 = 2. Then

by substituting x3 = −1, x2 = 2 into the �rst equation, we

obtain x1 = 1. □
Systems of linear equations can be written in matrix no-

tation. But is it an advantage, when we can solve the systems

even without speaking about matrices? Yes it is, we can han-

dle the equations more conceptually. We can easily decide

how many solutions a system has. It is much more e�cient

in computer assisted computations. Thus we shall get famil-

iar with various operations which can be done with matrices.

As we have seen in previous examples, equivalent operations

with linear equations correspond to elementary row (column)

transformations. Further we have seen that transforming ama-

trix into a row echelon form, a process called Gaussian elim-

ination, see 2.1.7), solves the system very easily. We demon-

strate this on some examples, where we will see that a system

can have in�nitely many solutions or no solution at all.

2.A.3. Solve a system of linear equations

2x1 − x2 + 3x3 = 0,
3x1 + 16x2 + 7x3 = 0,
3x1 − 5x2 + 4x3 = 0,

−7x1 + 7x2 + −10x3 = 0.

Solution. Because the right-hand side of all equations is zero

(such a case is called a homogeneous system) we work with

the matrix of the system only. We �nd the solution by trans-

forming the matrix into the row echelon form using elemen-

tary row transformations. These correspond to changing the

order of equations, multiplying an equation by a non-zero

number and addition of multiples of equations. Furthermore,

we can always go back and forth between the matrix notation

and the original system notation with variables xi. We obtain:
2 −1 3
3 16 7
3 −5 4
−7 7 −10

 ∼


2 −1 3
0 35/2 5/2
0 −7/2 −1/2
0 7/2 1/2

 .
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Matrix product

For any matrix A = (aij) of the type m/n and any

matrix B = (bjk) of the type n/q over the ring of scalars K
we de�ne their product C = A · B = (cik) as a matrix of

the typem/q with the elements

cik =
n∑

j=1

aijbjk, for arbitrary 1 ≤ i ≤ m, 1 ≤ k ≤ q.

That is, the element cik of the product is exactly the scalar

product of the i-th row of the matrix on the left and of the

k-th column of the matrix on the right. For instance we have(
2 1
1 −1

)
·
(

2 1 1
−1 0 1

)
=

(
3 2 3
3 1 0

)
.

2.1.5. Square matrices. If there is the same number of rows

and columns in the matrix, we speak of a square matrix. The

number of rows or columns is then called the dimension of

the matrix. The matrix

E = (δij) =

1 . . . 0
...

. . .
...

0 . . . 1


is called the unit matrix, or alternatively, the identity matrix.

The numbers δij de�ned in such a way are also called theKro-
necker delta. When we restrict ourselves to square matrices

over K of �xed dimension n, the matrix product is de�ned

for any two matrices. That is, there is the well de�ned multi-

plication operation there. Its properties are similar to that of

scalars:

Proposition. On the set of all square matrices of dimension

n over an arbitrary ring of scalarsK, the multi-
plication operation is de�ned with the following

properties of rings (see ??):

(O1) Multiplication is associative.

(O3) The unit matrix E = (δij) is the unit element for multi-
plication.

(O4) Multiplication and addition is distributive.

In general, neither the property (O2) nor (OI) are true. There-

fore, the square matrices for n > 1 do not form an integral

domain, and consequently they cannot be a (commutative or

non-commutative) �eld.

Proof. Associativity of multiplication � (O1): Since scalars

are associative, distributive and commutative, we can com-

pute for any threematricesA = (aij) of typem/n,B = (bjk)
of type n/p and C = (ckl) of type p/q:

A ·B =

(∑
j

aij · bjk
)
, B · C =

(∑
k

bjk · ckl
)
,

(A ·B) · C =
(∑

k

(∑
j

aijbjk
)
ckl
)
=
(∑
j,k

aijbjkckl
)
,

A · (B · C) =
(∑

j

aij
(∑

k

bjkckl
))

=
(∑
j,k

aijbjkckl
)
.
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From there we see that the second, third and fourth equations

are multiples of the equation 7x2 + x3 = 0. We continue:
2 −1 3
0 35/2 5/2
0 −7/2 −1/2
0 7/2 1/2

 ∼


2 −1 3
0 35/2 5/2
0 0 0
0 0 0



∼


2 −1 3
0 7 1
0 0 0
0 0 0

 ,

Considered as equations, the last two are redundant, and we

are left with just

2x1 − x2 + 3x3 = 0,
7x2 + x3 = 0

We substitute for the variable x3 a parameter t ∈ R and ex-

press

x2 = −1

7
x3 = −1

7
t a x1 =

1

2
(x2 − 3x3) = −11

7
t.

If we now substitute t = −7s, we obtain the result in a simple

form

(x1, x2, x3) = (11s, s, −7s) , s ∈ R.

The whole system has in�nitely many solutions. □

2.A.4. Find all solutions of the system of linear equations

3x1 + 3x3 − 5x4 = −8,
x1 − x2 + x3 − x4 = −2,

−2x1 − x2 + 4x3 − 2x4 = 0,
2x1 + x2 − x3 − x4 = −3.

Solution. The corresponding extended matrix of the system

is 
3 0 3 −5 −8
1 −1 1 −1 −2
−2 −1 4 −2 0
2 1 −1 −1 −3

 .

By changing the order of rows (equations) we obtain
1 −1 1 −1 −2
2 1 −1 −1 −3
−2 −1 4 −2 0
3 0 3 −5 −8

 ,

which we transform into the row echelon form:(
1 −1 1 −1 −2
2 1 −1 −1 −3
−2 −1 4 −2 0
3 0 3 −5 −8

)
∼

(
1 −1 1 −1 −2
0 3 −3 1 1
0 −3 6 −4 −4
0 3 0 −2 −2

)
(

1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 3 −3 −3

)
∼

(
1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 0 0 0

)
.

The system has thus in�nitely many solutions, because we

have three equations in four variables. These three equa-

tions have exactly one solution for any choice for the variable



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

Note that while computing, we relied on the fact that it does

not matter in which order are we performing the sums and

products, that is, we were relying on the properties of scalars.

We can easily see that multiplication by a unit matrix has

the property of a unit element:

A · E =

a11 · · · a1m
...

am1 · · · amm

 ·


1 0 · · · 0
0 1 · · · 0
...

...

0 0 · · · 1

 = A

and similarly from the left,

E ·A = A.

It remains to prove the distributivity ofmultiplication and

addition. Again using the distributivity of scalars we can

easily calculate for matrices A = (aij) of the type m/n,
B = (bjk) of the type n/p, C = (cjk) of the type n/p,
D = (dkl) of the type p/q

A · (B + C) =

(∑
j

aij(bjk + cjk)

)

=

((∑
j

aijbjk
)
+
(∑

j

aijcjk
))

= A ·B +A · C

(B + C) ·D =

(∑
k

(bjk + cjk)dkl

)
=

((∑
k

bjkdkl
)
+
(∑

k

cjkdkl
))

= B ·D + C ·D.

As we have seen in ??, two matrices of dimension two

do not necessarily commute: for example

(
1 0
0 0

)
.

(
0 1
0 0

)
=

(
0 1
0 0

)
(
0 1
0 0

)
.

(
1 0
0 0

)
=

(
0 0
0 0

)
.

This gives us immediately a counterexample to the validity of

(O2) and (OI). For matrices of type 1/1 both axioms clearly
hold, because the scalars itself have them. For matrices of

greater dimension the counterexamples can be obtained sim-

ilarly. Simply place the counterexamples for dimension 2 in

their left upper corner, and select the rest to be zero. (Verify

this on your own!) □

In the proof we have actually worked with matrices of

more general types, thus we have proved the properties in

greater generality:

9

x4 ∈ R. Thus for x4 we substitute the parameter t ∈ R and

go back from the matrix notation to the system of equations

x1 − x2 + x3 − t = −2,
3x2 − 3x3 + t = 1,

3x3 − 3t = −3.

From the last equation we have x3 = t − 1. Substituting for

x3 into the second equation gives

3x2 − 3t+ 3 + t = 1, that is, x2 =
1

3
(2t− 2) .

Finally, using the �rst equation, we have

x1 −
1

3
(2t− 2) + t− 1− t = −2, tj. x1 =

1

3
(2t− 5) .

The set of solutions can be written (for t = 3s) in the form{
(x1, x2, x3, x4) =

(
2s− 5

3 , 2s−
2
3 , 3s− 1, 3s

)
, s ∈ R

}
.

We return to the extended matrix of the system and trans-

form it further by using the row transformations in order to

have (still in the row echelon form) the �rst non-zero number

of every row (the so-called pivot) equal to one and that all the

other numbers in the column of the pivot are zero. We have
1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3
0 0 0 0 0



∼


1 −1 1 −1 −2
0 1 −1 1/3 1/3
0 0 1 −1 −1
0 0 0 0 0



∼


1 −1 0 0 −1
0 1 0 −2/3 −2/3
0 0 1 −1 −1
0 0 0 0 0



∼


1 0 0 −2/3 −5/3
0 1 0 −2/3 −2/3
0 0 1 −1 −1
0 0 0 0 0

 ,

because �rst we have multiplied the second and the third row

by 1/3, then we have added the third row to the second and its

(−1)-multiple to the �rst. Finally we have added the second

row to the �rst. From the last matrix we easily obtain the

result 
x1

x2

x3

x4

 =


−5/3
−2/3
−1
0

+ t


2/3
2/3
1
1

 , t ∈ R.

Free variables are those whose columns do not contain any

pivot (in our case there is no pivot in the fourth column, that

is, the fourth variable is free and we use it as a parameter). □
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Associativity and distributivity

Matrix multiplication is associative and distributive,

that is,

A · (B · C) = (A ·B) · C
A · (B + C) = A ·B +A · C,

whenever are all the given operations de�ned. The unit ma-

trix is a unit element for multiplication (both from the right

and from the left).
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2.1.6. Inverse matrices. With scalars we can do the follow-

ing: from the equation a · x = b with a �xed

invertible a we can express x = a−1 · b for any
b. We would like to be able to do this for matri-

ces too. So we need to solve the problem � how

to tell that such a matrix exists, and if so, how to compute it?

We say that B is the inverse of A if

A ·B = B ·A = E.

Then we write B = A−1. From the de�nition it is clear that

both matrices must be square and of the same dimension n.
A matrix which has an inverse is called an invertible matrix

or a regular square matrix.

In the subsequent paragraphs we derive (among other

things) that B is actually the inverse of A whenever just one

of the above required equations holds. The other is then a

consequence.

We easily check that if A−1 and B−1 exist, then there

also is the inverse of the product A ·B
(1) (A ·B)−1 = B−1 ·A−1.

Indeed, because of the associativity of matrix multiplication

proved a while ago, we have

(B−1 ·A−1) · (A ·B) = B−1 · (A−1 ·A) ·B = E

(A ·B) · (B−1 ·A−1) = A · (B ·B−1 ) ·A−1 = E.

Because we can calculate with matrices similarly as with

scalars (they are just a little more complicated),

the existence of an inversematrix can really help

us with the solution of systems of linear equa-

tions: if we express a system of n equations for

n unknowns as a matrix product

A · x =

a11 · · · a1m
...

am1 · · · amm

 ·

x1

...

xm

 =

 b1
...

bm

 = u

and when the inverse of the matrixA exists, then we can mul-

tiply from the left by A−1 to obtain

A−1 · u = A−1 ·A · x = E · x = x,

that is, A−1 · u is the desired solution.

On the other hand, expanding the conditionA·A−1 = E
for unknown scalars in the matrix A−1 gives us n systems of

linear equations for the same matrix on the left and di�erent
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2.A.5. Determine the solutions of the system of equations

3x1 + 3x3 − 5x4 = 8,
x1 − x2 + x3 − x4 = −2,

−2x1 − x2 + 4x3 − 2x4 = 0,
2x1 + x2 − x3 − x4 = −3.

Solution. Note that the system of equations in this exercise

di�ers from the system of equations in the previous exercise

only in the value 8 (instead of −8) on the right-hand side. If

we do the same row transformations as in the previous exer-

cise, we obtain 3 0 3 −5 8
1 −1 1 −1 −2

−2 −1 4 −2 0
2 1 −1 −1 −3

 ∼

 1 −1 1 −1 −2
2 1 −1 −1 −3

−2 −1 4 −2 0
3 0 3 −5 8



∼

1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3

0 0 3 −3 13

 ∼

1 −1 1 −1 −2
0 3 −3 1 1
0 0 3 −3 −3

0 0 0 0 16

 ,

where the last operation was subtracting the third row from

the fourth. From the fourth equation 0 = 16 follows that the

system has no solutions. Let us emphasize than whenever we

obtain an equation of the form 0 = a for some a ̸= 0 (that

is, zero row on the left side and non-zero number after the

vertical bar) when doing the row transformation, the system

has no solutions. □
You can �nd more exercises for systems of systems of

linear equations on the page 58

Now we are going to manipulate with matrices to get

more familiar with their properties.

2.A.6. Matrix multiplication. Note that, in order to be able

to multiply two matrices, the necessary

and su�cient condition is that the �rst

matrix has the same number of columns

as the number of rows of the second matrix. The number of

rows of the resulting matrix is then given by the number of

rows of the �rst matrix, the number of columns then equals

the number of columns of the second matrix.

i)

(
1 2
−1 3

)
·
(
1 −1
2 1

)
=

(
5 1
5 4

)
,

ii)

(
1 −1
2 1

)
·
(

1 2
−1 3

)
=

(
2 −1
1 7

)
,

iii)

(
1 2 3
1 −1 1

)
·

1 −1 2 1
1 1 −2 −3
3 2 1 0


=

(
12 7 1 −5
3 0 5 4

)
,
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vectors on the right. Thus we should think about methods for

solutions of the systems of linear equations.

2.1.7. Equivalent operations with matrices. Let us gain

some practical insight into the relation between systems of

equations and their matrices. Clearly, searching for the in-

verse can be more complicated than �nding the direct solu-

tion to the system of equations. But note that whenever we

have to solve more systems of equations with the same ma-

trix A but with di�erent right sides u, then yielding A−1 can

be really bene�cial for us.

From the point of view of solving systems of equations

A · x = u, it is natural to consider the matri-

ces A and vectors u equivalent whenever they

give a system of equations with the same solu-

tion set. Let us think about possible operations

which would simplify the matrix A such that obtaining the

solution is easier.

We beginwith simplemanipulations of rows of equations

which do not in�uence the solution, and similar modi�cations

of the right-hand side vector. If we are able to change a square

matrix into the unit matrix, then the right-hand side vector

is a solution of the original system. If some of the rows of

the system vanish during the course of manipulations (that is,

they become zero), then we get some direct information about

the solution. Our simple operations are:

Elementary row transformations

• interchanging two rows,

• multiplication of any given row by a non-zero scalar,

• adding another row to any given row.

These operations are called elementary row transformations.

It is clear that the corresponding operations at the level of the

equations in the system do not change the set of the solutions

whenever our ring of coordinates is an integral domain.

Analogically, elementary column transformations of ma-

trices are

• interchanging two columns

• multiplication of any given column by a non-zero scalar,

• adding another column to any given column.

These do not preserve the solution set, since they change the

variables themselves.

Systematically we can use elementary row transforma-

tions for subsequent elimination of variables.

This gives an algorithm which is usually called

the Gaussian elimination method. Henceforth,

we shall assume that our scalars come from a integral domain

(e.g. integers are allowed, but not say Z4).
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iv)

 1 3 1
−2 2 −1
3 1 −4

 ·

 1
3
−3

 =

 7
7
18

,

v)
(
1 3 −3

)
·

1 −2 3
3 2 1
1 −1 −4

 =
(
7 7 18

)
,

vi)
(
1 2 −2

)
·

2
1
3

 =
(
−2
)
.

Remark. Parts i) and ii) in the previous exercise show that

multiplication of square matrices is not commutative in gen-

eral. In part iii) we see that if we can multiply two rectangular

matrices, then it is possible only in one of the orders. In parts

iv) and v) note that (A ·B)T = BT ·AT .

2.A.7. Let

A =

4 0 −5
2 7 15
2 7 13

 , B =

7 2 0
0 0 3

0 −19
√
13

 .

Can the matrix A be transformed into B using only elemen-

tary row transformations (we say then that such matrices are

row equivalent)?

Solution. Both matrices are row equivalent with the three-

dimensional identity matrix. It is easy to see that row equiv-

alence on the set of all matrices of given type is indeed an

equivalence relation. Thus the matrices A and B are row

equivalent. □

2.A.8. Find a matrix B for which the matrix C = B ·A is

in row echelon form, where

A =


3 −1 3 2
5 −3 2 3
1 −3 −5 0
7 −5 1 4

 .

Solution. If we multiply the matrix A successively from the

left by elementary matrices (consider what elementary row

transformations does it correspond to)

E1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , E2 =


1 0 0 0
−5 1 0 0
0 0 1 0
0 0 0 1

 ,

E3 =


1 0 0 0
0 1 0 0
−3 0 1 0
0 0 0 1

 , E4 =


1 0 0 0
0 1 0 0
0 0 1 0
−7 0 0 1

 ,

E5 =


1 0 0 0
0 1/3 0 0
0 0 1 0
0 0 0 1

 , E6 =


1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

 ,
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Gaussian elimination of variables

Proposition. Any non-zero matrix over an arbitrary inte-

gral domain of scalars K can be transformed, using �nitely

many elementary row transformations, into row echelon

form:

• For each j, if aik = 0 for all columns k = 1, . . . , j,
then akj = 0 for all k ≥ i,

• if a(i−1)j is the �rst non-zero element at the (i − 1)-st
row, then aij = 0.

Proof. The matrix in row echelon form looks like
0 . . . 0 a1j . . . . . . . . . a1m
0 . . . 0 0 . . . a2k . . . a2m
...

0 . . . . . . . . . . . . 0 alp . . .
...

 .

The matrix can (but does not have to) end with some zero

rows. In order to transform an arbitrary matrix, we can use

a simple algorithm, which will bring us, row by row, to the

resulting echelon form:

Gaussian elimination algorithm

(1) By a possible interchange of rows we can obtain a ma-

trix where the �rst row has a non-zero element in the

�rst non-zero column. Let that column be column j. In
other words, a1j ̸= 0, but aiq = 0 for all i, and all q,
1 ≤ q < j.

(2) For each i = 2, . . ., multiply the �rst row by the element

aij , multiply i-th row by the element a1j and subtract,
to obtain aij = 0 on the i-th row.

(3) By repeated application of the steps (1) and (2), always

for the not-yet-echelon part of rows and columns in the

matrix we reach, after a �nite number of steps, the �nal

form of the matrix.

This algorithm clearly stops after a �nite number of steps

and provides the proof of the proposition. □

The given algorithm is really the usual elimination of

variables used in the systems of linear equations.

In a completely analogous manner we de�ne the column

echelon form of matrices and considering column elementary

transformations instead the row ones, we obtain an algorithm

for transforming matrices into the column echelon form.

Remark. Although we could formulate the Gaussian elim-

ination for general scalars from any ring, this does

not make much sense in view of solving equations.

Clearly having divisors of zero among the scalars, we

might get zeros during the procedure and lose infor-

mation this way. Think carefully about the di�erences be-

tween the choices K = Z, K = R and possibly Z2 or Z4.
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E7 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −4 0 1

 , E8 =


1 0 0 0
0 1/4 0 0
0 0 1 0
0 0 0 1

 ,

we obtain

B = E8E7E6E5E4E3E2E1 =


0 0 1 0
0 1/12 −5/12 0
1 −2/3 1/3 0
0 −4/3 −1/3 1

 ,

C =


1 −3 −5 0
0 1 9/4 1/4
0 0 0 0
0 0 0 0

 .

□

2.A.9. Complex numbers as matrices. Consider the set of

matrices C =
{( a b

−b a

)
, a, b ∈ R

}
. Note that

C is closed under addition and matrix multiplica-

tion, and further show that the mapping f : C →

C,
(

a b
−b a

)
7→ a+ bi satis�es f(M + N) =

f(M)+f(N) and f(M ·N) = f(M)·f(N) (on the left-hand

sides of the equations we have addition and multiplication of

matrices, on the right-hand sides we have addition and mul-

tiplication of complex numbers). Thus the set C along with

multiplication and addition can be seen as the �eld C of com-

plex numbers. The mapping f is called an isomorphism (of

�elds). Thus for instance we have

(
3 5
−5 3

)
·
(
8 −9
9 8

)
=

(
69 13
−13 69

)
,

which corresponds to (3 + 5i) · (8− 9i) = 69− 13i.

2.A.10. Solve the equations for matrices(
1 3
3 8

)
·X1 =

(
1 2
3 4

)
, X2 ·

(
1 3
3 8

)
=

(
1 2
3 4

)
.

Solution. Clearly the unknownsX1 andX2 must be matrices

of the type 2× 2 (in order for the products to be de�ned and

that the result is a matrix of the type 2× 2). Set

X1 =

(
a1 b1
c1 d1

)
, X2 =

(
a2 b2
c2 d2

)
and multiply out the matrices in the �rst given equation. We

obtain (
a1 + 3c1 b1 + 3d1
3a1 + 8c1 3b1 + 8d1

)
=

(
1 2
3 4

)
,
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On the other hand, if we are dealing with �elds of scalars,

we can always arrive at a row echelon form where the non-

zero entries on the �diagonal� are ones. This is done by ap-

plying the the appropriate scalar multiplication to each indi-

vidual row. However, this is not possible in general � think

for instance of the integers Z.

2.1.8. Matrix of elementary row transformations. Let us

now restrict ourselves to �elds of scalarsK, that is, every non-
zero scalar has an inverse.

Note that elementary row or column transformations cor-

respond respectively to multiplication from the left or right

by the following matrices:

(1) Interchanging the i-th and j-th row (column)

1 0 . . .

0
. . .

... 0 . . . 1
...

. . .
...

1 . . . 0
. . .

1


.

(2) Multiplication of the i-th row (column) by the scalar a:

1
. . .

1
a

1
. . .

1


← i

.
(3) To row i, add row j (column):

i→



1 0

0
. . .

. . .

. . .

1
. . .

. . .

1


↑
j

.

This trivial observation is actually very important, since

the product of invertible matrices is invertible

(recall 1) and all elementary transformations

over a �eld of scalars are invertible (the de�ni-

tion of the elementary transformation itself en-

sures that inverse transformations are of the same type and it

is easy to determine the corresponding matrix).

Thus, the Gaussian elimination algorithm tells us, that

for an arbitrary matrix A, we can obtain its equivalent row
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that is,

a1 + 3c1 = 1,
b1 + 3d1 = 2,

3a1 + 8c1 = 3,
3b1 + 8d1 = 4.

By adding a (−3)-multiple of the �rst equation with the third

equation we obtain c1 = 0 and then a1 = 1. Analogously, by

adding a (−3)-multiple of the second equation to the fourth

equation we obtain d1 = 2 and then b1 = −4. Thus we have

X1 =

(
1 −4
0 2

)
.

We can �nd the values a2, b2, c2, d2 by a di�erent ap-

proach. If A is a square matrix, we write A−1 to denote its

inverse, so that A · A−1 = A−1 · A = E, the unit matrix) It

is easy to check that(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
,

which holds for any numbers a, b, c, d ∈ R provided ad−bc ̸=
0. (This is easy to derive; it also directly follows from formula

1 in 2.2.10). We calculate(
1 3
3 8

)−1

=

(
−8 3
3 −1

)
.

Multiplying the given equations by this matrix from the right

gives

X2 =

(
1 2
3 4

)
·
(
−8 3
3 −1

)
,

and thus

X2 =

(
−2 1
−12 5

)
.

□

2.A.11. Solve the matrix equation

X ·
(
2 5
1 3

)
=

(
4 −6
2 1

)
.

⃝

2.A.12. Computing the inverse matrix. Compute

the inverse of the matrices

A =

4 3 2
5 6 3
3 5 2

 , B =

1 0 1
3 3 4
2 2 3

 .

Then determine the matrix
(
AT ·B

)−1
.

Solution. We �nd the inverse by the following method: write

next to each other the matrix A and the unit matrix. Then

use elementary row transformations so that the sub-matrix A

changes into the unit matrix. This will change the original

unit sub-matrix to A−1. We obtain
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echelon form A′ = P · A by multiplying with a suitable in-

vertiblematrixP = Pk · · ·P1 from the left (that is, sequential

multiplication with kmatrices of the elementary row transfor-

mations).

If we apply the same elimination procedure for the

columns, we can transform any matrix B into its column

echelon formB′ by multiplying it from the right by a suitable

invertible matrix Q = Q1 · · ·Qℓ. If we start with the matrix

B = A′ in row echelon form, this procedure eliminates only

the still non-zero elements out of the diagonal of the matrix

and in the end we can transform the remaining elements to

be units. Thus we have veri�ed a very important result which

we will use many times in the future:

2.1.9. Theorem. For every matrix A of the type m/n over a

�eld of scalarsK, there exist square invertible matricesP and

Q of dimensions m and n, respectively, such that the matrix

P ·A is in row echelon form and

P ·A ·Q =



1 . . . 0 . . . . . . . . . 0
...

. . .

0 . . . 1 0 . . . . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0
...


.

The number of the ones in the diagonal is independent of the

particular choice of P and Q.

Proof. We already have proved everything but the last

sentence. We shall see this last claim below in 2.1.11. □

2.1.10. Algorithm for computing inverse matrices. In the

previous paragraphs we almost obtained the com-

plete algorithm for computing the inverse matrix.

Using the simple modi�cation below, we �nd ei-

ther that the inverse does not exist, or we compute

the inverse. Keep in mind that we are still working over a �eld

of scalars.

Equivalent row transformations of a square matrix A of

dimension n leads to an invertible matrix P ′ such that P ′ ·A
is in row echelon form. If A has an inverse, then there exists

also the inverse of P ′ ·A. But if the last row of P ′ ·A is zero,

then the last row of P ′ ·A ·B is also zero for any matrixB of

dimension n. Thus, the existence of a zero row in the result

of (row) Gaussian elimination excludes the existence of A−1.

Assume now that A−1 exists. As we have just seen, the

row echelon form of A will have exclusively non-zero rows

only, In particular, all diagonal elements ofP ′·A are non-zero.

But now, we can employ row elimination by the elementary

row transformation from the bottom-right corner backwards

and also transform the diagonal elements to be units. In this

way, we obtain the unit matrix E. Summarizing, we �nd an-
other invertible matrix P ′′ such that for P = P ′′ ·P ′ we have

P ·A = E.
Now observe that we could clearly work with columns

instead of row transformation and thus, under the assumption
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 4 3 2 1 0 0
5 6 3 0 1 0
3 5 2 0 0 1


∼

 1 −2 0 1 0 −1
5 6 3 0 1 0
3 5 2 0 0 1


∼

 1 −2 0 1 0 −1
0 16 3 −5 1 5
0 11 2 −3 0 4


∼

 1 −2 0 1 0 −1
0 5 1 −2 1 1
0 11 2 −3 0 4


∼

 1 −2 0 1 0 −1
0 5 1 −2 1 1
0 1 0 1 −2 2


∼

 1 0 0 3 −4 3
0 0 1 −7 11 −9
0 1 0 1 −2 2


∼

 1 0 0 3 −4 3
0 1 0 1 −2 2
0 0 1 −7 11 −9

 .

In the �rst step we subtracted from the �rst row the third

row, in the second stepwe added a (−5)-multiple of the �rst to

the second row and added a (−3)-multiple of the �rst row to

the third row, in the third step we subtracted from the second

row the third row, in the fourth step we added a (−2)-multiple

of the second row to the third row, in the �fth step we added a

(−5)-multiple of the third row to the second row and added a

2-multiple of the third row to the �rst row, and in the last step

we changed the second and the third row. We have obtained

the result

A−1 =

 3 −4 3
1 −2 2
−7 11 −9

 .

Note that when calculating the matrix A−1 we did not

have to cope with fractions thanks to the suitably chosen row

transformations. Although we could carry on similarly when

doing the next exercise, that is, B−1 , we will rather do the

more obvious row transformations. We have

 1 0 1 1 0 0
3 3 4 0 1 0
2 2 3 0 0 1

 ∼

 1 0 1 1 0 0
0 3 1 −3 1 0
0 2 1 −2 0 1

 ∼
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of the existence of A−1, we would �nd a matrix Q such that

A ·Q = E. From this we see immediately that

P = P · E = P · (A ·Q) = (P ·A) ·Q = E ·Q = Q.

That is, we have found the inverse matrix

A−1 = P = Q

for the matrixA. Notice that at the point of �nding the matrix
P with the property P ·A = E, we do not have to do any fur-
ther computation, since we have already obtained the inverse

matrix.

In practice, we can work as follows:

Computing the inverse matrix

Write the unit matrix E to the right of the matrix A,
producing an augmented matrix (A,E). Transform the aug-

mented matrix using the elementary row transformations

to row echelon form. This produces an augmented matrix
(PA,PE), where P is invertible, and PA is in row echelon

form. By the above, either PA = E, in which case A is in-

vertible and P = PE = A−1, or PA has a row of zeros, in

which case we conclude that the inverse matrix for A does

not exist.

2.1.11. Linear dependence and rank. In the previous

practical algorithms dealing with matrices

we worked all the time with row and column

additions and scalar multiplications, seeing

them as vectors.

Such operations are called linear combinations. We shall

return to such operations in an abstract sense later on in 2.3.1.

But it will be useful to understand their core meaning right

now. A linear combination of rows of a matrix A = (aij) of
typem/n is understood as an expression of the form

c1ui1 + · · ·+ ckuik ,

where ci are scalars, uj = (aj1, . . . , ajn) are rows of the

matrix A. Similarly, we can consider linear combinations of
columns by replacing the above rows uj by the columns uj =
(a1j , . . . , amj).

If the zero row can be written as a linear combination of

some given rows with at least one non-zero scalar coe�cient,

we say that these rows are linearly dependent. In the alterna-

tive case, that is, when the only possibility of obtaining the

zero row is to select all the scalars cj equal to zero, the rows
are called linearly independent.

Analogously, we de�ne linearly dependent and linearly

independent columns.

The previous results about the Gaussian elimination can

be now interpreted as follows: the number of non-

zero �steps� in the row (column) echelon form is

always equal to the number of linearly independent

rows (columns) of the matrix. Let Eh be the matrix

from the theorem 2.1.9 with h ones on the diagonals and as-

sume that by two di�erent row transformation procedures into
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 1 0 1 1 0 0
0 3 1 −3 1 0
0 0 1/3 0 −2/3 1

 ∼

 1 0 1 1 0 0
0 1 1

3 −1 1
3 0

0 0 1
3 0 −2

3 1

 ∼

 1 0 0 1 2 −3
0 1 0 −1 1 −1
0 0 1

3 0 − 2
3 1

 ∼

 1 0 0 1 2 −3
0 1 0 −1 1 −1
0 0 1 0 −2 3

 ,

that is,

B−1 =

 1 2 −3
−1 1 −1
0 −2 3

 .

Using the identity(
AT ·B

)−1
= B−1 ·

(
AT
)−1

= B−1 ·
(
A−1

)T
and the knowledge of the inverse matrices computed before,

we obtain(
AT ·B

)−1
=

 1 2 −3
−1 1 −1
0 −2 3

 ·

 3 1 −7
−4 −2 11
3 2 −9


=

−14 −9 42
−10 −5 27
17 10 −49

 .

□

2.A.13. Compute the inverse of the matrix

A =

1 0 −2
2 −2 1
5 −5 2

 .

⃝

2.A.14. Calculate A5 and A−3, if

A =

 2 −1 1
−1 2 −1
0 0 1

 .

⃝

2.A.15. Compute the inverse of the matrix
8 3 0 0 0
5 2 0 0 0
0 0 −1 0 0
0 0 0 1 2
0 0 0 3 5

 .

⃝

2.A.16. Determine whether there exists an inverse of the ma-

trix

C =


1 1 1 1
1 1 −1 1
1 −1 1 −1
1 −1 −1 1

 .

If yes, then compute C −1.
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the echelon form we obtain two di�erent h′ < h. But then ac-
cording to our algorithm there are invertible matrices P , P ′,

Q, and Q′ such that

Eh = P ·A ·Q, Eh′ = P ′ ·A ·Q′.

In particular, Eh = P ·P ′−1 ·Eh′ ·Q′−1 ·Q and so there are

invertible matrices P ′′ and Q′′ such that

P ′′ · Eh′ ·Q′′ = Eh.

In the product P ′′ · Eh′ there will be more zero rows in the

bottom part of the echelon matrix than we see in Eh and we

must be able to reachEh using only elementary column trans-

formations. This is clearly not possible, because the zero rows

remain zero there.

Therefore the number of ones in the matrix P · A ·Q in

theorem 2.1.9 is independent of the choice of our elimination

procedure and it is always equal to the number of linearly in-

dependent rows in A, which must be the same as the number
of linearly independent columns in A. This number is called
the rank of the matrix and we denote it by h(A). We have the

following theorem:

Theorem. Let A be a matrix of type m/n over a �eld of

scalars K. The matrix A has the same number h(A) of lin-
early independent rows as linearly independent columns. In

particular, the rank is always at most the minimum of the di-

mensions of the matrix A.

The algorithm for computing the inverse matrix also says

that a square matrix A of dimension m has an inverse if and

only if its rank equalsm.

2.1.12. Matrices as mappings. Similarly to the way we

worked with matrices in the geometry of the plane (see ??),

we can interpret everymatrixA of the typem/n as a mapping

A : Kn → Km, x 7→ A · x.

By the distributivity of matrix multiplication, it is clear how

the linear combinations of vectors are mapped using such

mappings:

A · (a x+ b y) = a (A · x) + b (A · y).

Straight from the de�nition we see, by the associativity of

multiplication, that composition of mappings corresponds to

matrix multiplication in given order. Thus invertible matrices

of dimension n correspond to bijective mappings A : Kn →
Kn.

Remark. From this point of view, the theorem 2.1.9 is very

interesting. We can see it as follows: the rank

of the matrix determines how large is the image

of the whole Kn under this mapping. In fact, if

A = P ·Ek ·Q where the matrixEk has k ones
as in 2.1.9, then the invertibleQ �rst bijectively �shu�es� the

n-dimensional vectors inKn, the matrixEk then �copies� the

�rst k coordinates and completes them with the remaining

m− k zeros.
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⃝

2.A.17. Compute A−1, if

(a) A =

(
1 i
−i 3

)
, while i is the imaginary unit

(b) A =

 1 −5 −3
−1 5 4
−1 6 2

.

⃝
2.A.18. Find the inverse to the n× n matrix (n > 1)

A =



2− n 1 · · · 1 1

1 2− n
. . .

. . . 1
...

. . .
. . .

. . .
...

1
. . .

. . . 2− n 1
1 1 · · · 1 2− n


.

Solution. You can try for small n (n = 2, 3, 4), which is

easy to compute with the known algorithm, and then guess

the general form.

A−1 =
1

n− 1


0 1 1 · · · 1
1 0 1 · · · 1

1 1 0
. . .

...
...

...
. . .

. . . 1
1 1 · · · 1 0

 .

□
We have already encountered systems of linear equations

at the beginning of the chapter. Nowwewill deal with them in

more detail. We use the inverse matrix to assist in computing

the solution to the system of linear equations. Note that we do

the same computation as before. To express the variables is

the same as to bring the matrix of the system with equivalent

transformation to the identity matrix and that is the same as

to multiply the matrix of the system with the inverse matrix.

2.A.19. Participants of a trip. There were 45 participants

of a two-day bus trip. On the �rst day, the fee for a watchtower

visit was C30 for an adult, C16 for a child and C24 for a senior.

The total fee for the �rst day was C1 116. On the second day,

the fee for a bus with a palace and botanical garden tour was

C40 for an adult, C24 for a child and C34 for a senior. The

total fee for the second day was C1 542. How many adults,

children and seniors were there among the participants?

Solution. Introduce the variables

x for the �number of adults�;

y for the �number of children�;
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This �k-dimensional� image then cannot be enlarged by
multiplying with P . Multiplying by P can only bijectively

reshu�e the coordinates.

2.1.13. Solving systems of linear equations. We shall re-

turn to the notions of dimension, linear indepen-

dence and so on in the third part of this chapter.

But we should notice now what our results say

about the solutions of the system of linear equa-

tions.

If we consider the matrix of the system of equations and

add to it the column of the required results, we speak about the

extended matrix of the system. The above Gaussian elimina-

tion approach corresponds to the sequential variable elimina-

tion in the equations and the deletion of the linearly dependent

equations (these are simply consequences of other equations).

Thus we have derived complete information about the

size of the set of solutions of the system of linear equations,

based on the rank of the matrix of the system. If we are left

with more non-zero rows in the row echelon form of the ex-

tended matrix than in the original matrix of the system, then

there cannot be a solution (simply, we cannot obtain the given

vector value with the corresponding linear mapping). If the

rank of both matrices is the same, then the backwards elimi-

nation provides exactly as many free parameters as the di�er-

ence between the number of variables n and the rank h(A).
In particular, there will be exactly one solution if and only if

the matrix is invertible.

2. Determinants

In the �fth part of the �rst chapter, we introduced the

scalar function det on square matrices of di-

mension 2 over the real numbers, called deter-

minant, see ??. We saw that the determinant

assigned a non-zero number to a matrix if and only the matrix

was invertible. We did not say it in exactly this way, but you

can check for yourself in previous paragraphs starting with ??

and formula (??).

We saw also that determinants were useful in another

way, see the paragraphs ?? and ??. There we showed that

the volume of the parallelepiped should be linearly depen-

dent on every two of the vectors de�ning it. It was useful

to require the change of the sign when changing the order of

these vectors. Because determinants (and only determinants)

have these properties, up to a constant scalar multiple, we con-

cluded that it was determining the volume. Now we will see

that we can proceed similarly for every �nite dimension.

Wework again with arbitrary scalarsK andmatrices over

these scalars. Our results about determinants will thus hold

for all commutative rings, notably also for integer matrices or

matrices over any residue classes.

2.2.1. De�nition of the determinant. Recall that the bijec-

tive mapping from a setX to itself is called a permutation of

the setX, see ??. IfX = {1, 2, . . . , n}, the permutation can
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z for the �number of seniors�;

There were 45 participants, therefore

x + y + z = 45.

The fees for the �rst and second days respectively imply that

30x + 16y + 24z = 1116,
40x + 24y + 34z = 1542.

We write the system of three linear equations in the matrix

notation as 1 1 1
30 16 24
40 24 34

 ·

x
y
z

 =

 45
1 116
1 542

 .

We compute 1 1 1
30 16 24
40 24 34

−1

=
1

6

 16 5 −4
30 3 −3
−40 −8 7

 .

Hence the solution isx
y
z

 =
1

6

 16 5 −4
30 3 −3
−40 −8 7

 ·

 45
1 116
1 542


=

1

6

132
72
66

 =

22
12
11

 ,

expressed in words, there were 22 adults, 12 children and 11

seniors. □
The latter approach is particularly e�cient if we have to

solve several systems with the same matrix on the left hand

side but di�erent values on the right hand side.

But what if the matrix of the system is not invertible?

Then we cannot use the inverse matrix for solving the system.

Such a system cannot have a single solution. As the reader

may have noticed above, a system of linear equations either

has no solution, has one solution or has in�nitely many solu-

tions, depending on one or more free parameters (for instance,

it cannot have exactly two solutions). We should have also no-

ticed when dealing with equations with two variables in the

previous section, that the space of the solutions is either a vec-

tor space (in the case when the right-hand side of the system is

zero, we speak of a homogeneous system of linear equations)

or an a�ne space, see ?? (in the case when the right-hand

side of at least one of the equations is non-zero, we speak of

a non-homogeneous system of linear equations).

We can recognize all the possibilities from the rank of

the matrices, i.e. the number of nonzero rows left in the row-

echelon form.
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be written by putting the resulting ordering into a table:(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
.

The element x ∈ X is called a �xed point of the permutation

σ if σ(x) = x. If there exist exactly two distinct elements

x, y ∈ X such that σ(x) = y while all other elements z ∈ X
are �xed points, then the permutation σ is called a transposi-

tion, and we denote it by (x, y). Of course, then σ(y) = x
holds for such a transformation.

For dimension 2, the formula for a determinant was sim-

ple � take all possible products of two elements,

one from every column and every row of thema-

trix, give them a sign such that interchanging

two columns leads to the change of the sign of

the whole result, and sum all of them (that is, both):

A =

(
a b
c d

)
, detA = ad− bc.

Consider now square matrices A = (aij) of dimension
n over K. The formula for the determinant of the matrix A is

also composed of all possible products from elements from

individual rows and columns:

Definition of determinant

The determinant of the matrixA is a scalar detA = |A|
de�ned by the relation

|A| =
∑
σ∈Σn

sgn(σ)a1σ(1) · a2σ(2) · · · anσ(n)

where Σn is the set of all possible permutations over

{1, . . . , n} and the symbol sgn for a permutation σ, called
the parity of σ, will be described later. Each of the

expressions

sgn(σ)a1σ(1) · a2σ(2) · · · anσ(n)
is called a term in the determinant |A|.

In dimensions 2 or 3 we can easily guess correct signs.

The product of the elements on the diagonal should be with

positive sign and we want anti-symmetry when interchanging

two columns or rows.

Determinants in dimension 2 and 3

For n = 2 it is, as we have expected∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Similarly for n = 3∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a13a21a32 + a12a23a31

−a13a22a31 − a11a23a32 − a12a21a33.

This formula is often called the Sarrus rule.
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2.A.20. Determine the rank of the matrix

A =


1 −3 0 1
1 −2 2 −4
1 −1 0 1
−2 −1 1 −2

 .

Then determine the number of solutions of the system of lin-

ear equations

x1 + x2 + x3 − 2x4 = 4,
−3x1 − 2x2 − x3 − x4 = 5,

+ 2x2 + x4 = 1,
x1 − 4x2 + x3 − 2x4 = 3

Determine also all solutions of the system

x1 + x2 + x3 − 2x4 = 0,
−3x1 − 2x2 − x3 − x4 = 0,

+ 2x2 + x4 = 0,
x1 − 4x2 + x3 − 2x4 = 0

and of the system

x1 − 3x2 = 1,
x1 − 2x2 + 2x3 = −4,
x1 − x2 = 1,

−2x1 − x2 + x3 = −2.

Solution. Transforming the matrix to the row-echelon form,

we check that the rank is four. (The rank cannot exceed the

number of rows or columns). The �rst of the three given sys-

tem is given by the extended matrix
1 1 1 −2 4
−3 −2 −1 −1 5
0 2 0 1 1
1 −4 1 −2 3

 .

But the left-hand side is exactly AT and thus we can get the

column-echelon form the same way as before. In particular,

the columns of the matrix are linearly indepent and the rank

is maximal, i.e. four again. Therefore there exists a matrix(
AT
)−1

and the system has a unique solution

(x1, x2, x3, x4)
T
=
(
AT
)−1 · (4, 5, 1, 3)T .

The second of the systems has the same left-hand side

(given by the matrix AT ) as the �rst. Because the numbers

on the right-hand side of the equations in the system do not

in�uence the number of solutions and because every homo-

geneous system has a zero solution, the only solution of the

second system is given by

(x1, x2, x3, x4) = (0, 0, 0, 0) .
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2.2.2. Parity of permutation. How should we de�ne the

sign of a permutation? We say that a pair of

elements a, b ∈ X = {1, . . . , n} forms an

inversion in the permutation σ, if a < b and

σ(a) > σ(b). A permutation σ is called even

or odd, if it contains an even or odd number of inversions,

respectively.

Thus, the parity of the permutation σ is

(−1)number of inversions and we denote it by sgn(σ). This

amounts to our de�nition of sign for computing determinant.

But we should like to know how to calculate the parity. The

following theorem reveals that the Sarrus rule really de�nes

the determinant in dimension 3.

Theorem. Over the set X = {1, 2, . . . , n} there are exactly

n! distinct permutations. These can be ordered in a sequence
such that every two consecutive permutations di�er in exactly

one transposition. Every transposition changes parity.

For any chosen permutation σ there is such a sequence

starting with σ.

Proof. For n = 1 or n = 2, the claim is trivial. We

prove the theorem by induction on the size n of the set X.

Assume that the claim holds for all sets with n − 1 el-

ements and consider a permutation σ(1) = a1, . . . , σ(n) =
an. According to the induction assumption, all the permuta-
tions that endwith an can be obtained in a sequence, where ev-
ery two consecutive permutations di�er in one transposition.

There are (n − 1)! such permutations. In order to proceed

further, we select the last of them, and use the transposition

of σ(n) = an with some element ai which has not been at

the last position yet. Once again, we form a sequence of all

permutations that end with ai. After doing this procedure n-
times, we obtain n(n− 1)! = n! distinct permutations � that
is, all permutations on n elements. The resulting sequence

satis�es the condition.

Note that the last sentence of the theorem does not seem

to be useful in practice. But it is a very important part for

proving the theorem by induction over the size of X.

It remains to prove the part of the theorem about parities.

Consider the ordering

(a1, . . . , ai, ai+1, . . . , an),

containing r inversions. Then in the ordering

(a1, . . . , ai+1, ai, . . . , an)

there are either r− 1 or r+1 inversions. Every transposition
(ai, aj) is obtainable by doing (j − i) + (j − i− 1) = 2(j −
i)−1 transpositions of neighbouring elements. Therefore any
transposition changes the parity. Also, we already know that

all permutations can be obtained by applying transpositions.

□

We found that applying a transposition changes the parity

of a permutation and any ordering of numbers {1, 2, . . . , n}
can be obtained through transposing of neighbouring ele-

ments. Therefore we have proven
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The third system is given by the extended matrix
1 −3 0 1
1 −2 2 −4
1 −1 0 1
−2 −1 1 −2

 ,

which is the matrix A (only the last column is given after the

vertical bar). If we try to simplify the matrix into the row

echelon form, we must obtain a row(
0 0 0 a

)
, where a ̸= 0.

Weknow, that the column on the right-hand side is not a linear

combination of the columns on the left-hand side (the rank of

the matrix is 4). This system thus has no solution. □
For further examples see 2.H.7

B. Permutations and determinants

In order to be able to de�ne the key object of the matrix

calculus, the determinant, we must deal

with permutations (bijections of a �nite

set) and their parities.

We shall use the two-row notation for permutations (see

2.2.1). In the �rst rowwe list all elements of the given set, and

every column then corresponds to a pair (preimage, image) in

the given permutation. Because a permutation is a bijection,

the second row is indeed a permutation (ordering) of the �rst

row, in accordance with the de�nition from combinatorics.

2.B.1. Decompose the permutation

σ =

(
1 2 3 4 5 6 7 8 9
3 1 6 7 8 9 5 4 2

)
into a product of transpositions.

Solution. We �rst decompose the permutation into a product

of independent cycles. Start with the �rst element 1 and look

on the second row to see what the image of 1 is. It is 3. Now

look on the column that starts with 3, and see that the image of

3 is 6, and so on. Continue until we again reach the starting

element 1. We obtain the following sequence of elements,

which map to each other under the given permutation:

1 7→ 3 7→ 6 7→ 9 7→ 2 7→ 1.

The mapping which maps elements in such a manner is called

a cycle (see 2.2.3) which we denote by (1, 3, 6, 9, 2).

Now choose any element not contained in the obtained

cycle. With the same procedure as with 1, we obtain the cycle

(4, 7, 5, 8). From the method is clear that the result does not

depend on the �rst obtained cycle. Each element from the set
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Corollary. On every �nite set X = {1, . . . , n} with n ele-

ments, n > 1, there are exactly 1
2n! even permutations, and

1
2n! odd permutations.

If we compose two permutations, it means �rst doing all

transpositions forming the �rst permutation and then all the

transpositions forming the second one. Therefore for any two

permutations σ, η : X → X we have

sgn(σ ◦ η) = sgn(σ) · sgn(η)
and also

sgn(σ−1) = sgn(σ).

2.2.3. Decomposing permutations into cycles. Agood tool

for practical work with permutations is the cycle decomposi-

tion, which is also a good exercise on the concept of equiva-

lence.

Cycles

A permutation σ over the set X = {1, . . . , n} is called
a cycle of length k, if we can �nd elements a1, . . . , ak ∈ X,

2 ≤ k ≤ n such that σ(ai) = ai+1, i = 1, . . . , k − 1, while
σ(ak) = a1, and other elements in X are �xed-points of σ.
Cycles of length two are transpositions.

Every permutation is a composition of cycles. Cycles of

even length have parity−1, cycles of odd length have parity
1.

Proof. The last claim has yet to be proved. Fix a per-

mutation σ and de�ne a relation R such that

two elements x, y ∈ X are R-related if and

only if σℓ(x) = y for some iteration ℓ ∈ Z
of the permutation σ (notice σ−1 means the in-

verse bijection to σ). Clearly, it is an equivalence relation

(check it carefully!). Because X is a �nite set, for some ℓ it
must be that σℓ(x) = x. If we pick one equivalence class

{x, σ(x), . . . , σℓ−1(x)} ⊂ X and de�ne other elements to

be �xed-points, we obtain a cycle. Evidently, the original per-

mutationX is then the composition of all these cycles for in-

dividual equivalence classes and it does not matter in which

order we compose the cycles.

For determining the parity we just have to note that cy-

cles of even length can be written as a composition of an odd

number of transposition, therefore their parity is −1. Anal-

ogously, cycle of odd length can be obtained using an even

number of transpositions and therefore it has parity 1. □

2.2.4. Simple properties of determinant. Knowing the

properties of permutations and their parities

from previous paragraphs allows us to derive

quickly some basic properties of determinants.

For every matrix A = (aij) of the type

m/n over scalars from K we de�ne the transpose of A as

the matrixAT = (a′ij) with elements a
′
ij = aji. A

T is of the

type n/m.

A square matrix A with the property A = AT is called

symmetric. If A = −AT , then A is called antisymmetric.
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({1, 2, . . . , 9}) appears in one of the obtained cycles, we can
thus write:

σ = (1, 3, 6, 9, 2) ◦ (4, 7, 5, 8),

or

σ = (4, 7, 5, 8) ◦ (1, 3, 6, 9, 2),

since independent cycles commute. For cycles the decompo-

sition into transpositions is simple, we have

(1, 3, 6, 9, 2) = (1, 3) ◦ (3, 6) ◦ (6, 9) ◦ (9, 2) =

(1, 3)(3, 6)(6, 9)(9, 2).

Thus we obtain:

σ = (1, 3)(3, 6)(6, 9)(9, 2)(4, 7)(7, 5)(5, 8).

□
Remark. The minimal number of transpositions in the de-

composition of a permutation is obtained by carrying out ex-

actly the procedure as above. That is, �rst decompose the per-

mutation into the independent cycles, then the cycles canoni-

cally into the transpositions. Thus the found decomposition is

the decomposition into the minimal number of transpositions.

Note also that the operation ◦ is a composition of map-

pings, thus it is necessary to carry out the composition �back-

wards�, as we are used to in composition of mappings. Ap-

plying the given composition of transposition for instance on

the element two we can successively write:

[(1, 3)(3, 6)(6, 9)(9, 2)](2) =

[(1, 3)(3, 6)(6, 9)]((9, 2)(2)) =

[(1, 3)(3, 6)(6, 9)](9) = [(1, 3)(3, 6)](6) = (1, 3)(3) = 1,

thus the mapping indeed maps the element 2 on the element 1

(it is actually just the cycle (1, 3, 6, 9, 2) written in a di�erent

way). When writing a composition of permutations, we often

omit the sign �◦� and speak of the product of permutations.
When writing the cycle we write only the elements on

which the cycle (that is, the mapping) nontrivially acts (that is,

the element is mapped to some other element). Fixed-points

of the cycle are not listed. Thus it is necessary to know on

which set do we consider the given cycle (mostly it will be

clear from the context). The cycle c = (4, 7, 5, 8) from the

previous example is thus a mapping (permutation), which, in

the two-row notation, looks like this(
1 2 3 4 5 6 7 8 9
1 2 3 7 8 6 5 4 9

)
.

If the original permutation has some �xed-points they do

not appear in the cycle decomposition.
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Simple properties of determinants

Theorem. Every square matrix A = (aij) satis�es the fol-
lowing conditions:

(1) |AT | = |A|.
(2) If one of the rows contains only zero elements from K,

then |A| = 0.
(3) If a matrix B was obtained from A by transposing two

rows, then |A| = −|B|.
(4) If a matrix B was obtained from A by multiplying one

row by a scalar a ∈ K, then |B| = a |A|.
(5) If all elements of the k-th row inA are of the form akj =

ckj+bkj and all remaining rows in the matricesA,B =
(bij), C = (cij) are identical, then |A| = |B|+ |C|.

(6) A determinant |A| does not change if we add to any row
of A a linear combination of other rows.

Proof. (1) The terms of determinants |A| and |AT |
are in bijective correspondence, where the

term sgn(σ)a1σ(1) · a2σ(2) · · · anσ(n) cor-
responds the following AT term (notice it

does not depend on the order of scalars)

sgn(σ)aσ(1)1 · aσ(2)2 · · · aσ(n)n =

= sgn(σ)a1σ−1(1) · a2σ−1(2) · · · anσ−1(n),

and we have to ensure that this member has the correct sign.

But the parities of σ and σ−1 are the same, and so this is really

a term in the determinant |AT | and the �rst claim is proved.

(2) This comes straight from the de�nition of determi-

nant, because all its terms contain exactly one member from

every row. Thus, if one of the rows is zero, all terms of the

determinant are also zero.

(3) The only change in the terms of |B| compared to |A|
is the addition of one transposition in all permutations, there-

fore all the signs will be reversed.

(4) This follows straight from the de�nition, because

terms of |B| are just terms of |A| multiplied by the scalar a.
(5) In every term of |A|, there is exactly one element from

the k-th row of the matrix A. By the distributive law for mul-

tiplication and addition in K, the claim follows directly from

the de�nition of determinant.

(6) If there are two identical rows in A, then there are al-
ways two identical terms among all terms in the determinant,

up to the sign. Therefore in this case |A| = 0. Thus, by (5),
we can add any other row to the given row, without changing

the value of the determinant. In view of the claims (4) and

(5), we can in fact add a scalar multiple of any other row. □
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Note further that the notation (1, 2, 3) gives the same

cycle as for instance (2, 3, 1) or (3, 1, 2). But the notation

(1, 3, 2) is a di�erent cycle.

2.B.2. Determine the parity of the following permutations:

σ =

(
1 2 3 4 5 6 7 8 9
3 1 6 7 8 9 5 4 2

)
,

τ =

(
1 2 3 4 5 6
2 4 6 1 5 3

)
.

Solution. According to our de�nition (see 2.2.2) we compute

the number of inversions of σ: we go sequentially through the

second row in the two-row notation and for every number k

there we count the number of numbers which are smaller than

k and are located after k in the second row. It is not hard to see

that the number of inversions in a given permutation is exactly

the number of pairs �larger before smaller� in the second row.

For σ we compute (stepping through the second row): after

three there is one and two, thus we add 2; after one there is

no smaller number and we add 0; after six there is �ve, four

and two, thus we add 4, similarly for seven, eight and nine, for

�ve we add 2, for four we add 1 and for two nothing. Thus we

have 17 inversions in total and thus the permutation is odd.

But we can compute the parity of σ otherwise. The the-

orem 2.2.2 implies that the parity of a permutation is given

by the parity of the number of transpositions in its decompo-

sition (this number is, unlike the number of transposition in

an arbitrary decomposition, always the same)

The previous exercise gives us

σ = (1, 3)(3, 6)(6, 9)(9, 2)(4, 7)(7, 5)(5, 8). There are seven

transpositions in the decomposition, thus the permutation is

indeed odd.

Alternatively we can decompose τ into either a product

of three transpositions (using the cycle decomposition):

τ = (1, 2, 4)(3, 6) = (1, 2)(2, 4)(3, 6),

orwe count the number of inversions in τ : 1+2+3+0+1 = 7.

Either way we �nd that τ is an odd permutation.

In general, as soon as the decomposition to cycles is

ready, we may just count the lengths of the cycles, since each

cycle including k elements is clearly built of k − 1 transposi-

tions and thus contributes (−1)k−1 to the parity. □
For the following exercises, recall how to compute deter-

minants of the type 2 × 2 (a11 · a22 − a12 · a21) and 3 × 3

(Sarrus rule), see 2.2.1.
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2.2.5. Computational corollaries. By the previous theo-

rem, we can use elementary row transfor-

mations to bring any square matrixA into

row echelon form, without changing the

value of its determinant. We just have to

be careful and add only linear combinations of other rows to

a given one.

Let us look at the distribution of the elements in the prod-

ucts in individual terms of a determinant |A| with dimension
of A equal to n > 1. There is just one term with all of its

elements on the diagonal. In all other terms, there must be

elements both above and below the diagonal (if we place one

element outside of the diagonal, we block two diagonal en-

tries and we leave only n− 2 diagonal positions for the other
n− 1 elements).

Thus, if the matrixA is in a row echelon form, then every

term of |A| is zero, except the term with exclusively diagonal

entries. Thus we have proved the following algorithm:

Computing determinants using elimination

If A is in the row echelon form then

|A| = a11 · a22 · · · · ann.
The previous theorem gives an e�ective method for comput-

ing determinants using the Gauss elimination method, see

the paragraph 2.1.7.

Let us note a nice corollary of the �rst claim of the pre-

vious theorem about the equality of the determi-

nants of the matrix and its transpose. It ensures

that whenever we prove some claim about de-

terminants formulated in terms of rows of the

corresponding matrix, we immediately obtain an analogous

claim in terms of the columns. For instance, we can immedi-

ately formulate all the claims (2)�(6) for linear combinations

of columns.

As a useful (theoretical) illustration of this principle, we

shall derive the following formula for direct calculation of so-

lutions of systems of linear equations:

Cramer rule

Consider the system of n linear equations for n vari-

ables with matrix of the system A = (aij) and the column
of values b = (b1, . . . , bn). In matrix notation this means

we are solving the equation A · x = b.
If there exists the inverseA−1, then the individual com-

ponents of the unique solution x = (x1, . . . , xn) are given
as

xi = |Ai||A|−1,

where the matricesAi arise from the matrixA of the system

by replacing the i-th column by the column b of values.

Proof. As we have already seen, the inverse of the ma-

trix of the system exists if and only if the system has a unique

solution. If we have such a solution x, we can express the
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2.B.3. Compute the determinant of the following matrices

(
1 2
2 1

)
,

1 2 3
1 −1 2
3 2 2

 ,

 1 1 1
1 0 0
−2 0 1

 .

⃝

Solution. The determinant of the �rst matrix is 1 ·1−2 ·2 =

−3.

As for the second matrix, according to the Sarrus rule we

just have to enumerate the expression

1·(−1)·2+2·2·3+3·1·2−3·(−1)·3−1·2·2−1·2·2 = 17.

We can also bring the matrix into the row echelon form

and then multiply the numbers on the diagonal but we have to

remember that a multiplication of a row with a scalar changes

the determinant of the matrix by the same multiple. Inter-

changing two rows changes the sign of the determinant of the

matrix.∣∣∣∣∣∣
1 2 3
1 −1 2
3 2 2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
0 −3 −1
0 −4 −7

∣∣∣∣∣∣ = 1

−4
· 1
3
·

∣∣∣∣∣∣
1 2 3
0 12 4
0 −12 −21

∣∣∣∣∣∣
= − 1

12
·

∣∣∣∣∣∣
1 2 3
0 12 4
0 0 −17

∣∣∣∣∣∣
We �nish with an upper triangular matrix. The determi-

nant of such matrices is the product of the numbers on the

main diagonal. So the result is − 1
12 (1 · 12 · (−17)) = 17.

We can see, that using the Sarrus rule is quicker.

For the third matrix we have

1·0·1+1·0·1+1·0·(−2)−1·0·(−2)−1·1·1−1·0·0 = −1.

□
It is important to realize, that Sarrus rule can be used

for matrices 3 × 3 only. For higher dimension matrices you

can either bring the matrix to the row echelon form (where

you have to take in to account rules 2.2.4) or use the Laplace

expansion (see 2.2.8).

2.B.4. Compute the determinant of the matrix
1 3 5 6
1 2 2 2
1 1 1 2
0 1 2 1

 .

Solution. We compute this in two ways. First, convert the

matrix to row echelon form. We can use already known ele-

mentary transformations,
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column b in the matrix Ai by the corresponding linear com-

bination of the columns of the matrix A, that is the values

bi = ai1x1 + · · · + ainxn. Then, by subtracting the xk-

multiples of all the other columns from this i-th column,

we arrive at just the xi-multiple of the original column of

A. The number xi can thus be brought in front of the de-

terminant to obtain the equation |Ai| = xi |A|, and thus

|Ai||A|−1 = xi|A||A|−1 = xi, which is our claim. □

Notice also that the properties (3)�(5) from the previous

theorem say that the determinant, (considered as a mapping

which assigns a scalar to n vectors of dimension n), is an
antisymmetric mapping linear in every argument, exactly as

we required in analogy to the 2-dimensional case.

2.2.6. Further properties of the determinant. Later we

will see that, exactly as in the dimension 2, the

determinant of the matrix equals to the (oriented)

volume of the parallelepiped determined by the

columns of the matrix. We shall also see that

considering the mapping x 7→ A · x given by the square

matrix A on Rn we can understand the determinant of this

matrix as expressing the ratio between the volume of the par-

allelepipeds given by the vectors x1, . . . xn and their images

A · x1, . . . , A · xn.

Because the composition x 7→ A·x 7→ B ·(A·x) of map-
pings corresponds to the matrix multiplication, the Cauchy

theorem below is easy to understand:

Cauchy theorem

Theorem. Let A = (aij), B = (bij) be square matrices

of dimension n over the ring of scalars K. Then |A · B| =
|A| · |B|.

Notice, the claims (2), (3) and (6) from the theorem 2.2.4

are easily deduced from the Cauchy theorem and the repre-

sentation of the elementary row transformations as multipli-

cation by suitable matrices (cf. 2.1.8).

In the next paragraphs, we derive this theorem in a purely

algebraic way, in particular because the previous argumenta-

tion based on geometrical intuition could hardly work for ar-

bitrary scalars. The basic tool is the determinant expansion

using one or more of the rows or columns. We will also need

a little technical preparation. The reader who is not fond of

too much abstraction can skip these paragraphs and note only

the statement of the Laplace theorem and its corollaries.

2.2.7. Minors of the matrix. When investigating matrices

and their properties we often work only

with parts of the matrices. Therefore we

need some new concepts.
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∣∣∣∣∣∣∣∣
1 3 5 6
1 2 2 2
1 1 1 2
0 1 2 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 2
1 2 2 2
1 3 5 6
0 1 2 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 2
0 1 1 0
0 2 4 4
0 1 2 1

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
1 1 1 2
0 1 1 0
0 0 2 4
0 0 1 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 1 1 2
0 1 1 0
0 0 1 1
0 0 2 4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 1 1 2
0 1 1 0
0 0 1 1
0 0 0 2

∣∣∣∣∣∣∣∣ = 2.

Note, that we have interchanged the rows twice in the course

of computation.

The other way of computing the determinant is by cofac-

tor expansion along the �rst column (the one with the greatest

number (one) of zeroes). Successively we obtain∣∣∣∣∣∣∣∣
1 3 5 6
1 2 2 2
1 1 1 2
0 1 2 1

∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣
2 2 2
1 1 2
1 2 1

∣∣∣∣∣∣− 1 ·

∣∣∣∣∣∣
3 5 6
1 1 2
1 2 1

∣∣∣∣∣∣+
1 ·

∣∣∣∣∣∣
3 5 6
2 2 2
1 2 1

∣∣∣∣∣∣ using the Sarrus rule
= −2− 2 + 6 = 2.

□

2.B.5. Compute the determinant of the matrix
1 0 1 0 1
0 2 0 2 0
0 0 3 0 3
4 0 0 4 4
0 0 0 0 5


Solution. We notice, that the last (�fth) row contains four ze-

ros (as well as the second column). It is the most, we can �nd

in a row or a column in the matrix, thus it will be advanta-

geous to use Laplace theorem (2.3.10) and compute the de-

terminant via expasion along the �fth row or second column.

We present the expansion via �fth row:∣∣∣∣∣∣∣∣∣∣
1 0 1 0 1
0 2 0 2 0
0 0 3 0 3
4 0 0 4 4
0 0 0 0 5

∣∣∣∣∣∣∣∣∣∣
= 0 ·

∣∣∣∣∣∣∣∣
0 1 0 1
2 0 2 0
0 3 0 3
0 0 4 4

∣∣∣∣∣∣∣∣− 0 ·

∣∣∣∣∣∣∣∣
1 1 0 1
0 0 2 0
0 3 0 3
4 0 4 4

∣∣∣∣∣∣∣∣
+0 ·

∣∣∣∣∣∣∣∣
1 0 0 1
0 2 2 0
0 0 0 3
4 0 4 4

∣∣∣∣∣∣∣∣− 0 ·

∣∣∣∣∣∣∣∣
1 0 1 1
0 2 0 0
0 0 3 3
4 0 0 4

∣∣∣∣∣∣∣∣+ 5 ·

∣∣∣∣∣∣∣∣
1 0 1 0
0 2 0 2
0 0 3 0
4 0 0 4

∣∣∣∣∣∣∣∣
= 5 ·

∣∣∣∣∣∣∣∣
1 0 1 0
0 2 0 2
0 0 3 0
4 0 0 4

∣∣∣∣∣∣∣∣ = 5 · 2 ·

∣∣∣∣∣∣
1 1 0
0 3 0
4 0 4

∣∣∣∣∣∣ = 120,
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submatrices and minors

Let A = (aij) be a matrix of the type m/n and let

1 ≤ i1 < . . . < ik ≤ m, 1 ≤ j1 < . . . < jl ≤ n be �xed

natural numbers. Then the matrix

M =

ai1j1 ai1j2 . . . ai1jℓ
...

...

aikj1 aikj2 . . . aikjℓ


of the type k/ℓ is called a submatrix of the matrix A deter-

mined by the rows i1, . . . , ik and columns j1, . . . , jℓ. The
remaining (m − k) rows and (n − ℓ) columns determine a
matrixM∗ of the type (m−k)/(n−ℓ), which is called com-
plementary submatrix to M in A. When k = ℓ we call the
determinant |M | the subdeterminant or minor of the order
k of the matrix A. If m = n and k = ℓ, then M∗ is also

a square matrix and |M∗| is called the minor complement

to |M |, or complementary minor of the submatrixM in the

matrix A. The scalar

(−1)i1+···+ik+j1+···+jl · |M∗|
is then called the algebraic complement of the minor |M |.

The submatrices formed by the �rst k rows and columns

are called leading principal submatrices, and their determi-

nants are called leading principal minors of the matrix A. If
we choose k sequential rows and columns starting with the i-
th row, we speak of principal matrices and principal minors.

Specially, when k = ℓ = 1, m = n we call the corre-

sponding algebraic complementary minor the algebraic com-

plement Aij of the element aij of the matrix A.

2.2.8. Laplace determinant expansion. If the principal mi-

nor |M | of the matrix A is of the order k, then,
directly from the de�nition of the determinant,

each of the individual k!(n − k)! terms in the

product of |M | with its algebraic complement

is a term of |A|.
In general, consider a square submatrix M , that is, a

square matrix given by the rows i1 < i2 < · · · < ik and

columns j1 < · · · < jk. Then using (i1 − 1)+ · · ·+(ik − k)
exchanges of neighbouring rows and (j1−1)+ · · ·+(jk−k)
exchanges of neighbouring columns in A we can transform

this submatrix M into a principal submatrix and the com-

plementary matrix gets transformed into its complementary

matrix. The whole matrix A gets transformed into a matrix

B satisfying (cf. 2.2.4 and the de�nition of the determinant)

|B| = (−1)α|A|, where α =
∑k

h=1(ih−jh)−2(1+· · ·+k).

But (−1)α = (−1)β with β =
∑k

h=1(ih + jh). Therefore
we have checked:

Proposition. IfA is a square matrix of dimension n and |M |
is its minor of the order k < n, then the product of any term

of |M | with any term of its algebraic complement is a term in

|A|.
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where we have used the expansion along the second column

in the second step and computed the determinant of the 3× 3

matrix directly using the Sarrus rule.

Another option is to try to expand the determinant along

several rows, exploiting vanishing of many sub-determinants

there. For example, we may use the last two rows. Clearly

there might be only two non-zero sub-determinants built from

this row there. Thus the entire determinant must be (notice

that choosing two lines and two columns always leads to the

plus sign in the de�nition of the algebraic complement, see

2.3.10)∣∣∣∣4 4
0 5

∣∣∣∣ ·
∣∣∣∣∣∣
0 1 0
2 0 2
0 3 0

∣∣∣∣∣∣+
∣∣∣∣4 4
0 5

∣∣∣∣ ·
∣∣∣∣∣∣
1 0 1
0 2 0
0 0 3

∣∣∣∣∣∣ =
= 20 · 0 + 20 · 6 = 120

□
2.B.6. Find all the values of a such that∣∣∣∣∣∣∣∣

a 1 1 1
0 a 1 1
0 1 a 1
0 0 0 −a

∣∣∣∣∣∣∣∣ = 1.

For complex a give either its algebraic or polar form.

Solution. We compute the determinant by expanding the �rst

row of the matrix:

D =

∣∣∣∣∣∣∣∣
a 1 1 1
0 a 1 1
0 1 a 1
0 0 0 −a

∣∣∣∣∣∣∣∣ = a ·

∣∣∣∣∣∣
a 1 1
1 a 1
0 0 −a

∣∣∣∣∣∣ .
Expand further using the last row:

D = a · (−a)

∣∣∣∣a 1
1 a

∣∣∣∣ = −a2(a2 − 1).

We conclude that a4 − a2 + 1 = 0. Substituting t = a2

we have t2 − t + 1 with roots t1 = 1+i
√
3

2 = cos(π/3) +

i sin(π/3), t2 = 1−i
√
3

2 = cos(π/3) − i sin(π/3) =

cos(−π/3) + i sin(−π/3), from where we obtain four possi-

ble values for the parameter a: a1 = cos(π/6)+i sin(π/6) =√
3/2+ i/2, a2 = cos(7π/6)+ i sin(7π/6) = −

√
3/2− i/2,

a3 = cos(−π/6) + i sin(−π/6) =
√
3/2 − i/2, a4 =

cos(5π/6) + i sin(5π/6) = −
√
3/2 + i/2.

Alternatively, we can multiply by a2 + 1 to obtain

a6 + 1 = (a2 + 1)(a4 − a2 + 1) = 0.

The equation a6 = −1 has six (complex) solutions given by

a = cosφ+ i sinφ where φ = π/6 + kπ/3 = (2k+ 1)π/6,

k = 0, 1, 2, 3, 4, 5. Of these, we must discard the two choices

k = 1, and k = 4, since these choices solve a2 + 1 = 0 and
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This claim suggests that we could perhaps express the de-

terminant of the matrix by using some products of smaller de-

terminants. We see that |A| contains exactly n! distinct terms,
exactly one for each permutation. These terms are mutually

distinct as polynomials in the components of a general matrix

A. If we can show that there are exactly that many mutually

distinct expressions from the previous claim, we obtain the

determinant |A| as their sum.
It remains to show that the terms of the product |M |·|M∗|

contain exactly n! distinct members from |A|.
From the chosen k rows we can choose

(
n
k

)
minors

M and using the previous lemma each of the k!(n − k)!
terms in the products of |M | with their algebraic comple-

ments is a term in |A|. But for distinct choices of M we

can never obtain the same terms and the individual terms

in (−1)i1+···+ik+j1+···+jl · |M | · |M∗| are also mutually

distinct. Therefore we have exactly the required number

k!(n− k)!
(
n
k

)
= n! of terms.

Thus we have proved:

Laplace theorem

Theorem. LetA = (aij) be a square matrix of dimension n
over arbitrary ring of scalars with k rows �xed. Then |A| is
a sum of all

(
n
k

)
products (−1)i1+···+ik+j1+···+jl ·|M |·|M∗|

of minors of the order k chosen among the �xed rows with

their algebraic complements.

The Laplace theorem transforms the computation of |A|
into the computation of determinants of lower dimension.

This method of computation is called the Laplace expansion

along the chosen rows (or columns). For instance, the expan-

sion along the i-th row or the j-th column is:

|A| =
n∑

j=1

aijAij

where Aij denotes the algebraic complement of the element

aij (that is, minor of order one).
In practical computations, it is often e�cient to combine

the Laplace expansion with a direct method of Gaussian elim-

ination.

2.2.9. Proof of the Cauchy theorem. The theorem is based

on a clever but elementary application of the

Laplace theorem. We just use the Laplace ex-

pansion twice on a particular arrangement of a

well chosen matrix.

Consider �rst the following matrix H of dimension 2n
(we are using the so-called block symbolics, that is, we write

the matrix as if composed of the (sub)matrices A, B, and so
on).
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not a4 − a2 + 1 = 0. We conclude that a = cosφ + i sinφ

where φ = (2k + 1)π/6, k = 0, 2, 3, or 5. □

2.B.7. Vandermonde determinant. Prove the formula for

the Vandermonde determinant, that is, the deter-

minant of the Vandermonde matrix:

Vn =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

...

xn−1
1 x2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xj − xi),

where x1, . . . , xn ∈ R and on the right-hand side of the

equation there is the product of all terms xj −xi where j > i.

Solution. We proceed by induction on n. From technical rea-

sonsweworkwith the transposedVandermondematrix (it has

the same determinant). By subtracting the �rst row from all

other rows and then expanding the �rst column we obtain

Vn(x1, x2, . . . , xn)

=

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

0 x2 − x1 x2
2 − x2

1 . . . xn−1
2 − xn−1

1
...

...
...

. . .
...

0 xn − x1 x2
n − x2

1 . . . xn−1
n − xn−1

1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
x2 − x1 x2

2 − x2
1 . . . xn−1

2 − xn−1
1

...
...

. . .
...

xn − x1 x2
n − x2

1 . . . xn−1
n − xn−1

1

∣∣∣∣∣∣∣ .
If we take out xi+1 − x1 from the i-th row for

i ∈ {1, 2, . . . , n− 1}, we obtain

Vn(x1, x2, . . . , xn) = (x2 − x1) · · · (xn − x1)

·

∣∣∣∣∣∣∣
1 x2 + x1 . . .

∑n−2
j=0 xn−j−2

2 xj
1

...
...

. . .
...

1 xn + x1 . . .
∑n−2

j=0 xn−j−2
n xj

1

∣∣∣∣∣∣∣ .
By subtracting from every column (starting with the last and

ending with the second) x1-multiple of the previous column,

we obtain ∣∣∣∣∣∣∣
1 x2 + x1 . . .

∑n−2
j=0 xn−j−2

2 xj
1

...
...

. . .
...

1 xn + x1 . . .
∑n−2

j=0 xn−j−2
n xj

1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
1 x2 . . . xn−2

2
...

...
. . .

...

1 xn . . . xn−2
n

∣∣∣∣∣∣∣ .
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H =

(
A 0
−E B

)
=



a11 . . . a1n
...

...

an1 . . . ann

0 . . . 0
...

...

0 . . . 0
−1 0

. . .

0 −1

b11 . . . b1n
...

...

bn1 . . . bnn


The Laplace expansion along the �rst n rows gives |H| =
|A| · |B|.

Now in sequence, we add linear combinations of the �rst

n columns to the last n columns in order to obtain a matrix

with zeros in the bottom right corner. We obtain

K =



a11 . . . a1n
...

...

an1 . . . ann

c11 . . . c1n
...

...

cn1 . . . cnn
−1 0

. . .

0 −1

0 . . . 0
...

...

0 . . . 0


.

The elements of the submatrix on the top right part must sat-

isfy

cij = ai1b1j + ai2b2j + · · ·+ ainbnj ,

that is, they are exactly the components of the product A · B
and |K| = |H|. The expansion of the last n columns gives us

|K| = (−1)n(−1)1+···+2n|A ·B| = (−1)2n·(n+1) · |A ·B| =
|A ·B|. This proves the Cauchy theorem.

2.2.10. Determinant and the inverse matrix. Assume �rst

that there is an inverse matrix of the matrix A,
that is, A · A−1 = E. Since the unit matrix

always satis�es |E| = 1, it follows that for every
invertible matrix its determinant is an invertible

scalar and by the Cauchy theorem we have |A−1| = |A|−1.

But we can say more, combining the Laplace and Cauchy

theorems.

Inverse matrix determinant formula

For any square matrix A = (aij) of dimension n we

de�ne a matrix A∗ = (a∗ij), where a
∗
ij = Aji are algebraic

complements of the elements aji in A. The matrix A∗ is

called the algebraically adjoint matrix of the matrix A.

Theorem. For every square matrixA over a ring of scalars

K we have that

(1) AA∗ = A∗A = |A| · E.
In particular,

(1) A−1 exists as a matrix over the ring of scalarsK if and

only if |A|−1 exists in K.

(2) If A−1 exists, then A−1 = |A|−1 ·A∗.

5
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Therefore

Vn(x1, x2, . . . , xn)

= (x2 − x1) · · · (xn − x1) Vn−1(x2, . . . , xn).

Because it is clear that

V2(xn−1, xn) = xn − xn−1,

it follows by induction that

Vn(x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi).

Note that the determinant is non-zero whenever the numbers

x1, . . . , xn are mutually distinct. □

Remark. Another (more beautiful?) proof of the formula can

be found in ??.

2.B.8. Find whether or not the matrix
3 2 −1 2
4 1 2 −4
−2 2 4 1
2 3 −4 8


is invertible.

Solution. The matrix is invertible (that is, there is an in-

verse matrix) whenever we can transform it by elementary

row transformations into the unit matrix. That is equivalent

for instance to the property that it has non-zero determinant.

That we can compute using the Laplace Theorem (2.3.10) by

expanding for instance the �rst row:∣∣∣∣∣∣∣∣
3 2 −1 2
4 1 2 −4
−2 2 4 1
2 3 −4 8

∣∣∣∣∣∣∣∣ = 3 ·

∣∣∣∣∣∣
1 2 −4
2 4 1
3 −4 8

∣∣∣∣∣∣
−2·

∣∣∣∣∣∣
4 2 −4
−2 4 1
2 −4 8

∣∣∣∣∣∣+ (−1) ·

∣∣∣∣∣∣
4 1 −4
−2 2 1
2 3 8

∣∣∣∣∣∣
− 2 ·

∣∣∣∣∣∣
4 1 2
−2 2 4
2 3 −4

∣∣∣∣∣∣
=3 · 90− 2 · 180 + (−1) · 110− 2 · (−100) = 0,

that is, the given matrix is not invertible. □

2.B.9. Solve the system from 2.A.2 using the Cramer rule

(see 2.2.5).
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Proof. As already mentioned, the Cauchy theorem

shows that the existence of A−1 implies the

invertibility of |A| ∈ K.
For an arbitrary square matrix A we can di-

rectly compute A ·A∗ = (cij), where

cij =
n∑

k=1

aika
∗
kj =

n∑
k=1

aikAjk.

If i = j, it is exactly the Laplace expansion of |A| along the
i-th row. If i ̸= j, it is the expansion of the determinant of

the matrix where the i-th and j-th row is the same, therefore

cij = 0. This implies that A · A∗ = |A| · E, and we have

proven the equality (1).

Let us further assume that |A| is an invertible scalar. If
we repeat the previous computation for A∗ · A, we obtain

|A|−1A∗ · A = E. Therefore our computation really gives

the inverse matrix of A, as claimed in the theorem. □
Notice that for �elds of scalars we have already proved

that the right inverse of. a matrix is automatically the left in-

verse and thus the inverse, too. Here we have obtained the

same result for all rings of scalars, together with a strong and

e�ective existence condition. On the other hand the exact for-

mula for the inverse has become rather theoretical with little

practical value.

As a direct corollary of this theorem we can once again

prove the Cramer rule for solving the systems of linear equa-

tions, see 2.2.5. Really, for the solution of the systemA·x = b
we just need to read in the equation

x = A−1 · b = |A|−1A∗ · b
the individual components of the expression A∗ · b as the

Laplace expansions of the determinant of thematrixAi which

arose through the exchange of the i-th column ofA for the col-

umn b.

3. Vector spaces and linear mappings

2.3.1. Abstract vector spaces. Let us go back for a while to

the systems of m linear equations of n variables

from 2.1.3 and further, let us assume that the sys-

tem is the homogeneous system A · x = 0, that
isa11 . . . a1n
...

...

am1 . . . amn

 .

x1

...

xn

 =

0
...

0

 .

By the distributivity of the matrix multiplication it is clear

that the sum of two solutions x = (x1, . . . , xn) and y =
(y1, . . . , yn) satis�es

A · (x+ y) = A · x+A · y = 0

and thus is also a solution. Similarly, a scalar multiple a · x
is also a solution. The set of all solutions of a �xed system of

equations is therefore closed under vector addition and scalar

multiplication. These are the basic properties of vectors of di-

mension n in Kn, see 2.1.1. Now we have the vectors in the
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Solution. We just plug in the values to the rule:

x1 =

∣∣∣∣∣∣
2 2 3
−3 −3 −1
−3 1 2

∣∣∣∣∣∣∣∣∣∣∣∣
1 2 3
2 −3 1
−3 1 2

∣∣∣∣∣∣
= 1, x2 =

∣∣∣∣∣∣
1 2 3
2 −3 −1
−3 −3 2

∣∣∣∣∣∣∣∣∣∣∣∣
1 2 3
2 −3 1
−3 1 2

∣∣∣∣∣∣
= 2

x3 =

∣∣∣∣∣∣
1 2 2
2 −3 −3
−3 1 −3

∣∣∣∣∣∣∣∣∣∣∣∣
1 2 3
2 −3 1
−3 1 2

∣∣∣∣∣∣
= −1.

□

2.B.10. Find the algebraically adjoint matrix and the inverse

of the matrix

A =


1 0 2 0
0 3 0 4
5 0 6 0
0 7 0 8

 .

Solution. The adjoint matrix is

A∗ =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


T

,

where Aij is the algebraic complement of the element aij of

the matrix A, that is, the product of the number (−1)i+j and

the determinant of the matrix given byAwithout the i-th row

and j-th column. We have

A11 =

∣∣∣∣∣∣
3 0 4
0 6 0
7 0 8

∣∣∣∣∣∣ = −24, A12 = −

∣∣∣∣∣∣
0 0 4
5 6 0
0 0 8

∣∣∣∣∣∣ = 0,

A13 =

∣∣∣∣∣∣
0 3 4
5 0 0
0 7 8

∣∣∣∣∣∣ = 20, A14 = −

∣∣∣∣∣∣
0 3 0
5 0 6
0 7 0

∣∣∣∣∣∣ = 0,

A21 = −

∣∣∣∣∣∣
0 2 0
0 6 0
7 0 8

∣∣∣∣∣∣ = 0, A22 =

∣∣∣∣∣∣
1 2 0
5 6 0
0 0 8

∣∣∣∣∣∣ = −32,

A23 = −

∣∣∣∣∣∣
1 0 0
5 0 0
0 7 8

∣∣∣∣∣∣ = 0, A24 =

∣∣∣∣∣∣
1 0 2
5 0 6
0 7 0

∣∣∣∣∣∣ = −28,

A31 =

∣∣∣∣∣∣
0 2 0
3 0 4
7 0 8

∣∣∣∣∣∣ = 8, A32 = −

∣∣∣∣∣∣
1 2 0
0 0 4
0 0 8

∣∣∣∣∣∣ = −0,

A33 =

∣∣∣∣∣∣
1 0 0
0 3 4
0 7 8

∣∣∣∣∣∣ = −4, A34 = −

∣∣∣∣∣∣
1 0 2
0 3 0
0 7 0

∣∣∣∣∣∣ = −0,
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solution space with n coordinates. The �dimension� of this

space is given by the di�erence of the number of variables

and the rank of the matrix A. Thus we can easily deal with

the solution of a system of 1000 equations in 1000 variables

and need only one or two free parameters. Thus the whole

solution space will behave as a plane or a line, as we have

already seen in ?? at the page ??, although the vectors them-

selves are given by so many components.

We go further. Already in paragraph ?? we have encoun-

tered an interesting example of a space of all solutions of a

homogeneous linear di�erence equation of �rst order. All so-

lutions have been obtained from a single one by scalar mul-

tiplication and are also closed under addition and scalar mul-

tiples. These �vectors� of solutions are in�nite sequences of

numbers, although we intuitively expect that the �dimension�

of the whole space of solutions should be one. We shall un-

derstand such phenomena with the help of a more general def-

inition of vector space and its dimension.

Vector space definition

A vector space V over a �eld of scalarsK is a set where

we de�ne the operations

• addition, which satis�es the axioms (CG1)�(CG4) from

the paragraph ?? on the page ??,

• scalar multiplication, for which the axioms (V1)�(V4)

from the paragraph 2.1.1 on the page 5 hold.

Recall our simple notational convention: scalars are usu-

ally denoted by letters from the beginning of the alphabet, that

is, a, b, c, . . . , while for vectors we shall use letters from the

end, that is, u, v, w, x, y, z. Usually, x, y, z will denote n-
tuples of scalars. For completeness, the letters from the cen-

tre of the alphabet, for instance i, j, k, ℓ, will mostly denote

indices.

In order to gain some practice in the formal approach, we

check some simple properties of vectors.

These are trivial for n-tuples for scalars,
but not so evident for general vectors in

our new abstract sense.

2.3.2. Proposition. Let V be a vector space over a �eld of

scalars K. Suppose a, b, ai ∈ K, and u, v, uj ∈ V . Then

(1) a · u = 0 if and only if a = 0 or u = 0,
(2) (−1) · u = −u,
(3) a · (u− v) = a · u− a · v,
(4) (a− b) · u = a · u− b · u,
(5)

(∑n
i=1 ai

)
·
(∑m

j=1 uj

)
=
∑n

i=1

∑m
j=1 ai · uj .

Proof. We can expand

(a+ 0) · u (V 2)
= a · u+ 0 · u = a · u

which, according to the axiom (CG4), implies 0 ·u = 0. Now

u+ (−1) · u (V 2)
= (1 + (−1)) · u = 0 · u = 0

and thus −u = (−1) · u. Further,

a · (u+ (−1) · v) (V 2,V 3)
= a · u+ (−a) · v = a · u− a · v,
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A41 = −

∣∣∣∣∣∣
0 2 0
3 0 4
0 6 0

∣∣∣∣∣∣ = 0, A42 =

∣∣∣∣∣∣
1 2 0
0 0 4
5 6 0

∣∣∣∣∣∣ = −16,

A43 = −

∣∣∣∣∣∣
1 0 0
0 3 4
5 0 0

∣∣∣∣∣∣ = 0, A44 =

∣∣∣∣∣∣
1 0 2
0 3 0
5 0 6

∣∣∣∣∣∣ = −12.

By substitution we obtain

A∗ =


−24 0 20 0
0 −32 0 28
8 0 −4 0
0 16 0 −12


T

=


−24 0 8 0
0 −32 0 16
20 0 −4 0
0 28 0 −12

 .

We compute the inverse matrix A−1 from the relation

A−1 = |A|−1 · A∗. The determinant of the matrix A is (ex-

panding the �rst row) equal to

|A| =

∣∣∣∣∣∣∣∣
1 0 2 0
0 3 0 4
5 0 6 0
0 7 0 8

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
3 0 4
0 6 0
7 0 8

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
0 3 4
5 0 0
0 7 8

∣∣∣∣∣∣ = 16.

By substitution, we obtain

A−1 =


−3/2 0 1/2 0
0 −2 0 1
5/4 0 −1/4 0
0 7/4 0 −3/4

 .

□

C. Vector spaces

Typical properties of vector spaces (met already in the

plane or three dimensional space) can be ob-

served in many other situations. We illustrate

this by examples.

2.C.1. Vector space � yes or no? Decide

whether following sets form a vector space over the �eld of

real numbers:

i) The set of solutions of the system

x1 + x2 + · · ·+ x98 + x99 + x100 =100x1,

x1 + x2 + · · ·+ x98 + x99 =99x1,

x1 + x2 + · · ·+ x98 =98x1,

...

x1 + x2 =2x1.
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which proves (3). It follows that

(a− b) · u (V 2,V 3)
= a · u+ (−b) · u = a · u− b · u

which proves (4). Property (5) follows using induction with

(V2) and (V1).

It remains to prove (1): a · 0 = a · (u − u) = a · u −
a · u = 0, which along with the �rst derived proposition in

this proof proves one implication. For the other implication,

we use an axiom for the �eld of scalars, and axiom (V4) for

vector spaces: if p · u = 0 and p ̸= 0, then u = 1 · u =
(p−1 · p) · u = p−1 · 0 = 0. □

2.3.3. Linear (in)dependence. In paragraph 2.1.11 we

worked with linear combinations of rows of a matrix. With

vectors we work analogously:

Linear combination and independence

An expression of the form a1 v1 + · · ·+ ak vk is called
a linear combination of vectors v1, . . . , vk ∈ V .

A �nite sequence of vectors v1, . . . , vk is called linearly
independent, if the only zero linear combination is the one

with all coe�cients zero. That is, for scalars a1, . . . , ak ∈
K,

a1 v1 + · · ·+ ak vk = 0 =⇒ a1 = a2 = · · · = ak = 0.

It is clear that for an independent sequence of vectors, all

vectors are mutually distinct and nonzero.

The set of vectorsM ⊂ V in a vector space V overK is

called linearly independent, if every �nite k-tuple of vectors
v1, . . . , vk ∈ M is linearly independent.

The set of vectors M is linearly dependent, if it is not

linearly independent.

A nonempty subsetM of vectors in a vector space over a

�eld of scalarsK is dependent if and only if one

of its vectors can be expressed as a �nite linear

combination using other vectors inM . This fol-

lows directly from the de�nition.

At least one of the coe�cients in the corresponding linear

combination must be nonzero, and since we are over a �eld

of scalars, we can multiply whole combination by the inverse

of this nonzero coe�cient and thus express its corresponding

vector as a linear combination of the others.

Every subset of a linearly independent set M is clearly

also linearly independent (we require the same conditions on

a smaller set of vectors). Similarly, we can see that M ⊂ V
is linearly independent if and only if every �nite subset ofM
is linearly independent.

2.3.4. Generators and subspaces. A subset M ⊂ V is

called a vector subspace if it forms, together

with the restricted operations of addition and

scalar multiplication, a vector space. That is,

we require

∀a, b ∈ K, ∀v, w ∈ M, a · v + b · w ∈ M.
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ii) The set of solutions of the equation

x1 + x2 + · · ·+ x100 = 0

iii) The set of solutions of the equation

x1 + 2x2 + 3x3 + · · ·+ 100x100 = 1.

iv) The set of all real (or complex) sequences. (Real or com-

plex sequence is a mapping f : N → R or f : N → C.
The image of number n is then called n-th member of the

sequence, we usually denote it by lower index, say an.)

v) The set of solutions of a homogeneous di�erence equa-

tion.

vi) The set of solutions of a non-homogeneous di�erence

equation.

vii) {f : R → R|f(1) = f(2) = c, c ∈ R}

Solution. We check the properties of a vector space, see 2.3.1.

Actually all we have to do is to check whether the given sets

are closed to linear combinations of it's elements. Then all

the axioms of a vector space are satis�ed.

i) Yes. They all are real multiples of the vector

(1, 1, 1 . . . , 1)︸ ︷︷ ︸
100 ones

. A sum of two multiples of the same

vector is again a multiple of the vector. The reverse

vector is again a multiple of the vcetor and all other

axioms are trivially satis�ed. By the way, the solution

space is thus a vector space of dimension 1, see also

2.3.7.

ii) Yes. It is a space of dimension 99 (corresponds to the

number of free parameters of the solution). In general

the set of all solutions of any system of homogeneous

linear equations forms a vector space.

iii) No. For instance, taking twice the solution x1 = 1, xi =

0, i = 2, . . . 100 we do not obtain a solution. But the set

of solutions forms an a�ne space (see ??).

iv) Yes. The set of all real or complex sequences clearly

forms a real (complex) vector space. Adding the se-

quences and scalar multiplication is de�ned term-wise,

where it is clearly the vector space of all real (complex)

numbers.

v) Yes. In order to show that the set of sequences which sat-

isfy given di�erence homogeneous equation it is enough

to show that it is closed under addition and real number

multiplication (as the set of all real sequences is a vector

space, as we know). Consider two sequences (xj)
∞
j=0
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We investigate a couple of cases: The space ofm-tuples

of scalars Rm with coordinate-wise addition and multiplica-

tion is a vector space over R, but also a vector space over Q.
For instance for m = 2, the vectors (1, 0), (0, 1) ∈ R2 are

linearly independent, because from

a · (1, 0) + b · (0, 1) = (0, 0)

follows a = b = 0. Further, the vectors (1, 0), (
√
2, 0) ∈ R2

are linearly dependent over R, because
√
2 · (1, 0) = (

√
2, 0),

but over Q they are linearly independent! Over R these two

vectors �generate� a one-dimensional subspace, while overQ
the subspace is �larger�.

Polynomials of degree at most m form a vector space

Rm[x]. We can consider the polynomials as mappings f :
R → R and de�ne the addition and scalar multiplication like

this: (f + g)(x) = f(x) + g(x), (a · f)(x) = a · f(x).
Polynomials of all degrees also form a vector space R[x] and
Rm[x] ⊂ Rn[x] is a vector subspace for any m ≤ n ≤ ∞.

Further examples of subspaces is given by all even polyno-

mials or all odd polynomials, that is, polynomials satisfying

f(−x) = ±f(x).
In complete analogy with polynomials, we can de�ne a

vector space structure on a set of all mappings R → R. or
of all mappingsM → V of an arbitrary �xed setM into the

vector space V .

Because the condition in the de�nition of subspace con-

sists only of universal quanti�ers, the intersection of

subspaces is still a subspace. We can see this also

directly: Let Wi, i ∈ I, be vector subspaces in V ,

a, b ∈ K, u, v ∈ ∩i∈IWi. Then a ·u+ b · v ∈ Wi for

all i ∈ I. Hence a · u+ b · v ∈ ∩i∈IWi.

It can be noted that the intersection of all subspaces

W ⊂ V that contain some given set of vectors M ⊂ V is

a subspace. It is called spanM.
We say that a set M generates the subspace spanM ,

or that the elements of M are generators of the subspace

spanM .

We formulate a few simple claims about subspace gener-

ation:

Proposition. For every nonempty setM ⊂ V, we have

(1) spanM = {a1 ·u1+ · · ·+ak ·uk; k ∈ N, ai ∈ K, uj ∈
M, j = 1, . . . , k};

(2) M = spanM if and only if M is a vector subspace;

(3) ifN ⊂ M then spanN ⊂ spanM is a vector subspace;

the subspace span ∅ generated by the empty subspace is

the trivial subspace {0} ⊂ V .

Proof. (1) The set of all linear combinations

a1u1 + · · ·+ akuk

on the right-hand side of (1) is clearly a vector subspace and

of course it containsM . On the other hand, each of the linear

combinations must be in spanM and thus the �rst claim is

proved.
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and (yj)
∞
j=0 satisfying the given equation, that is,

anxn+k + an−1xn+k−1 + · · ·+ a0xk = 0

anyn+k + an−1yn+k−1 + · · ·+ a0yk = 0.

By adding these equations, we obtain

an(xn+k + yn+k) + an−1(xn+k−1 + yn+k−1)

+ · · ·+ a0(xk + yk) = 0,

therefore also the sequence (xj + yj)
∞
j=0 satis�es the

given equation. Analogously, if the sequence (xj)
∞
j=0

satis�es the given equation, then also (uxj)
∞
j=0, where

u ∈ R.
vi) No. The sum of two solutions of a non-homogeneous

equation

anxn+k + an−1xn+k−1 + · · ·+ a0xk = c

anyn+k + an−1yn+k−1 + · · ·+ a0yk = c, c ∈ R− {0}

satis�es the equation

an(xn+k + yn+k) + an−1(xn+k−1 + yn+k−1)

+ · · ·+ a0(xk + yk) = 2c,

that is, it does not satisfy the original non-homogeneous

equation. But the set of solutions forms an a�ne space,

see ??.

vii) It is a vector space if and only if c = 0. If we take two

functions f and g from the given set, then (f + g)(1) =

(f + g)(2) = f(1) + g(1) = 2c. Thus if f + g is to be a

member of the given set, it must be that (f + g)(1) = c,

therefore 2c = c, hence c = 0.

□

2.C.2. Find out, whether the set

U1 = {(x1, x2, x3) ∈ R3; |x1 | = |x2 | = |x3 |}

is a subspace of a vector space R3 and the set

U2 = {ax2 + c; a, c ∈ R}

a subspace of the space of polynomials of degree at most 2.

Solution.The set U1 is not a vector (sub)space. We can see

that, for instance,

(1, 1, 1) + (−1, 1, 1) = (0, 2, 2) /∈ U1.

The set U2 is a subspace (there is a clear identi�cation with

R2), because(
a1x

2 + c1
)
+
(
a2x

2 + c2
)
= (a1 + a2)x

2 + (c1 + c2),
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Claim (2) follows immediately from claim (1) and from

the de�nition of vector space. Analogously, (1) implies the

third claim.

Finally, the smallest possible vector subspace is {0}. No-
tice that the empty set is contained in every subspace and each

of them contains the vector 0. This proves the last claim. □

Basis and dimension

A subset M ⊂ V is called a basis of the vector space

V if spanM = V andM is linearly independent.

A vector space with a �nite basis is called �nitely di-

mensional. The number of elements of the basis is called

the dimension of V .

If V does not have a �nite basis, we say that V is in�n-

itely dimensional. We write dimV = k, k ∈ N or k = ∞.

In order to be satis�ed with such a de�nition of dimen-

sion, wemust know that di�erent bases of the same space will

always have the same number of elements. We shall show this

below. But we note immediately, that the trivial subspace is

generated by the empty set, which is an �empty� basis. Thus

it has dimension zero.

2.3.5. Back to systems of linear equations. It is a good time

now to recall the properties of systems of linear

equation in terms of abstract vector spaces and

their bases. As we have already noted in the in-

troduction to this section (cf. 2.3.1), the set of

all solutions of the homogeneous system

A · x = 0

is a vector space. IfA is a matrix withm rows and n columns,

and the rank of the matrix is k, then using the row echelon

transformation (see 2.1.7)to solve the system, we �nd that the

dimension of the space of all solutions is exactly n− k.
Indeed, the left hand side of the equation can be under-

stood as the linear combination of the columns of A with co-

e�cients given by x and the rank k of the matrix provides

the number of linearly independent columns inA, thus the di-
mension of the subspace of all possible linear combinations

of the given form. Therefore, after transforming the system

into row echelon form, exactly m − k zero rows remain. In

the next step, we are left with exactly n − k free parameters.

By setting one of them to have value one, while all others are

zero, we obtain exactly n− k linearly independent solutions.

Then all solutions are given by all the linear combinations of

these n− k solutions. Every such (n− k)-tuple of solutions
is called a fundamental system of solutions of the given ho-

mogeneous system of equations. We have proved:

Proposition. The set of all solutions of the homogeneous sys-

tem of equations

A · x = 0

for n variables with the matrix A of rank k is a vector sub-

space in Kn of dimension n − k. Every basis of this space

forms a fundamental system of solutions of the given homoge-

neous system.
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k ·
(
ax2 + c

)
= (ka)x2 + kc

for all numbers a1, c1, a2, c2, a, c, k ∈ R. □

D. Linear (in)dependence

2.D.1. Determine whether or not the vectors (1, 2, 3, 1),

(1, 0,−1, 1), (2, 1,−1, 3) and (0, 0, 3, 2) are lin-

early independent.

Solution.Because∣∣∣∣∣∣∣∣
1 2 3 1
1 0 −1 1
2 1 −1 3
0 0 3 2

∣∣∣∣∣∣∣∣ = 10 ̸= 0,

the given vectors are linearly independent. □

2.D.2. Given arbitrary linearly independent vectors u, v, w,

z in a vector space V , decide whether or not in V the vectors

u− 2v, 3u+w− z, u− 4v+w+ 2z, 4v+ 8w+ 4z

are linearly independent.

Solution. Considered vectors are linearly independent if and

only if the vectors (1,−2, 0, 0), (3, 0, 1,−1), (1,−4, 1, 2),

(0, 4, 8, 4) are linearly independent in R4. We have∣∣∣∣∣∣∣∣
1 −2 0 0
3 0 1 −1
1 −4 1 2
0 4 8 4

∣∣∣∣∣∣∣∣ = −36 ̸= 0,

thus the vectors are linearly independent. □

2.D.3. The vectors

(1, 2, 1), (−1, 1, 0), (0, 1, 1)

are linearly independent, and therefore together form a basis

ofR3 (for basis it is important to give an order of the vectors).

Every three-dimensional vector is therefore some linear com-

bination of them. What linear combination corresponds to

the vector (1, 1, 1), or equivalently, what are the coordinates

of the vector (1, 1, 1) in the basis formed by the given vectors?

Solution. We seek a, b, c ∈ R such that a(1, 2, 1) +

b(−1, 1, 0) + c(0, 1, 1) = (1, 1, 1). The equation must hold

in every coordinate, so we have a system of three linear equa-

tions in three variables:

a− b = 1

2a+ b+ c = 1

a+ c = 1,
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Next, consider the general system of equations

A · x = b.

Notice that the columns of the matrix A are actually images

of the vectors of the standard basis in Kn under the mapping

assigning the vector A · x to each vector x. If there should
be a solution, b must be in the image under this mapping and
thus it must be a linear combination of the columns in A.

If we extend the matrix A by the column b, the number
of linearly independent columns and thus also rows might in-

crease (but does not have to). If this number increases, then b
is not in the image and the system of equations does not have

a solution. If on the other hand the number of linearly inde-

pendent rows does not change after adding the column b to
the matrix A, it means that b must be a linear combination of
the columns ofA. Coe�cients of such combinations are then

exactly the solutions of our system.

Consider now two �xed solutions x and y of our sys-

tem and some solution z of the homogeneous system with

the same matrix. Then clearly

A · (x− y) = b− b = 0

A · (x+ z) = 0 + b = b.

Thus we can summarise in the form of the so called

Kronecker-Capelli theorem1:

Kronecker-Capelli Theorem

Theorem. The solution of a non-homogeneous system of lin-

ear equations A · x = b exists if and only if adding the

column b to the matrix A does not increase the number of
linearly independent rows. In such a case the space of all

solution is given by all sums of one �xed particular solution

of the system and all solutions of the homogeneous system

that has the same matrix.

2.3.6. Sums of subspaces. Since we now have some intu-

ition about generators and the subspaces gener-

ated by them, we should understand the possi-

bilities of how some subspaces can generate the

whole space V .

1Acommon formulation of this fact is �system has a solution if and only

if the rank of its matrix equals the rank of its extended matrix�. Leopold Kro-

necker was a very in�uential German Mathematician, who dealt with alge-

braic equations in general and in particular pushed forward Number Theory

in the middle of 19th century. Alfredo Capelli, an Italian, worked on alge-

braic identities. This theorem is equally often called by di�erent names, e.g.

Rouché-Frobenius theorem or Rouché-Capelli theorem etc. This is a very

common feature in Mathematics.
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whose solution gives us a = 1
2 , b = − 1

2 , c =
1
2 , thus we have

(1, 1, 1) =
1

2
· (1, 2, 1)− 1

2
· (−1, 1, 0) +

1

2
· (0, 1, 1),

that is, the coordinates of the vector (1, 1, 1) in the basis

((1, 2, 1), (−1, 1, 0), (0, 1, 1)) are ( 12 ,−
1
2 ,

1
2 ). □

2.D.4. Determine all constants a ∈ R such that the polyno-

mials ax2+x+2,−2x2+ax+3 and x2+2x+a

are linearly dependent (in the vector spaceP3[x]

of polynomials of one variable of degree at most

three over real numbers).

Solution. In the basis 1, x, x2 the coe�cients of the given

vectors (polynomials) are (a, 1, 2), (−2, a, 3), (1, 2, a). Poly-

nomials are linearly independent if and only if the matrix

whose columns are given by the coordinates of the vectors

has a rank lower than the number of the vectors. In this case

the rank must be two or less. In the case of a square matrix, a

rank less than the number of rows means that the determinant

is zero. The condition for a thus reads∣∣∣∣∣∣
a −2 1
1 a 2
2 3 a

∣∣∣∣∣∣ = 0,

that is, a is a root of the polynomial a3 − 6a − 5 = (a +

1)(a2 − a − 5), thus there are 3 such constants a1 = −1,

a2 = 1+
√
21

2 , a3 = 1−
√
21

2 . □

2.D.5. Consider the complex numbers C as a real vector

space. Determine the coordinates of the number 2 + i in the

basis given by the roots of the polynomial x2 + x+ 1.

Solution. Because roots of the given polynomial are −1
2 +

i
√
3
2 and − 1

2 − i
√
3
2 , we have to determine the coordinates

(a, b) of the vector 2+ i in the basis (−1
2 + i

√
3
2 ,−1

2 − i
√
3
2 ).

These real numbers a, b are uniquely determined by the con-

dition

a · (−1

2
+ i

√
3

2
) + b · (−1

2
− i

√
3

2
) = 2 + i.

By equating separately the real and the imaginary parts of the

equation, we obtain a system of two linear equations in two

variables:

−1

2
a− 1

2
b = 2

√
3

2
a−

√
3

2
b = 1.

The solution gives us a = −2+
√
3
3 , b = −2−

√
3
3 , therefore

the coordinates are (−2 + 1√
3
,−2− 1√

3
). □
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Sum of subspaces

Let Vi, i ∈ I be subspaces of V . Then the subspace

generated by their union, that is, span∪i∈IVi, is called the

sum of subspaces Vi. We denote it as W =
∑

i∈I Vi. No-

tably, for a �nite number of subspaces V1, . . . , Vk ⊂ V we

write

W = V1 + · · ·+ Vk = spanV1 ∪ V2 ∪ · · · ∪ Vk.

We see that every element in the considered sumW can

be expressed as a linear combination of vectors from the sub-

spaces Vi. Because vector addition is commutative, we can

aggregate summands that belong to the same subspace and

for a �nite sum of k subspaces we obtain

V1+V2+ · · ·+Vk = {v1+ · · ·+vk; vi ∈ Vi, i = 1, . . . , k}.
The sum W = V1 + · · · + Vk ⊂ V is called the direct sum

of subspaces if the intersection of any two is trivial, that is,

Vi ∩ Vj = {0} for all i ̸= j. We show that in such a case,

every vector w ∈ W can be written in a unique way as the

sum

w = v1 + · · ·+ vk,

where vi ∈ Vi. Indeed, if we could simultaneously write w
as w = v′1 + · · ·+ v′k, then

0 = w − w = (v1 − v′1) + · · ·+ (vk − v′k).

If vi− v′i is the �rst nonzero term of the right-hand side, then

this vector from Vi can be expressed using vectors from the

other subspaces. This is a contradiction to the assumption that

Vi has zero intersection with all the other subspaces. The only

possibility is then that all the vectors on the right-hand side

are zero and thus the expression of w is unique.

For direct sums of subspaces we write

W = V1 ⊕ · · · ⊕ Vk = ⊕k
i=1Vi.

2.3.7. Basis. Now we have everything prepared for under-

standing minimal sets of generators as we un-

derstood them in the plane R2 and to prove the

promised indepence of the number of basis ele-

ments on any choices.

A basis of a k-dimensional space will usually be denoted
as a k-tuple v = (v1 . . . , vk) of basis vectors. This is just a
matter of convention: with �nitely dimensional vector spaces

we shall always consider the bases along with a given order of

the elements, even if we have not de�ned it that way (strictly

speaking).

Clearly, if (v1, . . . , vn) is a basis of V , then the whole

space V is the direct sum of the one-dimensional subspaces

V = span{v1} ⊕ · · · ⊕ span{vn}.
An immediate corollary of the derived uniqueness of de-

composition of any vector w in V into the components in the

direct sum gives a unique decomposition

w = x1v1 + · · ·+ xnvn.

This allows us, after choosing a basis, to see the abstract vec-

tors again as n-tuples of scalars. We shall return to this idea
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2.D.6. Remark. As a perceptive reader may have spotted, the

problem statement is not unambiguous � we are not given the

order of the roots of the polynomial, thus we do not have the

order of the basis vectors. The result is thus given up to the

permutation of the coordinates.

We add a remark about rationalising the denominator,

that is, removing the square roots from the denominator. The

authors do not have a distinctive attitude whether this should

always be done or not (Does
√
3
3 look better than 1√

3
?). In

some cases the rationalising is undesirable: from the fraction
6√
35

we can immediately spot that its value is a little greater

than 1 (because
√
35 is just a little smaller than 6), while for

the rationalised fraction 6
√
35

35 we cannot spot anything. But

in general the convention is to normalize.

2.D.7. Consider complex numbers C as a real vector space.

Determine the coordinates of the number 2 + i in the basis

given by the roots of the polynomial x2 − x+ 1. ⃝

2.D.8. For what values of the parameters a, b, c ∈ R are the

vectors (1, 1, a, 1), (1, b, 1, 1), (c, 1, 1, 1) linearly dependent?

⃝

2.D.9. Let a vector space V be given along with a basis

formed by the vectors u, v, w, z. Determine whether or not

the vectors

u− 3v + z, v − 5w − z, 3w − 7z, u− w + z

are linearly independent. ⃝

2.D.10. Complete the vectors 1 − x2 + x3, 1 + x2 + x3,

1 − x − x3 to a basis of the space of polynomials of degree

at most 3. ⃝

2.D.11. Do the matrices(
1 0
1 −2

)
,

(
1 4
0 −1

)
,

(
−5 0
3 0

)
,

(
1 −2
0 3

)
form a basis of the vector space of square two-dimensional

matrices?

Solution. The four given matrices are as vectors in the space

of 2 × 2 matrices linearly independent. It follows from the

fact that the matrix
1 1 −5 1
0 4 0 −2
1 0 3 0
−2 −1 0 3
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in paragraph 2.3.11, when we �nish the discussion of the ex-

istence of bases and sums of subspaces in the general case.

2.3.8. Theorem. From any �nite set of generators of a vec-

tor space V we can choose a basis. Every basis of a �nitely

dimensional space V has the same number of elements.

Proof. The �rst claim is easily proved using induction

on the number of generators k.
Only the zero subspace does not need a generator

and thus we are able to choose an empty basis. On the

other hand, we are not able to choose the zero vector

(the generators would then be linearly dependent) and there

is nothing else in the subspace.

In order to have our inductive step more natural, we deal

with the case k = 1 �rst. We have V = span{v} and v ̸= 0,
because {v} is a linearly independent set of vectors. Then

{v} is also a basis of the vector space V and any other vector

is a multiple of v, so all bases of V must contain exactly one

vector, which can be chosen from any set of generators.

Assume that the claim holds for k = n and consider

V = span{v1, . . . , vn+1}. If v1, . . . , vn+1 are linearly inde-

pendent, then they form a basis. If they are linearly dependent,

there exists i such that

vi = a1v1 + · · ·+ ai−1vi−1 + ai+1vi+1 + · · ·+ an+1vn+1.

Then V = span{v1, . . . , vi−1, vi+1, . . . , vn+1} and we can

choose a basis, using the inductive assumption.

In remains to show that bases always have the same num-

ber of elements. Consider a basis (v1, . . . , vn) of the space
V and for an arbitrary nonzero vector u, consider

u = a1v1 + · · ·+ anvn ∈ V

with ai ̸= 0 for some i. Then

vi =
1

ai

(
u−(a1v1+· · ·+ai−1vi−1+ai+1vi+1+· · ·+anvn)

)
and therefore also span{u, v1, . . . , vi−1, vi+1, . . . , vn} = V .

We show that this is again a basis. For if adding u to the

linearly independent vectors v1, . . . , vi−1, vi+1, . . . , vn leads

to a set of linearly dependent vectors, then

V = span{v1, . . . , vi−1, vi+1, . . . , vn},

which implies a basis of n− 1 vectors, which is not possible.
Thus we have proved that for any nonzero vec-

tor u ∈ V there exists i, 1 ≤ i ≤ n, such that

(u, v1, . . . , vi−1, vi+1, . . . , vn) is again a basis of V .

Similarly, instead of one vector u, we can consider a lin-
early independent set u1, . . . , uk. We will sequentially add

u1, u2, . . . , always exchanging for some vi using our previous
approach. We have to ensure that there always is such vi to
be replaced (that is, that the vectors ui will not consequently

replace each other).

Assume thus that we have already placed u1, . . . , uℓ in-

stead of some vj's. Then the vector uℓ+1 can be expressed as

a linear combination of the latter vectors ui and the remain-

ing vj's. If any of the coe�cients at u1, . . . , uℓ were nonzero,
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is invertible (which is by the way equivalent to any of the fol-

lowing claims: its rank equals its dimension; it can be trans-

formed into the unit matrix by elementary row transforma-

tions; it has the inverse matrix; it has a non-zero determinant

(equal to 116); it stands for a system of homogeneous linear

equations with only zero solution; every non-homogeneous

linear system with left-hand side given by this matrix has a

unique solution; the range of a linear mapping given by this

matrix is a vector space of dimension 4 � this mapping is in-

jective). □

2.D.12. In the vector space R4 we are given three-

dimensional subspaces

U = span{u1, u2, u3}, V = span{v1, v2, v3},

while

u1 =


1
1
1
0

 , u2 =


1
1
0
1

 , u3 =


1
0
1
1

 , v1 =


1
1
−1
−1

 ,

v2 = (1,−1, 1,−1)T , v3 = (1,−1,−1, 1)T . Determine the

dimension and �nd a basis of the subspace U ∩ V .

Solution. The subspace U ∩ V contains exactly the vectors

that can be obtained as a linear combinations of vectorsui and

also as a linear combination of vectors vi. Thus we search for

numbers x1, x2, x3, y1, y2, y3 ∈ R such that the following

holds:

x1


1

1
1
0

+x2


1

1
0
1

+x3


1

0
1
1

 = y1


1

1
−1
−1

+y2


1

−1
1
−1

+y3


1

−1
−1
1

 ,

that is, we are looking for a solution of a system

x1 + x2 + x3 = y1 + y2 + y3,
x1 + x2 = y1 − y2 − y3,
x1 + x3 = −y1 + y2 − y3,

x2 + x3 = −y1 − y2 + y3.

Using matrix notation of this homogeneous system (and pre-

serving the order of the variables) we have
1 1 1 −1 −1 −1
1 1 0 −1 1 1
1 0 1 1 −1 1
0 1 1 1 1 −1



∼


1 1 1 −1 −1 −1
0 0 −1 0 2 2
0 −1 0 2 0 2
0 1 1 1 1 −1
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then it wouldmean that the vectors u1, . . . , uℓ+1 were linearly

dependent, which is a contradiction.

Summarizing, for every k ≤ nwe can arrive after k steps
at a basis in which k vectors from the original basis were ex-

changed for the new ui's. If k > n, then in the n-th step we
would obtain a basis consisting only of new vectors ui, which

means that the original set could not be linearly independent.

In particular, it is not possible for two bases to have a di�erent

number of elements. □

In fact, we have proved a stronger claim, the Steinitz ex-

change lemma, which says that for every �nite basis v and

every system of linearly independent vectors ui in V we can

�nd a subset of the basis vectors vi which will complete the
set of ui's into a new basis.

2.3.9. Corollaries of the Steinitz lemma. Because of the

possibility of freely choosing and replacing ba-

sis vectors we can immediately derive nice (and

intuitively expectable) properties of bases of

vector spaces:

Proposition. (1) Every two bases of a �nite dimensional

vector space have the same number of elements, that is,

our de�nition of dimension is basis-independent.

(2) If V has a �nite basis, then every linearly independent

set can be extended to a basis.

(3) A basis of a �nite dimensional vector space is a maximal

linearly independent set of vectors.

(4) The bases of a vector space are the minimal sets of gen-

erators.

A little more complicated, but now easy to deal with, is

the situation of dimensions of subspaces and their sums:

Corollary. Let W,W1,W2 ⊂ V be subspaces of a space V
of �nite dimension. Then

(1) dimW ≤ dimV ,

(2) V = W if and only if dimV = dimW ,

(3) dimW1+dimW2 = dim(W1+W2)+dim(W1∩W2).

Proof. It remains to prove only the last claim. This is

evident if the dimension of one of the spaces is

zero. Assume dimW1 = r ≥ 1, dimW2 = s ≥
1 and let (w1 . . . , wt) be a basis ofW1 ∩W2 (or

empty set, if the intersection is trivial).

According to the Steinitz exchange lemma this

basis of the intersection can be extended to a ba-

sis (w1, . . . , wt, ut+1 . . . , ur) for W1 and to a basis

(w1 . . . , wt, vt+1, . . . , vs) forW2. Vectors

w1, . . . , wt, ut+1, . . . , ur, vt+1 . . . , vs

clearly generate W1 + W2. We show that they are linearly

independent. Let

a1w1 + · · ·+ atwt + bt+1ut+1 + . . .

· · ·+ brur + ct+1vt+1 + · · ·+ csvs = 0.
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∼


1 1 1 −1 −1 −1
0 1 1 1 1 −1
0 0 −1 0 2 2
0 0 1 3 1 1



∼


1 1 1 −1 −1 −1
0 1 1 1 1 −1
0 0 1 0 −2 −2
0 0 0 1 1 1



∼


1 1 1 0 0 0
0 1 1 0 0 −2
0 0 1 0 −2 −2
0 0 0 1 1 1



∼


1 0 0 0 0 2
0 1 0 0 2 0
0 0 1 0 −2 −2
0 0 0 1 1 1

 .

We obtain a solution

x1 = −2t, x2 = −2s, x3 = 2s+ 2t, y1 = −s− t, y2 = s,

y3 = t, t, s ∈ R.

We obtain a general vector of the intersection by substituting
x1 + x2 + x3

x1 + x2

x1 + x3

x2 + x3

 =


0

−2t− 2s
2s
2t

 .

We see that

dim U ∩ V = 2, U ∩ V = span

{
0
−1
1
0

 ,


0
−1
0
1

}.
□

2.D.13. Let there be in R3 two vector spaces U and V gen-

erated by the vectors

(1, 1,−3) , (1, 2, 2) and (1, 1,−1) , (1, 2, 1) , (1, 3, 3) ,

respectively. Determine the intersection of these two sub-

spaces.

Solution. According to the de�nition of intersection, the vec-

tors in the intersection are in both, the span of the vectors

(1, 1,−3) , (1, 2, 2), as well as in the span of the vectors

(1, 1,−1) , (1, 2, 1) , (1, 3, 3). It helps to consider �rst the

geometry. Firstly, U is spanned by two linearly independent

vectors. So U is a plane in R3. Next, V is spanned by three

vectors. But these are linearly dependent since∣∣∣∣∣∣
1 1 1
1 2 3
−1 1 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 −1
1 2 1
1 3 3

∣∣∣∣∣∣ = 0.

So V is also a plane.
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Then necessarily

− (ct+1 · vt+1 + · · ·+ cs · vs) =
= a1 · w1 + · · ·+ at · wt + bt+1 · ut+1 + · · ·+ br · ur

must belong toW2 ∩W1. This implies that

bt+1 = · · · = br = 0,

since this is the way we have de�ned our bases. Then also

a1 · w1 + · · ·+ at · wt + ct+1 · vt+1 + · · ·+ cs · vs = 0

and because the corresponding vectors form a basis W2, all

the coe�cients are zero.

The claim (3) now follows by directly counting the gen-

erators. □

2.3.10. Examples. (1) Kn has (as a vector space over K) di-
mension n. The n-tuple of vectors

((1, 0, . . . , 0), (0, 1, . . . , 0) . . . , (0, . . . , 0, 1))

is clearly a basis, we call it the standard basis of Kn.

Note that in the case of a �nite �eld of scalars, say Zk,

the whole space Kn has only a �nite number kn of elements.

(2) C as a vector space over R has dimension 2. A basis is for

instance the pair of numbers 1 and i, or any other two complex
numbers which are not a real multiple of each other, eg. 1+ i
and 1− i.
(3) Km[x], that is, the space of all polynomials of degree at
most m, has dimension m + 1. A basis is for instance the

sequence 1, x, x2, . . . , xm.

The vector space of all polynomials K[x] has dimension
∞, but we can still �nd a basis (although in�nite in size):

1, x, x2, . . . .
(4) The vector space R over Q has dimension ∞. It does not
have a countable basis.

(5) The vector space of all mappings f : R → R has also

dimension∞. It does not have any countable basis.

2.3.11. Vector coordinates. If we �x a basis (v1, . . . , vn) of
a �nite dimensional space V , then every vector

w ∈ V can be expressed as a linear combination

v = a1v1+ · · ·+anvn in a unique way. Indeed,

assume that we can do it in two ways:

w = a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn.

Then

0 = (a1 − b1) · v1 + · · ·+ (an − bn) · vn
and thus ai = bi for all i = 1, . . . , n, because the vectors
vi are linearly independent. We have reached the concept of

coordinates:

De�nition. The coe�cients of the unique linear combination

expressing the given vector w ∈ V in the chosen basis v =
(v1, . . . , vn) are called the coordinates of the vector w in this

basis.
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If the vector (x1, x2, x3) lies in U , then

(x1, x2, x3) = λ(1, 1,−3) + µ(1, 2, 2) for some

scalars λ, µ. Similarly (x1, x2, x3) lies in V , so

(x1, x2, x3) = α(1, 1,−1) + β(1, 2, 1) + γ(1, 3, 3) for

scalars α, β, γ. When written in full, this is a set of six

equations in eight unknowns. Solving these is possible but

can be quite cumbersome. Some simpli�cation is obtained

as follows:

The �rst three equations, which describe U are

x1 = λ+ µ

x2 = λ+ 2µ

x3 = −3λ+ 2µ

If we solve these three equations for the two "unknowns" λ

and µ, (which in any case we do not want), or alternatively

if we eliminate λ and µ, from these equations, we obtain the

single equation 8x1 − 5x2 + x3 = 0 to replace the �rst three.

The second set of three equations, which describe V are

x1 = α+ β + γ

x2 = α+ 2β + γ

x3 = −α+ β + 3γ

If we solve these three equations for the three "unknowns" α

β and γ, (which in any case we do not want), or alternatively

if we eliminateα β and γ, from these equations, we obtain the

single equation 3x1−2x2+x3 = 0 to describe V. Introducing

the parameter t, it is straightforward write the solution as the

line (x1, x2, x3) = t(3, 5, 1).

□

2.D.14. Determine the vector subspace (of the space

R4) generated by the vectors u1 = (−1, 3,−2, 1), u2 =

(2,−1,−1, 2), u3 = (−4, 7,−3, 0), u4 = (1, 5,−5, 4), by

choosing a maximal set of linearly independent vectors ui

(that is, by choosing a basis).

Solution. Write the vectors ui into the columns of a matrix

and transform it using elementary row transformations. This

way we obtain
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Whenever we speak about coordinates (a1, . . . , an) of
a vector w, which we express as a sequence, we must have

a �xed ordering of the basis vectors v = (v1, . . . , vn). Al-

though we have de�ned the basis as a minimal set of genera-

tors, in reality we work with them as with sequences (that is,

with ordered sets).

Assigning coordinates to vectors

Amapping assigning the vector v = a1v1+ · · ·+anvn
to its coordinates in the basis v will be denoted by the same
symbol v : V → Kn. It has the following properties:

(1) v(u+ w) = v(u) + v(w); ∀u,w ∈ V ,

(2) v(a · u) = a · v(u); ∀a ∈ K, ∀u ∈ V .

Note that the operations on the two sides of these equa-

tions are not identical. Quite the opposite;

they are operations on di�erent vector spaces!

Sometimes it is useful to understand vectors as

mappings from �xed independent generators to coordinates.

In this way, we may think about the basis M of in�nite di-

mensional vector spaces V . Even though the set M will be

in�nite, there can be only a �nite number of non-zero values

for any mapping representing a vector. The vector space of

all polynomialsK∞[x], with the basisM = {1, x, x2, . . . }
is a good example.

2.3.12. Linear mappings. The above properties of the as-

signments of coordinates are typical for what we

have called linear mappings in the geometry of

the plane R2.

For any vector space (of �nite or in�nite dimension) we

de�ne �linearity� of a mapping between spaces in a similar

way to the case of the plane R2:

Linear mappings

Let V and W be vector spaces over the same �eld of

scalars K. The mapping f : V → W is called a linear

mapping, or homomorphism, if the following holds:

(1) f(u+ v) = f(u) + f(v), ∀u, v ∈ V
(2) f(a · u) = a · f(u), ∀a ∈ K, ∀u ∈ V .

We have seen such mappings already in the case of ma-

trix multiplication:

f : Kn → Km, x 7→ A · x

with a �xed matrix A of the typem/n over K.
The image of a linear mapping, Im f = f(V ) ⊂ W , is

always a vector subspace, since for any set of vectors ui, the

linear combination of images f(ui) is the image of the linear
combination of the vectors ui with the same coe�cients.

Analogously, the set of all vectorsKer f = f−1({0}) ⊂
V is a subspace, since the linear combination of zero images

will always be a zero vector. The subspaceKer f is called the

kernel of the linear mapping f .
A linear mapping which is a bijection is called an isomor-

phism.
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−1 2 −4 1
3 −1 7 5
−2 −1 −3 −5
1 2 0 4

 ∼


1 2 0 4
−1 2 −4 1
3 −1 7 5
−2 −1 −3 −5



∼


1 2 0 4
0 4 −4 5
0 −7 7 −7
0 3 −3 3

 ∼


1 2 0 4
0 1 −1 5/4
0 1 −1 1
0 0 0 0



∼


1 2 0 4
0 1 −1 5/4
0 0 0 −1/4
0 0 0 0

 ∼


1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0

 .

From this it follows that the vectors u1, u2, u4, are lin-

early independent.

Furthermore, (see the third column)

2 · (−1, 3,−2, 1)− (2,−1,−1, 2) = (−4, 7,−3, 0).

so that u3 = 2u1−u2, and hence u1, u2, and u4, form a basis

for the subspace. □

2.D.15. Find a basis of the subspace

U = span

{1 2
3 4
5 6

,

0 1
2 3
4 5

,

−1 0
1 2
3 4

,

−2 −1
0 1
2 3

}
of the vector space of real matrices 3× 2. Extend this basis

to a basis of the whole space.

Solution. Recall that a basis of a subspace is a set of linearly

independent vectors which generate given subspace. By writ-

ing the entries of the matrices in a row, we can consider the

matrices as vectors inR6. In this way, the four given matrices

can be identi�ed with the rows of the matrix
1 2 3 4 5 6
0 1 2 3 4 5
−1 0 1 2 3 4
−2 −1 0 1 2 3

 .

It is easy to show that this matrix has rank 2, and hence that

the subspace U is generated just by the �rst two matrices,

which consequently form a basis for U. In fact, it follows eas-

ily that −1 0
1 2
3 4

 = −1 ·

1 2
3 4
5 6

+ 2 ·

0 1
2 3
4 5


−2 −1

0 1
2 3

 = −2 ·

1 2
3 4
5 6

+ 3 ·

0 1
2 3
4 5

 .

There are many options for extending this basis to be a basis
for the whole space. One option is to choose the �rst two of
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Analogously to the abstract de�nition of vector spaces,

it is again necessary to prove seemingly trivial claims that

follow from the axioms:

Proposition. Let f : V → W be a linear mapping between

two vector spaces over the same �eld of scalars K. The fol-

lowing is true for all vectors u, u1, . . . , uk ∈ V and scalars

a1, . . . , ak ∈ K
(1) f(0) = 0,
(2) f(−u) = −f(u),
(3) f(a1 ·u1+ · · ·+ak ·uk) = a1 ·f(u1)+ · · ·+ak ·f(uk),
(4) for every vector subspace V1 ⊂ V , its image f(V1) is a

vector subspace in W ,

(5) for every vector subspaceW1 ⊂ W , the set f−1(W1) =
{v ∈ V ; f(v) ∈ W1} is a vector subspace in V .

Proof. We rely on the axioms, de�nitions and already

proved results (in case you are not sure what has been used,

look it up!):

f(0) = f(u− u) = f((1− 1) · u) = 0 · f(u) = 0,

f(−u) = f((−1) · u) = (−1) · f(u) = −f(u).

Property (3) is derived easily from the de�nition for two

summands, using induction on the number of summands.

Next, (3) implies span f(V1) = f(V1), thus it is a vector
subspace. On the other hand, if f(u) ∈ W1 and f(v) ∈ W1

then for any scalars we arrive at f(a · u+ b · v) = a · f(u) +
b · f(v) ∈ W1. □

2.3.13. Proposition (Simple corollaries). (1) The composi-

tion g ◦ f : V → Z of two linear mappings f : V → W
and g : W → Z is again a linear mapping.

(2) The linear mapping f : V → W is an isomorphism if

and only if Im f = W and Ker f = {0} ⊂ V . The

inverse mapping of an isomorphism is again an isomor-

phism.

(3) For any two subspaces V1, V2 ⊂ V and linear mapping

f : V → W ,

f(V1 + V2) = f(V1) + f(V2),

f(V1 ∩ V2) ⊂ f(V1) ∩ f(V2).

(4) The �coordinate assignment� mapping u : V → Kn

given by an arbitrarily chosen basis u = (u1, . . . , un) of
a vector space V is an isomorphism.

(5) Two �nitely dimensional vector spaces are isomorphic if

and only if they have the same dimension.

(6) The composition of two isomorphisms is an isomor-

phism.

Proof. Proving the �rst claim is a very easy exercise

left to the reader. In order to verify (2), notice

that f is surjective if and only if Im f = W .

If Ker f = {0} then f(u) = f(v) ensures

f(u − v) = 0, that is, u = v. In this case f
is injective. Finally, if f is a linear bijection, then the vector

w is the preimage of a linear combination au + bv, that is
w = f−1(au+ bv), if and only if
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the given matrices together with the last four (actually, any
four would do) of the six linearly independent matrices1 0

0 0
0 0

 ,

0 1
0 0
0 0

 ,

0 0
1 0
0 0

 ,

0 0
0 1
0 0

 ,

0 0
0 0
1 0

 ,

0 0
0 0
0 1


. Linear independence of these six matrices is established by

computing ∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6
0 1 2 3 4 5
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 1 ̸= 0.

Clearly the dimension is 6, so spanning is automatic, and

hence we have a basis. □

E. Linear mappings

How can we describe simple mappings analytically? For

example,how can we describe a rotation, an axial symmetry,

a mirror symmetry, a projection of a three-dimensional space

onto a two-dimensional one in the plane or in the space? How

can we describe the scaling of a diagram? What do they have

in common? These all are linear mappings. This means that

they preserve a certain structure of the space or a subspace.

What structure? The structure of a vector space. Every point

in the plane is described by two coordinates, every point in the

3-dimensional space is described by three coordinates. If we

�x the origin, then it makes sense to say that a point is in some

direction twice that far from the origin as some other point.

We also know where arrive at if we translate or shift by some

amount in a given direction and then by some other amount

in another direction. These properties can be formalized �

we speak of vectors in the plane or in space, and we consider

their multiplication and addition. Linear mappings have the

property that the image of a sum of vectors is a sum of the

images of the vectors. The image of a multiple of a vector is

the samemultiple as the image of the vector. These properties

are shared among the mappings stated at the beginning of this

paragraph. Such a mapping is then uniquely determined by

its behaviour on the vectors of a basis. (In the plane, a basis

consists of two vectors not on the same line. In space a basis

consists of three vectors not all in the same plane).

How can we write down some linear mapping f on a

vector space V ? For simplicity, we start with the plane R2.

Assume that the image of the point (vector) (1, 0) is (a, b)

and the image of the point (vector) (0, 1) is (c, d). This
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f(w) = au+ bv = f(a · f−1(u) + b · f−1(v)).

Thus we also get w = af−1(u) + bf−1(v) and therefore the
inversion of a linear bijection is again a linear bijection.

The third property is obvious from the de�nition, but try

�nding an example showing that the inequality in the second

equation can indeed by sharp.

The remaining claims all follow immediately from the

de�nition. □

2.3.14. Coordinates again. Consider any two vector spaces

V and W over K with dimV = n, dimW = m
and consider some linear mapping f : V → W .

For every choice of basis u = (u1, . . . , un) on V ,

v = (v1, . . . , vn) onW there are the following linear

mappings as shown in the diagram:

V
f //

≃u

��

W

v≃
��

Kn
fu,v // Km

The bottom arrow fu,v is de�ned by the remaining three, i.e.
the composition of linear mappings

fu,v = v ◦ f ◦ u−1.

Matrix of a linear mapping

Every linear mapping is uniquely determined by its val-

ues on an arbitrary set of generators, in particular, on the

vectors of a basis u. Denote by

f(u1) = a11 · v1 + a21 · v2 + · · ·+ am1vm

f(u2) = a12 · v1 + a22 · v2 + · · ·+ am2vm

...

f(un) = a1n · v1 + a2n · v2 + · · ·+ amnvm,

that is, scalars aij form a matrix A, where the columns are
coordinates of the values f(uj) of the mapping f on the ba-

sis vectors expressed in the basis v on the target spaceW .

A matrix A = (aij) is called the matrix of the mapping
f in the bases u, v.

For a general vector u = x1u1 + · · · + xnun ∈ V we

calculate (recall that vector addition is commutative and dis-

tributive with respect to scalar multiplication)

f(u) = x1f(u1) + · · ·+ xnf(un)

= x1(a11v1+· · ·+am1vm) + · · ·+ xn(a1nv1+ · · · )
= (x1a11+· · ·+xna1n)v1 + · · ·+ (x1am1+ · · · )vm.

Using matrix multiplication we can now very easily and

clearly write down the values of the mapping fu,v(w) de�ned

uniquely by the previous diagram. Recall that vectors in Kℓ

are understood as columns, that is, matrices of the type ℓ/1

fu,v(u(w)) = v(f(w)) = A · u(w).
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uniquely determines the image of an arbitrary point with coor-

dinates (u, v): f((u, v)) = f(u(1, 0)+v(0, 1)) = uf(1, 0)+

vf(1, 0) = (ua, ub) + (vc, vd) = (au + cv, bu + dv). This

can be written down more e�ciently as follows:(
a c
b d

)(
u
v

)
=

(
au+ cv
bu+ dv

)
A linear mapping is thus a mapping uniquely determined

(in a �xed basis) by a matrix. Furthermore, when we have an-

other linear mapping g given by the matrix

(
e f
g h

)
, then we

can easily compute (an interested reader can �ll in the details

by himself) that their composition g ◦f is given by the matrix(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ fc be+ df
ag + ch bg + dh

)
.

This leads us to the de�nition of matrix multiplication

in exactly this way. That is, an application of a mapping on

a vector is given by the matrix multiplication of the matrix

of the mapping with the given vector, and that the mapping

of a composition is given by the product of the correspond-

ing matrices. This works analogously in the spaces of higher

dimension. Further, this again shows what has already been

proven in (2.1.5), namely, that matrix multiplication is asso-

ciative but not commutative, just as with mapping composi-

tion. That is another motivation to study vector spaces.

Recall that already in the �rst chapter we worked with

the matrices of some linear mappings in the planeR2, notably

with the rotation around a point and with axial symmetry (see

?? and ??).

We try now to write down matrices of linear mappings

from R3 to R3. What does the matrix of a rotation in three

dimensions look like? We begin with some special (easier for

description) rotations about coordinate axes:

2.E.1. Matrix of rotation about coordinate axes in R3.

Wewrite down the matrices of rotations by the angle φ, about

the (oriented) axes x, y and z in R3.

Solution. When rotating a particular point about the given

axis (say x), the corresponding coordinate (x) does not

change. The remaining two coordinates are then given by the

rotation in the plane which we already know (a matrix of the

type 2× 2).

Thus we obtain the following matrices � rotation about

the axis z: cosφ − sinφ 0
sinφ cosφ 0
0 0 1
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On the other hand, if we have �xed bases on V and W ,

then every choice of a matrix A of the type m/n gives a

unique linear mapping Kn → Km and thus also a mapping

f : V → W.We have found the bijective correspondence be-

tween matrices of the �xed types (determined by dimensions

of V andW ) and linear mappings V → W .

2.3.15. Coordinate transition matrix. If we choose V =
W to be the same space, but with two di�erent

bases u, v, and consider the identity mapping for
f , then the approach from the previous paragraph

expresses the vectors of the basisu in coordinates
with respect to the basis v. Let the resulting matrix be T .

Thus, we are just applying the concept of the matrix of

a linear mapping to the special case of the identity mapping

idV .

V
idV //

≃u

��

V

v≃
��

Kn
T=(idV )u,v // Kn

The resulting matrix T is called the coordinate transition

matrix for changing the basis from u to the basis v.
The fact that the matrix T of the identity mapping yields

exactly the transformation of coordinates between the two

bases is easily seen.

Consider the expression of u with the basis u

u = x1u1 + · · ·+ xnun,

and replace the vectors ui by their expressions as linear com-

binations of the vectors vi in the basis v. Collecting the

terms properly, we obtain the coordinate expression x̄ =
(x̄1, . . . , x̄n) of the same vector u in the basis v. It is enough
just to reorder the summands and express the individual

scalars at the vectors of the basis. But this is exactly what we

do when forming the matrix for the identity mapping, thus

x̄ = T · x.
We have arrived at the following instruction for building

the coordinate transition matrix:

Calculating the matrix for changing the basis

Proposition. The matrix T for the transition from the basis

u to the basis v is obtained by taking the coordinates of the

vectors of the basis u expressed in the basis v and writing

them as the columns of the matrix T . The new coordinates

x̄ in terms of the new basis v are then x̄ = T · x, where x is

the coordinate vector in the original basis u.

Because the inverse mapping to the identity mapping is

again the identity mapping, the coordinate transition matrix

is always invertible and its inverse T−1 is the coordinate tran-

sition matrix in the opposite direction, that is from the basis

v to the basis u (just have a look at the diagram above and

invert all the arrows).

40

rotation about the axis x:1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 .

rotation about the axis y: cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


Note the sign of φ in the matrix for rotation about y.Wewant,

as with any other rotation, the rotation about the y axis to be

in the positive sense � that is, when we look in the opposite

direction of the direction of the y axis, the world turns anti-

clockwise. The signs in the matrices depend on the orienta-

tion of our coordinate system. Usually, in the 3-dimensional

space the �dextrorotary coordinate system� is chosen: if we

place our hand on the x axis such that the �ngers point in the

direction of the axis and such that we can rotate the x axis in

the xy plane so that x coincides with the y axis and they point

in the same direction, then the thumb should point in the di-

rection of the z axis. In such a system, this is a rotation in the

negative sense in the plane xz (that is, the axis z turns in the

direction towards x). Think about the positive and negative

sense of rotations by all three axes. The sign is also consistent

with the cycle x to y to z to x to y etc.... or 1 to 2 to 3 to 1

to..... etc. □
Knowledge of matrices allows us to write the matrix of

rotation about any oriented axis. Let us start with a speci�c

example:

2.E.2. Find the matrix of the rotation in the positive sense

by the angle π/3 about the line passing through the origin

with the oriented directional vector (1, 1, 0) under the stan-

dard basis R3.

Solution. The given rotation is easily obtained by composing

these three mappings:

• rotation through the angle π/4 in the negative sense

about the axis z (the axis of the rotation goes over on

the x axis);

• rotation through the angle π/3 in the positive sense about

the x axis;

• rotation through the angle π/4 in the positive sense about

the z axis (the x axis goes over on the axis of the rotation).

The matrix of the resulting rotation is the product of the ma-

trices corresponding to the given three mappings, while the

order of the matrices is given by the order of application of
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2.3.16. More coordinates. Next, we are interested in the

matrix of a composition of the linear mappings.

Thus, consider another vector space Z over K
of dimension k with basis w, linear mapping

g : W → Z and denote the corresponding matrix by gv,w.

V
f //

≃u

��

W
g //

v≃
��

Z

w≃
��

Kn
fu,v // Km

gv,w // Kk

The composition g ◦ f on the upper row corresponds to

the matrix of the mapping Kn → Kk on the bottom and we

calculate directly (we write A for the matrix of f and B for

the matrix of g in the chosen bases):

gv,w ◦ fu,v(x) = w ◦ g ◦ v−1 ◦ v ◦ f ◦ u−1

= B · (A · x) = (B ·A) · x = (g ◦ f)u,w(x)
for every x ∈ Kn. By the associativity of matrix multiplica-

tions, the composition of mappings corresponds to multipli-

cation of the corresponding matrices. Note that the isomor-

phisms correspond exactly to invertible matrices and that the

matrix of the inverse mapping is the inverse matrix.

The same approach shows how thematrix of a linearmap-

ping changes, if we change the coordinates on both the do-

main and the codomain:

V
idV //

≃u′

��

V
f //

≃u

��

W
idW //

v≃
��

W

v′≃
��

Kn T // Kn
fu,v // Km S−1

// Km

where T is the coordinate transition matrix from u′ to u and

S is the coordinate change matrix from v′ to v. If A is the

original matrix of the mapping, then the matrix of the new

mapping is given by A′ = S−1AT .
In the special case of a linear mapping f : V → V , that

is the domain and the codomain are the same space V , we

express f usually in terms of a single basis u of the space V .

Then the change from the old basis to the new basis u′ with

the coordinate transition matrix T leads to the new matrix

A′ = T−1AT .

2.3.17. Linear forms. A simple but very important case of

linear mappings on an arbitrary vector space V
over the scalars K appears with the codomain

being the scalars themselves, i.e. mappings f :
V → K. We call them linear forms.

If we are given the coordinates on V , the assignments

of a single i-th coordinate to the vectors is an example of a

linear form. More precisely, for every choice of basis v =
(v1, . . . , vn), there are the linear forms v

∗
i : V → K such that

v∗i (vj) = δij , that is, v
∗
i (vj) = 1when i = j, and v∗i (vj) = 0

when i ̸= j.
The vector space of all linear forms on V is denoted by

V ∗ and we call it the dual space of the vector space V . Let

us now assume that the vector space V has �nite dimension
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the mappings � the �rst mapping applied is in the product the

rightmost one. Thus we obtain the desired matrix
√
2
2 −

√
2
2 0√

2
2

√
2
2 0

0 0 1

 ·

1 0 0

0 1
2 −

√
3
2

0
√
3
2

1
2

 ·


√
2
2

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1


=

 3
4

1
4

√
6
4

1
4

3
4

−
√
6
4

−
√
6
4

√
6
4

1
2


Note that the resulting rotation could be also obtained

for instance by taking the composition of the three following

mappings:

• rotation through the angle π/4 in the positive sense about

the axis z (the axis of rotation goes over on the axis y);

• rotation through the angle π/3 in the positive sense about

the axis y;

• rotation through the angle π/4 in the negative sense

about the axis z (the axis y goes over to the axis of ro-

tation).

Analogously we obtain
√
2
2

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1

 ·

 1
2 0

√
3
2

0 1 0

−
√
3
2 0 1

2

 ·


√
2
2 −

√
2
2 0√

2
2

√
2
2 0

0 0 1



=

 3
4

1
4

√
6
4

1
4

3
4

−
√
6
4

−
√
6
4

√
6
4

1
2


□

2.E.3. Matrix of general rotation in R3. Derive the matrix

of a general rotation in R3.

Solution. We can do the same things as in the

previous example with general values. Con-

sider an arbitrary unit vector (x, y, z). Rotation

in the positive sense by the angle φ about this vector can

be written down as a composition of the following rotations

whose matrices we already know:

i) rotation R1 in the negative sense about the z

axis through the angle with cosine equal to

x/
√
x2 + y2 = x/

√
1− z2, that is, with sine

y/
√
1− z2, under which the line with the direc-

tional vector (x, y, z) goes over on the line with the

directional vector (0, y, z). The matrix of this rotation is

R1 =

 x/
√
1− z2 y/

√
1− z2 0

−y/
√
1− z2 x/

√
1− z2 0

0 0 1

 ,
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n. The basis of V ∗, v∗ = (v∗1 , . . . , v
∗
n), composed of as-

signments of individual coordinates as above, is called the

dual basis to v. Clearly this is a basis of the space V ∗, be-

cause these forms are evidently linearly independent (prove

it!) and if α ∈ V ∗ is an arbitrary form, then for every vector

u = x1v1 + · · ·+ xnvn

α(u) = x1α(v1) + · · ·+ xnα(vn)

= α(v1)v
∗
1(u) + · · ·+ α(vn)v

∗
n(u)

and thus the linear formα is a linear combination of the forms

v∗i .
Taking into account the standard basis {1} on the one-

dimensional space of scalars K, any choice of a basis v on

V identi�es the linear forms α with matrices of the type 1/n,
that is, with rows y. The components of these rows are co-

ordinates of the general linear forms α in the dual basis v∗.
Expressing such a form on a vector is then given by multiply-

ing the corresponding row vector y with the column of the

coordinates x of the vector u ∈ V in the basis v:

α(u) = y · x = y1x1 + · · ·+ ynxn.

Thus we can see that for every �nitely dimensional space V ,

the dual space V ∗ is isomorphic to the space V . The choice

of the dual basis provides such an isomorphism.

In this context we meet again the scalar product of a row

of n scalars with a column of n scalars. We have worked with

it already in the paragraph 2.1.3 on the page 7.

The situation is di�erent for in�nitely dimensional

spaces. For instance the simplest example

of the space of all polynomials K[x] in one

variable is a vector space with a countable

basis with elements vi = xi. As before, we

can de�ne linearly independent forms v∗i . Every formal

in�nite sum
∑∞

i=0 aiv
∗
i is now a well-de�ned linear form

on K[x], because it will be evaluated only for a �nite linear

combination of the basis polynomials xi, i = 0, 1, 2, . . . .
The countable set of all v∗i is thus not a basis. Actually,

it can be proved that this dual space cannot have a countable

basis.

2.3.18. The length of vectors and scalar product. When

dealing with the geometry of the plane R2 in

the �rst chapter we also needed the concept of

the length of vectors and their angles, see ??. of

vectors and their angles. For de�ning these concepts we used

the scalar product of two vectors v = (x, y) and v′ = (x′, y′)
in the form u · v = xx′ + yy′. Indeed, the expression for the
length of v = (x, y) is given by

∥v∥ =
√
x2 + y2 =

√
v · v,

while the (oriented) angle φ of two vectors v = (x, y) and
v′ = (x′, y′) is in the planar geometry given by the formula

cosφ =
xx′ + yy′

∥v∥∥v′∥
.
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ii) rotationR2 in the positive sense about the y axis through

the angle with cosine
√
1− z2, that is, with sine z, under

which the line with the directional vector (0, y, z) goes

over on the line with the directional vector (1, 0, 0). The

matrix of this rotation is

R2 =

√
1− z2 0 z
0 1 0

−z 0
√
1− z2

 ,

iii) rotationR3 in the positive sense about the x axis through

the angle φ with the matrix

R3 =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 ,

iv) rotationR−1
2 with the matrix R−1

2 ,

v) rotationR−1
1 with the matrix R−1

1 .

The matrix of the composition of these mappings, that is, the

matrix we are looking for, is given by the product of the rota-

tions in the reverse order:

R−1
1 ·R−1

2 ·R3 ·R2 ·R1 =

=

1− t+ tx2 txy − zs txz + ys
yxt+ zs 1− t+ ty2 tyz − xs
zxt− ys tzy + xs 1− t+ tz2

 ,

where t = 1− cosφ and s = sinφ.

□

2.E.4. We are given a linear mapping R3 → R3 in the stan-

dard basis as the following matrix:1 −1 0
0 1 1
2 0 0

 .

Write down the matrix of this mapping in the basis

(f1, f2, f3) = ((1, 1, 0), (−1, 1, 1), (2, 0, 1)).

Solution. The transitionmatrix T for changing the basis from

the basis f = (f1, f2, f3) to the standard basis, that is, to the

basis given by the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), can be

obtained, according to the Claim 2.25, by writing down the

coordinates of the vectors f1, f2, f3 in the standard basis as

the columns of the matrix T . Thus we have

T =

1 −1 2
1 1 0
0 1 1

 .
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Note that this scalar product is linear in each of its arguments,

and we denote it by u · v or by ⟨v, v′⟩. The scalar product

de�ned in such a way is symmetric in its arguments and of

course ∥v∥ = 0 if and only if v = 0. We also see immedi-

ately that two vectors in the Euclidean plane are perpendicular

whenever their scalar product is zero.

Nowwe shall mimic this approach for higher dimensions.

First, observe that the angle between two vectors is always a

two-dimensional concept (we want the angle to be the same

in the two-dimensional space containing the two vectors u
and v). In the subsequent paragraphs, we shall consider only
�nitely dimensional vector spaces over real scalars R.

Scalar product and orthogonality

A scalar product on a vector space V over real numbers

is a mapping ⟨ , ⟩ : V × V → R which is symmetric in its

arguments, linear in each of them, and such that ⟨v, v⟩ ≥ 0
and ∥v∥2 = ⟨v, v⟩ = 0 if and only if v = 0.

The number ∥v∥ =
√
⟨v, v⟩ is called the length of the

vector v.
Vectors v and w ∈ V are called orthogonal or perpen-

dicular whenever ⟨v, w⟩ = 0. We also write v ⊥ w. The
vector v is called normalised whenever ∥v∥ = 1.

The basis of the space V composed exclusively of mutu-

ally orthogonal vectors is called an orthogonal basis. If the

vectors in such a basis are all normalised, we call the basis

orthonormal.

A scalar product is very often denoted by the common

dot, that is, ⟨u, v⟩ = u · v. Thus, it is then necessary to recog-
nize from the context whether the dot means a product of two

vectors (the result is a scalar) or something di�erent (e.g. we

often denote the product of matrices and product of scalars in

the same way).

Because the scalar product is linear in each of its argu-

ments, it is completely determined by its values

on pairs of basis vectors. Indeed, choose a basis

u = (u1, . . . , un) of the space V and denote

sij = ⟨ui, uj⟩.

Then from the symmetry of the scalar product we know sij =
sji and from the linearity of the product in each of its argu-

ments we get

⟨∑
i

xiui,
∑
j

yjuj

⟩
=
∑
i,j

xiyj⟨ui, uj⟩ =
∑
i,j

sijxiyj .

If the basis is orthonormal, the matrix S is the unit matrix.

This proves the following useful claim:
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The transition matrix for changing the basis from the

standard basis to the basis f is then given by

T−1 =

 1
4

3
4 −1

2
−1

4
1
4

1
2

1
4 − 1

4
1
2

 .

The matrix of the mapping in the basis f is then given by

T−1AT =

 1
4 2 −3

4
5
4 0 7

4
3
4 −2 9

4

 .

□

2.E.5. Consider the vector space of polynomials of one vari-

able of degree at most 2 with real coe�cients. In this space,

consider the basis 1, x, x2. Write down the matrix of the de-

rivative mapping in this basis and also in the basis 1 + x2, x,

x+ x2.

Solution.

0 1 0
0 0 2
0 0 0

,

0 1 1
2 1 3
0 −1 −1

. □

2.E.6. In the standard basis in R3, determine the matrix of

the rotation through the angle 90◦ in the positive sense about

the line (t, t, t), t ∈ R, oriented in the direction of the vector
(1, 1, 1). Further, �nd the matrix of this rotation in the basis

g = ((1, 1, 0), (1, 0,−1), (0, 1, 1)).

Solution. We can easily determine the matrix of the given

rotation in a suitable basis, that is, in a basis given by the di-

rectional vector of the line and by twomutually perpendicular

vectors in the plane x + y + z = 0, that is, in the plane of

vectors perpendicular to the vector (1, 1, 1). We note that the

matrix of the rotation in the positive sense through 90◦ in an

orthonormal basis in R2 is

(
0 −1
1 0

)
. In the orthogonal ba-

sis with vectors of length k, l respectively, it is

(
0 −k/l
l/k 0

)
.

If we choose perpendicular vectors (1,−1, 0) and (1, 1,−2)

in the plane x + y + z = 0 with lengths
√
2 and

√
6, then

in the basis f = ((1, 1, 1), (1,−1, 0), (1, 1,−2)) the rotation

we are looking for has matrix

1 0 0

0 0 −
√
3

0 1/
√
3 0

. In order

to obtain the matrix of the rotation in the standard basis, it

is enough to change the basis. The transition matrix T for

changing the basis from the basis f to the standard basis is

obtained by writing the coordinates (under the standard ba-

sis) of the vectors of the basis f as the columns of the matrix
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Scalar product in coordinates

Proposition. For every orthonormal basis, the scalar prod-

uct is given by the coordinate expression

⟨x, y⟩ = yT · x.
For each basis of the space V there is the symmetric matrix

S such that the coordinate expression of the scalar product

is

⟨x, y⟩ = yT · S · x.

Notice, that with symmetric matrix S it is just a matter of

convention in which order we insert the vectors: the formula

xT · S · y = (xT · S · y)T = yT · ST · x

produces the same value. However, we shall later consider

the second argument as a linear form, thus it seems to be more

convenient to use the expression yT · S · x.

2.3.19. Orthogonal complements and projections. For ev-

ery �xed subspace W ⊂ V in a space with

scalar product, we de�ne its orthogonal com-

plement as

W⊥ = {u ∈ V ; u ⊥ v for all v ∈ W}.
It follows directly from the de�nition thatW⊥ is a vector sub-

space. If W ⊂ V has a basis (u1, . . . , uk) then the descrip-
tion forW⊥ is given as k homogeneous equations for n vari-

ables. Thus W⊥ will have dimension at least n − k. Also

u ∈ W ∩W⊥ means that ⟨u, u⟩ = 0, and thus also u = 0 by
the de�nition of scalar product. Clearly then, V is the direct

sum

V = W ⊕W⊥.

A linear mapping f : V → V on any vector space is

called a projection, if we have

f ◦ f = f.

In such a case, we can write, for every vector v ∈ V,

v = f(v) + (v − f(v)) ∈ Im(f) + Ker(f) = V

and if v ∈ Im(f) and f(v) = 0, then also v = 0. Thus

the above sum of the subspaces is direct. We say that f is a

projection to the subspace W = Im(f) along the subspace

U = Ker(f). In words, the projection can be described nat-
urally as follows: we decompose the given vector into a com-

ponent in W and a component in U, and forget the second

one.

If V has a scalar product, we say that the projection is

orthogonal if the kernel is orthogonal to the image.

Every subspaceW ̸= V thus de�nes an orthogonal pro-

jection to W . It is a projection to W along W⊥, given by

the unique decomposition of every vector u into components

uW ∈ W and uW⊥ ∈ W⊥, that is, linear mapping which

maps uW + uW⊥ to uW .
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T : T =

1 1 1
1 −1 1
1 0 −2

. Finally, for the desired matrix R,

we have

R = T ·

1 0 0

0 0 −
√
3

0 1/
√
3 0

 · T−1

=

 1/3 1/3−
√
3/3 1/3 +

√
3/3

1/3 +
√
3/3 1/3 1/3−

√
3/3

1/3−
√
3/3 1/3 +

√
3/3 1/3


This result can be checked by substituting into the matrix

of general rotation (2.E.3). By normalizing the vector (1, 1, 1)

we obtain the vector (x, y, z) = (1/
√
3, 1/

√
3, 1/

√
3),

cos(φ) = 0, sin(φ) = 1. □

2.E.7. Matrix of general rotation revisited. We derive

the matrix of (general) rotation from (2.E.3)

through the angle φ in the positive sense

about the unit vector (x, y, z) in a di�erent

way, analogically to the previous exercise. In the basis

f = ((x, y, z), (−y, x, 0), (zx, zy, z2 − 1)), that is, in

the orthogonal basis composed of the directional vector

of the axis of rotation and of two mutually perpendicular

vectors with sizes
√
1− z2 lying in a plane perpendicular

to the axis of rotation, the matrix corresponding to the

rotation is A =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

. The matrix

for changing the basis from f to the standard basis is then

T =

x −y zx
y x zy
z 0 z2 − 1

 with the inverse matrix

T−1 =

 x y z
− y

1−z2
x

1−z2 0
zx

1−z2
zy

1−z2 −1

 .

Finally, for the matrix R of the rotation we obtain

R = T ·A · T−1

=

1− t+ tx2 txy − zs txz + ys
yxt+ zs 1− t+ ty2 tyz − xs
zxt− ys tzy + xs 1− t+ tz2

 ,

where again t = 1 − cosφ and s = sinφ, and we get the

same matrix as before.

When multiplying and simplifying, we must repeatedly

use the assumption x2 + y2 + z2 = 1.



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

2.3.20. Existence of orthonormal bases. It is easy to see

that on every �nite dimensional real vector space

there exist scalar products. Just choose any ba-

sis. De�ne lengths so that each basis vector is of

unit length. Immediately we have a scalar prod-

uct. Call it orthonormal. In this basis the scalar products of

vectors are computed as in the formula in the Theorem 2.3.18.

More often we are given a scalar product on a vector

space V, and we want to �nd an appropriate orthonormal ba-
sis for it. We present an algorithm using suitable orthogonal

projections in order to transform any basis into an orthogo-

nal one. It is called the Gramm-Schmidt orthogonalization

process.

The point of this procedure is to transform a given se-

quence of independent generators v1, . . . , vk of a �nite dimen-
sional space V into an orthogonal set of independent genera-

tors of V .

Gramm-Schmidt orthogonalization

Proposition. Let (u1, . . . , uk) be a linearly independent k-
tuple of vectors of a space V with scalar product. Then

there exists an orthogonal system of vectors (v1, . . . , vk)
such that vi ∈ span{u1, . . . , ui}, and span{u1, . . . , ui} =
span{v1, . . . , vi}, for all i = 1, . . . , k. We obtain it by the

following procedure:

• The independence of the vectors ui ensures that u1 ̸= 0;
we choose v1 = u1.

• If we have already constructed the vectors v1, . . . , vℓ
with the required properties and if ℓ < k, we choose

vℓ+1 = uℓ+1 + a1v1 + · · · + aℓvℓ, where ai =

− ⟨uℓ+1,vi⟩
∥vi∥2 .

Proof. We begin with the �rst (nonzero) vector v1 and
calculate the orthogonal projection v2 to

span{v1}⊥ ⊂ span{v1, v2}.
The result is nonzero if and only if v2 is independent of v1.
All other steps are similar:

In step ℓ, ℓ > 1we seek the vector vℓ+1 = uℓ+1+a1v1+
· · ·+ aℓvℓ satisfying ⟨vℓ+1, vi⟩ = 0 for all i = 1, . . . , ℓ. This
implies

0 = ⟨uℓ+1 + a1v1 + · · ·+ aℓvℓ, vi⟩ = ⟨uℓ+1, vi⟩+ ai⟨vi, vi⟩
and we can see that the vectors with the desired properties are

determined uniquely up to a scalar multiple. □

Whenever we have an orthogonal basis of a vector space

V , we just have to normalise the vectors in order to obtain

an orthonormal basis. Thus, starting the Gramm-Schmidt or-

thogonalization with any basis of V , we have proven:

Corollary. On every �nite dimensional real vector space

with scalar product there exists an orthonormal basis.

In an orthonormal basis, the coordinates and orthogonal

projections are very easy to calculate. Indeed, suppose we
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Through amore detailed analysis of properties of various

types of linear mapping we now obtain a deeper understand-

ing of tools we are given by vector spaces for linear modeling

of processes and systems.

2.E.8. Consider complex numbers as a real vector space and

choose 1 and i for its basis. Determine in this basis the matrix

of the following linear mappings:

a) conjugation,

b) multiplication by the number (2 + i).

Determine the matrix of these mappings in the basis f =

((1− i), (1 + i)).

Solution. In order to determine the matrix of a linear map-

ping in some basis, it is enough to determine the images of

the basis vectors.

a) For conjugation we have 1 7→ 1, i 7→ −i, written in the

coordinates (1, 0) 7→ (1, 0) and (0, 1) 7→ (0,−1). Bywriting

the images into the columns we obtain the matrix

(
1 0
0 −1

)
,

In the basis f the conjugation interchanges basis vectors, that

is, (1, 0) 7→ (0, 1) and (0, 1) 7→ (1, 0) and the matrix of

conjugation under this basis is

(
0 1
1 0

)
.

b) For the basis (1, i) we obtain 1 7→ 2 + i, i 7→ 2i − 1,

that is, (1, 0) 7→ (2, 1), (0, 1) 7→ (2,−1). Thus the matrix of

multiplication by the number 2 + i under the basis (1, i) is:(
2 −1
1 2

)
.

We determine thematrix in the basis f . Multiplication by

(2+i) gives us: (1−i) 7→ (1−i)(2+i) = 3−i, (1+i) 7→ (1+

3i). Coordinates (a, b)f of the vector 3− i in the basis f are

given, as we know, by the equation a·(1−i)+b·(1+i) = 3+i,

that is, (3 + i)f = (2, 1). Analogously (1 + 3i)f = (−1, 2).

Altogether, we obtain the matrix

(
2 −1
1 2

)
.

Think about the following: why is the matrix of multi-

plication by 2 + i the same in both bases? Would the two

matrices in these bases be the same for multiplication by any

complex number? □

2.E.9. Determine the matrix A which, under the standard

basis of the space R3, gives the orthogonal projection on the

vector subspace generated by the vectors u1 = (−1, 1, 0) and

u2 = (−1, 0, 1).

Solution. Note �rst that the given subspace is a plane contain-

ing the origin with normal vector u3 = (1, 1, 1). The ordered
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have an orthonormal basis (e1, . . . , en) for a space V . Then

every vector v = x1e1 + · · ·+ xnen satis�es

⟨ei, v⟩ = ⟨ei, x1e1 + · · ·+ xnen⟩ = xi

and so we can always express

(1) v = ⟨e1, v⟩e1 + · · ·+ ⟨en, v⟩en.
If we are given a subspace W ⊂ V and its orthonormal

basis (e1, . . . , ek), then we can extend it to an orthonormal

basis (e1, . . . , en) for V . Orthogonal projection of a general

vector v ∈ V toW is then given by the expression

v 7→ ⟨e1, v⟩e1 + · · ·+ ⟨en, v⟩ek.
In particular, we need only consider an orthonormal basis of

the subspaceW in order to write the orthogonal projection to

W explicitly.

Note that in general the projection f to the subspace W
along U and the projection g to U alongW is constrained by

the equality g = idV −f . Thus, when dealing with orthog-

onal projections to a given subspace W , it is always more

e�cient to calculate the orthonormal basis of that space W
orW⊥ whose dimension is smaller.

Note also that the existence of an orthonormal basis guar-

antees that for every real space V of dimension n with a

scalar product, there exists a linear mapping which is an iso-

morphism between V and the space Rn with the standard

scalar product. Similarly it has been shown already in The-

orem 2.3.18, where we found that the desired isomorphism

is exactly the coordinate assignment. In words � in every or-

thonormal basis the scalar product is computed by the same

formula as the standard scalar product in Rn.

We shall return to the questions of the length of a vector

and to projections in the following chapter in a more general

context.

2.3.21. Angle between two vectors. As we have already

noted, the angle between two linearly independent vectors in

the space must be the same as when we consider them in the

two-dimensional subspace they generate. Basically, this is the

reason why the notion of angle is independent of the dimen-

sion of the original space. If we choose an orthogonal basis

such that its �rst two vectors generate the same subspace as

the two given vectorsu and v (whose anglewe aremeasuring),
we can simply take the de�nition from the planar geometry.

Independently of the choice of coordinates we can formulate

the de�nition as follows:

Angle between two vectors

The angle φ between two vectors v and w in a vector

space with a scalar product is given by the relation

cosφ =
⟨v, w⟩
∥v∥∥w∥

.

The angle de�ned in this way does not depend on the order

of the vectors v,w and it is chosen in the interval 0 ≤ φ ≤ π.

We shall return to scalar products and angles between

vectors in further chapters.
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triple (1, 1, 1) is clearly a solution to the system

−x1 + x2 = 0,
−x1 + x3 = 0,

that is, the vector u3 is perpendicular to the vectors u1, u2.

Under the given projection the vectors u1 and u2 must

map to themselves and the vector u3 on the zero vector. In

the basis composed of u1, u2, u3 (in this order) is thus the

matrix of this projection1 0 0
0 1 0
0 0 0

 .

Using the the transition matrix for changing the basis

T =

−1 −1 1
1 0 1
0 1 1

 , T−1 =

− 1
3

2
3 − 1

3
− 1

3 −1
3

2
3

1
3

1
3

1
3


from the basis (u1, u2, u3) to the standard basis, and from the

standard basis to the basis (u1, u2, u3) we obtain

A =

−1 −1 1
1 0 1
0 1 1

 ·

1 0 0
0 1 0
0 0 0

 ·

− 1
3

2
3 −1

3
− 1

3 −1
3

2
3

1
3

1
3

1
3


=

 2
3 −1

3 − 1
3

−1
3

2
3 − 1

3
−1

3 −1
3

2
3

 .

□

F. Inner products and linear maps

2.F.1. Write down the matrix of the mapping of orthogonal

projection on the plane passing through the origin and per-

pendicular to the vector (1, 1, 1).

Solution. The image of an arbitrary point (vector) x =

(x1, x2, x3) ∈ R3 under the considered mapping can be ob-

tained by subtracting from the given vector its orthogonal pro-

jection onto the direction normal to the considered plane, that

is, onto the direction (1, 1, 1). This projection p is given by

(see 1) as

⟨x, (1, 1, 1)⟩
|(1, 1, 1)|2

= (
x1 + x2 + x3

3
,
x1 + x2 + x3

3
,
x1 + x2 + x3

3
).

The resulting mapping is thus

x− p

= (
2x1

3
− x2 + x3

3
,
2x2

3
− x1 + x3

3
,
2x3

3
− x1 + x2

3
) =

=

 2
3 − 1

3 −1
3

−1
3

2
3 −1

3
−1

3 − 1
3

2
3

x1

x2

x3

 .
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2.3.22. Multilinear forms. The scalar product was given as

a mapping from the product of two copies of a

vector space V into the space of scalars, which

was linear in each of its arguments. Similarly,

we will work with mappings from the product

of k copies of a vector space V into the scalars, which are

linear in each of its k arguments. We speak of k-linear forms.
Most often we will meet bilinear forms, that is, the case

α : V × V → K, where for any four vectors u, v, w, z and

scalars a, b, c and d we have

α(au+ bv, cw + dz) = acα(u,w) + adα(u, z)

+ bc α(v, w) + bdα(v, z).

If additionally we always have

α(u,w) = α(w, u),

then we speak of a symmetric bilinear form. If interchang-

ing the arguments leads to a change of sign, we speak of an

antisymmetric bilinear form.

Already in planar geometry we have de�ned the determi-

nant as a bilinear antisymmetric form α, that is, α(u,w) =
−α(w, u). In general, due to the theorem 2.2.4, we know that

the determinant with dimension n can be seen as an n-linear
antisymmetric form.

As with linear mappings it is clear that every k-linear
form is completely determined by its values on all k-tuples of
basis elements in a �xed basis. In analogy to linear mappings

we can see these values as k-dimensional analogues to matri-
ces. We show this by an example with k = 2, where it will
correspond to matrices as we have de�ned them.

Matrix of a bilinear form

If we choose a basis u on V and de�ne for a given bilin-

ear formα scalars aij = α(ui, uj) thenwe obtain for vectors
v, w with coordinates x and y (as columns of coordinates)

α(v, w) =
n∑

i,j=1

aijxiyj = xT ·A · y,

where A is a matrix A = (aij).

Directly from the de�nition of the matrix of a bilinear

form we see that the form is symmetric or antisymmetric if

and only if the corresponding matrix has this property.

Every bilinear form α on a vector space V de�nes a map-

ping V → V ∗, v 7→ α( , v). That is, by placing a �xed vector
in the �rst argument we obtain a linear form which is the im-

age of this vector. If we choose a �xed basis on a �nitely

dimensional space V and a dual basis V ∗, then we have the

mapping

x 7→ (y 7→ xT ·A · y).

All this is a matter of convention. Also we may �x the second

vector and get a linear form again.
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We have (correctly) obtained the same matrix as in the exer-

cise 2.E.9. □

2.F.2. In R3 write down the matrix of the mirror symmetry

with respect to the plane containing the origin and (1, 1, 1)

being its normal vector.

Solution. As in 2.F.1 we get the image of an arbitrary vec-

tor x = (x1, x2, x3) ∈ R3 with the help of the orthogonal

projection onto the direction (1, 1, 1). Unlike in the previous

example, we need to subtract the projection twice (see image).

Thus we get the matrix:

x− 2p =(
x1

3
− 2(x2 + x3)

3
,
x2

3
− 2(x1 + x3)

3
,
x3

3
− 2(x1 + x2)

3

)

=

 1
3 − 2

3 −2
3

− 2
3

1
3 −2

3
− 2

3 − 2
3

1
3

x1

x2

x3

 .

Second solution. The normed normal vector of the mirror

plane is n = 1√
3
(1, 1, 1). We can express the mirror im-

age of v under the mirror symmetry Z as follows: Z(v) =

v − 2⟨v, n⟩n = v − 2n · (nT · v) = v − 2(n · nT ) · v =

((E − 2n · nT )v (where we have used ⟨v, n⟩ = v · nT for

the standard scalar product and the associativity of the matrix

multiplication). We get the same matrix:

E − 2n · nT =

1 0 0
0 1 0
0 0 1

− 2

3

1 1 1
1 1 1
1 1 1


=

1

3

 1 −2 −2
−2 1 −2
−2 −2 1

 .

□

2.F.3. ConsiderR3,with the standard coordinate system. In

the plane z = 0 there is a mirror and at the point [4, 3, 5] there

is a candle. The observer at the point [1, 2, 3] is not aware of

the mirror, but sees in it the re�ection of the candle. Where

does he think the candle is?

Solution. Independently of our position, we see the mirror

image of the scene in the mirror (that is why it is called a

mirror image). The mirror image is given by re�ecting the

scene (space) by the plane of the mirror, the plane z = 0.

The re�ection with respect to this plane changes the sign of

the z-coordinate. That is we can see the candle at the point

[4, 3,−5]. □
By using the inner product we can determine the (angu-

lar) de�ection of the vectors:
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4. Properties of linear mappings

In order to exploit vector spaces and linear mappings in

modelling real processes and systems in other sciences, we

need a more detailed analysis of properties of diverse types

of linear mappings.

2.4.1. We begin with four examples in the lowest dimen-

sion of interest. With the standard basis of

the plane R2 and with the standard scalar

product we consider the following matri-

ces of mappings f : R2 → R2:

A =

(
1 0
0 0

)
, B =

(
0 1
0 0

)
, C =

(
a 0
0 b

)
, D =

(
0 −1
1 0

)
.

The matrix A describes the orthogonal projection along the

subspace

W = {(0, a); a ∈ R} ⊂ R2

to the subspace

V = {(a, 0); a ∈ R} ⊂ R2,

that is, the projection to the x-axis along the y-axis. Evidently
for this f : R2 → R2 we have f ◦ f = f and thus the restric-

tion f |V of the given mapping on its codomain is the identity

mapping. The kernel of f is exactly the subspaceW .

The matrix B has the property B2 = 0, therefore the

same holds for the corresponding mapping f . We can envi-

sion this as the di�erentiation of polynomialsR1[x] of degree
at most one in the basis (1, x) (we shall come to di�erentia-

tion in chapter �ve, see ??).

The matrix C gives a mapping f , which rescales the �rst
vector of the basis a-times, and the second one b-times. There-
fore the whole plane divides into two subspaces, which are

preserved under themapping andwhere it is only a homothety,

that is, scaling by a scalar multiple (the �rst case was a spe-

cial case with a = 1, b = 0). For instance the choice a = 1,
b = −1 corresponds to axial symmetry (mirror symmetry)

under the x-axis, which is the same as complex conjugation
x+iy 7→ x−iy on the two-dimensional real spaceR2 ≃ C in

basis (1, i). This is a linear mapping of the two-dimensional
real vector space C, but not of the one-dimensional complex
space C.

The matrixD is the matrix of rotation by 90 degrees (the

angleπ/2) centered at the origin in the standard basis. We can

see at �rst glance that none of the one-dimensional subspaces

is preserved under this mapping.

Such a rotation is a bijection of the plane onto itself,

therefore we can surely �nd distinct bases in the domain and

codomain, where its matrix will be the unit matrix E. We

simply take any basis of the domain and its image in the

codomain. But we are not able to do this with the same basis

for both the domain and the codomain.

Consider the matrix D as a matrix of the mapping g :
C2 → C2 with the standard basis of the complex

vector space C2. Then we can �nd vectors u =
(i, 1), v = (−i, 1), for which we have
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2.F.4. Determine the de�ection of the roots of the polyno-

mial x2 − i considered as vectors in the complex plane.

Solution. The roots of the given polynomial are square roots

of i. The arguments of the square roots of any complex num-

bers di�er according to the de Moivre theorem by π. Their

de�ection is thus always π. □

2.F.5. Determine the cosine of the de�ection of the lines p, q

in R3 given by the equations

p : −2x+ y + z = 1

x+ 3y − 4z = 5

q : x− y = −2

z = 6

⃝

2.F.6. Using the Gram-Schmidt orthogonalisation, obtain

the orthogonal basis of the subspace

U =
{
(x1, x2, x3, x4)

T ∈ R4; x1 + x2 + x3 + x4 = 0
}

of the space R4.

Solution. The set of solutions of the given homogeneous lin-

ear equation is clearly a vector space with the basis

u1 =


−1
1
0
0

 , u2 =


−1
0
1
0

 , u3 =


−1
0
0
1

 .

shall be denoted Denote by v1, v2, v3, vectors of the orthogo-

nal basis obtained using the Gram-Schmidt orthogonalisation

process.

First set v1 = u1. Then let

v2 = u2 −
uT
2 · v1
||v1||2

v1 = u2 −
1

2
v1 =

(
−1

2
,−1

2
, 1, 0

)T

,

that is, choose a multiple v2 = (−1,−1, 2, 0)
T
. Then let

v3 = u3 −
uT
3 · v1
||v1||2

v1 −
uT
3 · v2
||v2||2

v2 = u3 −
1

2
v1 −

1

6
v2 =

=

(
−1

3
,−1

3
,−1

3
, 1

)T

.

Altogether we have

v1 =


−1
1
0
0

 , v2 =


−1
−1
2
0

 , v3 =


−1
−1
−1
3

 .

Due to the simplicity of the exercise we can immediately give

an orthogonal basis of the vectors

(1,−1, 0, 0)
T
, (0, 0, 1,−1)

T
, (1, 1,−1,−1)

T
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g(u) =

(
0 −1
1 0

)
·
(
i
1

)
=

(
−1
i

)
= i · u,

g(v) =

(
0 −1
1 0

)
·
(
1
i

)
=

(
−1
−i

)
= −i · v.

That means that in the basis (u, v) on C2, the mapping g has
the matrix

K =

(
i 0
0 −i

)
.

Notice that by extending the scalars toC, we arrive at an anal-
ogy to the matrix C with diagonal elements a = cos(12π) +

i sin( 12π) and its complex conjugate ā. In other words, the

argument of the number a in polar form provides the angle of

the rotation.

This is easy to understand, if we denote the real and imag-

inary part of the vector u as follows

u = xu + iyu = Reu+ i Imu =

(
0
1

)
+ i ·

(
1
0

)
.

The vector v is the complex conjugate of u. We are interested

in the restriction of the mapping g to the real vector subspace
V = R2 ∩ span{u, v} = C2. Evidently,

V = span{u+ ū, i(u− ū)} = span{xu,−yu}

is the whole plane R2. The restriction of g to this plane is ex-
actly the original mapping given by the matrix A. From the

de�nition of multiplication by the complex unit, it is a rota-

tion through the angle 1
2π in the positive sense with respect

to the chosen basis xu,−yu. Work it by yourself with a direct

calculation. Note also why exchanging the order of the vec-

tors u and v leads to the same result, although in a di�erent

real basis!

2.4.2. Eigenvalues and eigenvectors of mappings. A key

to the description of mappings in the previous

examples was the answer to the question �what

are the vectors satisfying the equation f(u) =
a · u for some suitable scalars a?�.

We consider this question for any linear mapping f :
V → V on a vector space of dimension n over scalars K.
If we imagine such an equality written in coordinates, i.e. us-

ing the matrix of the mapping A in some bases, we obtain a

system of linear equations

A · x− a · x = (A− a · E) · x = 0

with an unknown parameter a. We know already that such a

system of equations has only the solution x = 0 if the matrix
A−aE is invertible. Thus we want to �nd such values a ∈ K
for whichA−aE is not invertible, and for that, the necessary

and su�cient condition reads (see Theorem 2.2.10)

(1) det(A− a · E) = 0.
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or

(−1, 1, 1,−1)
T
, (1,−1, 1,−1)

T
, (−1,−1, 1, 1)

T
.

□

2.F.7. Write down a basis of the real vector space of the ma-

trices 3×3 overRwith zero trace. (The trace of amatrix is the

sum of the elements on the diagonal). Write the coordinates

of the matrix 1 2 0
0 2 0
1 −2 −3


in this basis.

2.F.8. Find the orthogonal complementU⊥ of the subspace

U = {(x1, x2, x3, x4); x1 = x3, x2 = x3 + 6x4} ⊂ R4.

Solution. The orthogonal complement U⊥ consists of just

those vectors that are perpendicular to every solution of the

system

x1 − x3 = 0,
x2 − x3 − 6x4 = 0.

A vector is a solution of this system if and only if it is perpen-

dicular to both vectors (1, 0,−1, 0), (0, 1,−1,−6). Thus we

have

U⊥ = {a · (1, 0,−1, 0) + b · (0, 1,−1,−6); a, b ∈ R}.

□

2.F.9. Find an orthonormal basis of the subspace V ⊂ R,
where V = {(x1, x2, x3, x4) ∈ R4 |x1 + 2x2 + x3 = 0}.

Solution. The fourth coordinate does not appear in the re-

striction for the subspace, thus it seems reasonable to select

(0, 0, 0, 1) as one of the vectors of the orthonormal basis and

reduce the problem into the subspaceR3. If we set the second

coordinate equal to zero, then in the investigated space there

are vectors with reverse �rst and third coordinate, notably, the

unit vector ( 1√
2
, 0,− 1√

2
, 0). This vector is perpendicular to

any vector which has �rst coordinate equal to the third coordi-

nate. In order to get into the investigated subspace, we choose

the second coordinate equal to the negative of the sum of the

�rst and the third coordinate, and then normalise. Thus we

choose the vector ( 1√
6
,− 2√

6
, 1√

6
, 0) and we are �nished. □
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If we consider λ = a as a variable in the previous scalar equa-
tion, we are actually looking for the roots of a polynomial of

degree n. As we have seen in the case of the matrix D, the

roots may exist in an extension of our �eld of scalars, if they

are not in K.

Eigenvalues and eigenvectors

Scalars λ ∈ K satisfying the equation f(u) = λ · u for

some nonzero vector u ∈ V are called the eigenvalues of

mapping f . The corresponding nonzero vectors u are called
the eigenvectors of the mapping f .

If u, v are eigenvectors associated with the same eigen-

value λ, then for every linear combination of u and v,

f(au+ bv) = af(u) + bf(v) = λ(au+ bv).

Therefore the eigenvectors associated with the same eigen-

value λ, together with the zero vector, form a nontrivial vector

subspace Vλ ⊂ V . We call it the eigenspace associated with

λ. For instance, if λ = 0 is an eigenvalue, the kernelKer f is

the eigenspace V0.

We have seen how to compute the eigenvalues in coordi-

nates. The independence of the eigenvalues from the choice

of coordinates is clear from their de�nition. But let us look

explicitely what happens if we change the basis. As a direct

corollary of the transformation properties from the paragraph

2.3.16 and the Cauchy theorem 2.2.6 for calculation of the

determinant of product, the matrix A′ in the new coordinates

will be A′ = P−1AP with an invertible matrix P. Thus

|P−1AP − λE| = |P−1AP − P−1λEP |
= |P−1(A− λE)P |
= |P−1||(A− λE)||P |
= |A− λE|,

because the scalar multiplication is commutative and we

know that |P−1| = |P |−1.

For these reasons we use the same terminology for ma-

trices and mappings:

Characteristic polynomials

For a matrix A of dimension n over K we call the poly-

nomial |A− λE| ∈ Kn[λ] the characteristic polynomial of
the matrix A.

Roots of this polynomial are the eigenvalues of the ma-

trix A. If A is the matrix of the mapping f : V → V in a

certain basis, then |A−λE| is also called the characteristic
polynomial of the mapping f .

Because the characteristic polynomial of a linear map-

ping f : V → V is independent of the choice of the ba-

sis of V , the coe�cients of individual powers of the variable

λ are scalars expressing some properties of f . In particular,

they too cannot depend on the choice of the basis. Suppose

dimV = n and A = (aij) is the matrix of the mapping in
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G. Eigenvalues and eigenvectors

2.G.1. Find the eigenvalues and the associated subspaces

of eigenvectors of the matrix

A =

−1 1 0
−1 3 0
2 −2 2

 .

Solution. First we �nd the characteristic polynomial of the

matrix:∣∣∣∣∣∣
−1− λ 1 0
−1 3− λ 0
2 −2 2− λ

∣∣∣∣∣∣ = λ3 − 4λ3 + 2λ+ 4.

This polynomial has roots 2, 1+
√
3, 1−

√
3, which are then

the eigenvalues of the matrix. Their algebraic multiplicity is

one (they are simple roots of the polynomial), thus each has

associated only one (up to a non-zero multiple) eigenvector.

Otherwise stated, the geometric multiplicity of the eigenvalue

is one, see 2.4.8).

We determine the eigenvector associated with the eigen-

value 2. It is a solution of the homogeneous linear systemwith

the matrix A− 2E:

−3x1 + x2 = 0

−1x1 + x2 = 0

2x1 − 2x2 = 0.

The system has solution x1 = x2 = 0, x3 ∈ R arbitrary. So

the eigenvector associated with the value 2 is then the vector

(0, 0, 1) (or any multiple of it).

Similarly we determine the remaining two eigenvectors

� as solutions of the system [A − (1 +
√
3)E]x = 0. The

solution of the system

(−2−
√
3)x1 + x2 = 0

−1x1 + (2−
√
3)x2 = 0

2x1 − 2x2 + (1−
√
3)x3 = 0

is the space {
(
2−

√
3, 1, 2

)
t, t ∈ R}.

That is the space of eigenvectors associated with the

eigenvalue 1 +
√
3.

Similarly we obtain that the space of eigenvectors associ-

ated with the eigenvalue 1 −
√
3 is {

(
2 +

√
3, 1,−2

)
t, t ∈

R}. □

2.G.2. Determine the eigenvalues and eigenvectors of the

matrix
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some basis. Then

|A− λ · E| = (−1)nλn + (−1)n−1(a11 + · · ·+ ann)λ
n−1

+ · · ·+ |A|λ0.

The coe�cient at the highest power says whether the dimen-

sion of the space V is even or odd.

The most interesting coe�cient is the sum of the diago-

nal elements of the matrix. We have just proved that it does

not depend on the choice of the basis and we call it the trace of

the matrix A and denote it byTrA. The trace of the mapping
f is de�ned as a trace of the matrix in an arbitrary basis.

In fact, this is not so surprising once we notice that the

trace is actually the linear approximation of the determinant

in the neighbourhood of the unit matrix in the directionA. We

shall deal with such concepts in Chapter 8 only. But since the

determinant is a polynomial, we may see easily that the only

terms in det(E + tA) which are linear in the real parameter
t are just the trace.

We discuss a few important properties of eigenspaces

now.

2.4.3. Theorem. Eigenvectors of linear mappings f : V →
V associated to di�erent eigenvalues are linearly indepen-

dent.

Proof. Let a1, . . . , ak be distinct eigenvalues of the

mapping f and u1, . . . , uk eigenvectors with these

eigenvalues. The proof is by induction on the num-

ber of linearly independent vectors among the chosen

ones. Assume that u1, . . . , uℓ are linearly indepen-

dent and ul+1 =
∑

i ciui is their linear combination. We can

choose ℓ = 1, because the eigenvectors are nonzero. But then

f(uℓ+1) = al+1 · ul+1 =
∑l

i=1 al+1 · ci · ui, that is,

f(ul+1) =
l∑

i=1

al+1 · ci ·ui =
l∑

i=1

ci ·f(ui) =
l∑

i=1

ci ·ai ·ui.

By subtracting the second and the fourth expression in the

equalities we obtain 0 =
∑l

i=1(al+1 − ai) · ci · ui. All the

di�erences between the eigenvalues are nonzero and at least

one coe�cient ci is nonzero. This is a contradiction with the
assumed linear independence u1, . . . , uℓ, therefore also the

vector ul+1 must be linearly independent of the others. □

The latter theorem can be seen as a decomposition of a

linear mapping f into a sum of much simpler mappings. If

there are n = dimV distinct eigenvalues λi, we obtain the

entire V as a direct sum of one-dimensional eigenspaces Vλi .

Each of them then describes a projection on this invariant

one-dimensional subspace, where the mapping is given just

as multiplication by the eigenvalue λi. Furthermore, this de-

composition can be easily calculated:

51

A =

1 1 0
1 2 1
1 2 1

 .

Describe the geometric interpretation of this mapping and

write down its matrix in the basis:

e1 = (1,−1, 1)

e2 = (1, 2, 0)

e3 = (0, 1, 1)

Solution. The characteristic polynomial of the matrix A is∣∣∣∣∣∣
1−λ 1 0
1 2− λ 1
1 2 1−λ

∣∣∣∣∣∣ = −λ3+4λ2−2λ = −λ(λ2−4λ+2).

The roots of this polynomial are the eigenvalues, thus the

eigenvalues are 0, 2 +
√
2, 2 −

√
2. Thus eigenvalues are

0, 2 +
√
2, 2−

√
2. We compute the eigenvectors associated

with the particular eigenvalues:

• 0: We solve the system1 1 0
1 2 1
1 2 1

x1

x2

x3

 = 0

Its solutions form a one-dimensional vector space of

eigenvectors: span{(1,−1, 1)}.
• 2 +

√
2: We solve the system−(1 +

√
2) 1 0

1 −
√
2 1

1 2 −(1 +
√
2)

x1

x2

x3

 = 0.

The solutions form a one-dimensional space span{(1, 1+√
2, 1 +

√
2)}.

• 2−
√
2: We solve the system(
√
2− 1) 1 0

1
√
2 1

1 2 (
√
2− 1)

x1

x2

x3

 = 0.

Its solutions form a space of eigenvectors span{(1, 1 −√
2, 1−

√
2)}.

Hence the given matrix has eigenvalues 0, 2 +
√
2 and

2−
√
2, with the associated one-dimensional spaces of eigen-

vectors span{(1,−1, 1)}, span{(1, 1 +
√
2, 1 +

√
2)} and

span{(1, 1−
√
2, 1−

√
2)} respectively.

The mapping can thus be interpreted as a projection

along the vector (1,−1, 1) into the plane given by the vectors

(1, 1+
√
2, 1+

√
2) and (1, 1−

√
2, 1−

√
2) composed with

the linear mapping given by �stretching� by the factor corre-

sponding to the eigenvalues in the directions of the associated

eigenvectors.
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Basis of eigenvectors

Corollary. If there exist n mutually distinct roots λi of the

characteristic polynomial of the mapping f : V → V on

the n-dimensional space V , then there exists a decomposi-

tion of V into a direct sum of eigenspaces each of dimension

1. This means that there exists a basis for V consisting only

of eigenvectors and in this basis the matrix for f is the diag-

onal matrix with the eigenvalues on the diagonal. This basis

is uniquely determined up to the order of the elements and

scale of the vectors.

The corresponding basis (expressed in the coordinates

in an arbitrary basis of V ) is obtained by solving n systems

of homogeneous linear equations of n variables with matri-

ces (A − λi · E), where A is the matrix of f in a chosen

basis.

2.4.4. Invariant subspaces. We have seen that every eigen-

vector v of the mapping f : V → V generates

a subspace span{v} ⊂ V , which is preserved

by the mapping f .
More generally, we say that a vector sub-

space W ⊂ V is an invariant subspace for a linear mapping

f , if f(W ) ⊂ W .

If V is a �nite dimensional vector space and we choose

some basis (u1, . . . , uk) of a subspaceW , we can always ex-

tend it to be a basis (u1, . . . , uk, uk+1, . . . , un) for the whole
space V. For every such basis, the mapping will have a matrix
A of the form

(1) A =

(
B C
0 D

)
where B is a square matrix of dimension k, D is a square

matrix of dimension n − k and C is a matrix of the type

n/(n− k). On the other hand, if for some basis (u1, . . . , un)
the matrix of the mapping f is of the form (1), then W =
span{u1, . . . , uk} is invariant under the mapping f .

By the same arguments, the mapping with the matrix A
as in (1) leaves the subspace span{uk+1, . . . , un} invariant,

if and only if the submatrix C is zero.

From this point of view the eigenspaces of the mapping

are special cases of invariant subspaces. Our next task is to

�nd some conditions under which there are invariant comple-

ments of invariant subspaces.

2.4.5. We illustrate some typical properties of mappings on

the spaces R3 and R2 in terms of eigenvalues and eigenvec-

tors.

(1) Consider the mapping given in the standard basis by

the matrix A

f : R3 → R3, A =

0 0 1
0 1 0
1 0 0

 .
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Nowwe express it in the given basis. For this we need the

matrix T for changing the basis from the standard basis to the

new basis. This can be obtained by writing the coordinates

of the vectors of the original basis under the new basis into

the columns of the matrix T . But we shall do it in a di�erent

way � we obtain �rst the matrix for changing the basis from

the new one to the original one, that is, the matrix T−1. We

just write the coordinates of the vectors of the new basis into

the columns:

T−1 =

 1 1 0
−1 2 1
1 0 1

 .

Then

T = T−1−1
=

 0 0 1
1 0 −1
−2 1 3

 ,

and for the matrix B of a mapping under new basis we have

(see 2.3.16)

B = TAT−1 =

0 5 2
0 −2 −1
0 14 6

 .

□
You can �nd more exercises on computing with eigenval-

ues and eigenvectors on the page 67.

In the case of a 3 × 3 matrix, you can use this special

formula to �nd its characteristic polynomial:

2.G.3. For any n × n matrix A its characteristic polynomial

|A− λE | is of degree n, that is, it is of the form

|A−λE | = cn λ
n+cn−1 λ

n−1+· · ·+c1 λ+c0, cn ̸= 0,

while we have

cn = (−1)n, cn−1 = (−1)n−1 trA, c0 = |A |.

If the matrix A is three-dimensional, we obtain

|A− λE | = −λ3 + (trA)λ2 + c1 λ+ |A |.

By choosing λ = 1 we obtain

|A− E | = −1 + trA+ c1 + |A |.

From there we obtain

|A− λE | =
−λ3 + (trA)λ2 + (|A− E |+ 1− trA− |A |)λ+ |A |.

Use this expression for determining the characteristic polyno-

mial and the eigenvalues of the matrix

A =

32 −67 47
7 −14 13
−7 15 −6

 .

⃝
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We compute

|A− λE| =

∣∣∣∣∣∣
−λ 0 1
0 1− λ 0
1 0 −λ

∣∣∣∣∣∣ = −λ3 + λ2 + λ− 1,

with roots λ1 = 1, λ2 = 1, λ3 = −1. The eigenvectors with
eigenvalue λ = 1 can be computed:−1 0 1

0 0 0
1 0 −1

 ∼

1 0 −1
0 0 0
0 0 0

 ;

with the basis of the space of solutions, that is, of all eigen-

vectors with this eigenvalue

u1 = (0, 1, 0), u2 = (1, 0, 1).

Similarly for λ = −1 we obtain the third independent eigen-
vector1 0 1

0 2 0
1 0 1

 ∼

1 0 1
0 2 0
0 0 0

⇒ u3 = (−1, 0, 1).

Under the basis u1, u2, u3 (note that u3 must be linearly

independent of the remaining two because of the previous the-

orem and u1, u2 were obtained as two independent solutions)

f has the diagonal matrix

A =

1 0 0
0 1 0
0 0 −1

 .

The whole space R3 is a direct sum of eigenspaces, R3 =
V1⊕V2, with dimV1 = 2, and dimV2 = 1. This decomposi-
tion is uniquely determined and says much about the geomet-

ric properties of the mapping f . The eigenspace V1 is further-

more a direct sum of one-dimensional eigenspaces, which can

be selected in other ways (thus such a decomposition has no

further geometrical meaning).

(2) Consider the linear mapping f : R2[x] → R2[x] de-
�ned by polynomial di�erentiation, that is, f(1) = 0, f(x) =
1, f(x2) = 2x. The mapping f thus has in the usual basis

(1, x, x2) the matrix

A =

0 1 0
0 0 2
0 0 0

 .

The characteristic polynomial is |A−λ·E| = −λ3, thus it has

only one eigenvalue, λ = 0. We compute the eigenvectors:0 1 0
0 0 2
0 0 0

 ∼

0 1 0
0 0 1
0 0 0

 .

The space of the eigenvectors is thus one-dimensional, gener-

ated by the constant polynomial 1.
The striking property of this mapping is that is no basis

for which the matrix would be diagonal. There is the �chain�

of vectors mapping four independent generators as follows:
1
2x

2 7→ x 7→ 1 7→ 0 builds a sequence of subspaces without
invariant complements.
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2.G.4. Find the orthonormal complement of the vec-

torspace spaned by the vectors (2, 1, 3), (3, 16, 7), (3, 5, 4),

(−7, 7,−10).

Solution. In fact the task consists of solving the system 2.A.3,

which we have done already. □

2.G.5. Paulimatrices. In physics, the state of a particle with

spin 1
2 is described with Pauli matrices. They are the

2× 2 matrices over complex numbers:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
For square matrices we de�ne their commutator (denoted by

square brackets) as [σ1, σ2] := σ1σ2 − σ2σ1

Show that [σ1, σ2] = 2iσ3 and similarly [σ1, σ3] = 2iσ2

and [σ2, σ3] = 2iσ1. Furthermore, show that σ2
1 = σ2

2 =

σ2
3 = 1 and that the eigenvalues of the matrices σ1, σ2, σ3

are ±1.

Show that for matrices describing the state of the particle

with spin 1, namely

1√
2

0 1 0
1 0 1
0 1 0

 ,
1√
2

0 −i 0
i 0 −i
0 i 0

 ,

1 0 0
0 0 0
0 0 −1


, the commuting relations are the same as in the case of Pauli

matrices.

Equivalently it can be shown that under the notation

1 :=

(
1 0
0 1

)
, I := iσ3, J := iσ2,K := iσ1 forms the

vector space with basis (1, I, J,K) of an algebra of quater-

nions (the algebra is a vector space with binary bilinear oper-

ation of multiplication, in this case the multiplication is given

by matrix multiplication). In order for the vector space to

be an algebra of quaternions it is necessary and su�cient to

show the following properties: I2 = J2 = K2 = −1 and

IJ = −JI = K, JK = −KJ = I andKI = −IK = J.

2.G.6. Can the matrix

B =

(
5 6
6 5

)
be expressed in the form of the product B = P−1 ·D · P for

some diagonal matrixD and invertible matrix P ? If possible,

give an example of such matrices D, P , and �nd out how

many such pairs there are.

Solution. The matrix B has two distinct eigenvalues, and

thus such an expression exists. For instance it holds that(
5 6
6 5

)
= 1

2

(√
2 −

√
2√

2
√
2

)
·
(
11 0
0 −1

)
· 12

( √
2

√
2

−
√
2

√
2

)
.
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2.4.6. Orthogonal mappings. We consider the special case

of the mapping f : V → W between spaces

with scalar products, which preserve lengths for

all vectors u ∈ V .

Orthogonal mappings

A linear mapping f : V → W between spaces with

scalar product is called an orthogonal mapping, if for all

u ∈ V
⟨f(u), f(u)⟩ = ⟨u, u⟩.

The linearity of f and the symmetry of the scalar product

imply that for all pairs of vectors the following equality holds:

⟨f(u+ v), f(u+ v)⟩ = ⟨f(u), f(u)⟩+ ⟨f(v), f(v)⟩
+ 2⟨f(u), f(v)⟩.

Therefore all orthogonal mappings satisfy also the seemingly

stronger condition for all vectors u, v ∈ V :

⟨f(u), f(v)⟩ = ⟨u, v⟩,
i.e. the mapping f leaves the scalar product invariant if and

only if it leaves invariant the length of the vectors. (We should

have noticed that this is true for all �elds of scalars, where

1 + 1 ̸= 0, but it does hold true for Z2.)

In the initial discussion about the geometry in the plane

we proved in the Theorem ?? that a linear mappingR2 → R2

preserves lengths of the vectors if and only if its matrix in

the standard basis (which is orthonormal with respect to the

standard scalar product) satis�esAT ·A = E, that is, A−1 =
AT .

In general, orthogonal mappings f : V → W must be

always injective, because the condition ⟨f(u), f(u)⟩ = 0 im-
plies ⟨u, u⟩ = 0 and thus u = 0. In such a case, the dimen-
sion of the range is always at least as large as the dimension

of the domain of f . But then both dimensions are equal and
f : V → Im f is a bijection. If Im f ̸= W , we extend the or-

thonormal basis of the image of f to an orthonormal basis of

the range space and the matrix of the mapping then contains

a square regular submatrix A along with zero rows so that it

has the required number of rows. Without loss of generality

we can assume thatW = V .

Our condition for the matrix of an orthogonal mapping

in any orthonormal basis requires that for all vectors x and y
in the space Kn:

(A · x)T · (A · y) = xT · (AT ·A) · y = xT · y.
Special choice of the standard basis vectors for x and y yields
directlyAT ·A = E, that is, the same result as for dimension
two. Thus we have proved the following theorem:

Matrix of orthogonal mappings

Theorem. Let V be a real vector space with scalar product

and let f : V → V be a linear mapping. Then f is orthogo-

nal if and only if in some orthogonal basis (and then conse-

quently in all of them) its matrix A satis�es AT = A−1.
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There exist exactly two diagonal matricesD:(
11 0
0 −1

)
,

(
−1 0
0 11

)
,

but the columns of the matrix P−1 can be substituted with

their arbitrary non-zero scalar multiples, thus there are in�n-

itely many pairs D, P . □
As we have already seen in 2.G.2, based on the eigenval-

ues and eigenvectors of the given 3× 3 matrix, we can often

interpret geometrically the mapping it induces in R3. In par-

ticular, we notice that can do so in the following situations:

If the matrix has 0 as eigenvalue and 1 as an eigenvalue with

geometric multiplicity 2, then it is a projection in the direc-

tion of the eigenvector associated with the eigenvalue 0 on

the plane given by the eigenspace of the eigenvalue 1. If the

eigenvector associated with 0 is perpendicular to that plane,

then the mapping is an orthogonal projection.

If the matrix has eigenvalue−1 with the eigenvector per-

pendicular to the plane of the eigenvectors associated with the

eigenvalue 1, then it is a mirror symmetry through the plane

of the eigenvectors associated with 1.

If thematrix has eigenvalue 1with an eigenvector perpen-

dicular to plane of the eigenvectors associated with the eigen-

value −1, then it is an axial symmetry (in space) through the

axis given by the eigenvector associated with 1.

2.G.7. Determine what linear mapping R3 → R3 is given

by the matrix − 2
3 −1

3 − 2
3

4
3 −7

3 − 8
3

− 1 1 1


Solution. The matrix has a double eigenvalue −1, its associ-

ated eigenspace is span{(2, 0, 1), (1, 1, 0)}. Further, the ma-
trix has 0 as the eigenvalue, with eigenvector (1, 4,−3). The

mapping given by this matrix under the standard basis is then

an axial symmetry through the line given by the last vector

composed with the projection on the plane perpendicular to

the last vector, that is, given by the equation x+4y−3z = 0.

□

2.G.8. The theorem 2.4.7 gives us tools for recognising a

matrix of a rotation in R3. It is orthogonal (rows orthogonal

to each other equivalently the same for the columns). It has

three distinct eigenvalues with absolute value 1. One of them

is the number 1 (its associated eigenvector is the axis of the

rotation). The argument of the remaining two, which are nec-

essarily complex conjugates, gives the angle of the rotation
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Proof. Indeed, if f preserves lengths, it must have the

claimed property in every orthonormal basis. On the other

hand, the previous calculations show that this property for the

matrix in one such basis ensures length preservation. □

Square matrices which satisfy the equality AT = A−1

are called orthogonal matrices.

The shape of the coordinate transition matrices between

orthonormal bases is a direct corollary of the

above theorem. Each such matrix must provide a

mappingKn → Kn which preserves lengths and

thus satis�es the condition S−1 = ST . When

changing from one orthonormal basis to another one, the ma-

trix of any linear mapping changes according to the relation

A′ = STAS.

2.4.7. Decomposition of an orthogonal mapping. We take

a more detailed look at eigenvectors and eigenvalues of or-

thogonal mappings on a real vector space V with scalar prod-

uct.

Consider a �xed orthogonal mapping f : V → V with

the matrixA in some orthonormal basis. We continue as with

the matrix D of rotation in 2.4.1.

We think �rst about invariant subspaces of orthogonal

mappings and their orthogonal complements. Namely, given

any subspaceW ⊂ V invariant with respect to an orthogonal

mapping f : V → V , then for all v ∈ W⊥ and w ∈ W we

immediately see

⟨f(v), w⟩ = ⟨f(v), f ◦ f−1(w)⟩ = ⟨v, f−1(w)⟩ = 0

since f−1(w) ∈ W , too. But this means that also f(W⊥) ⊂
W⊥ and we have proved a simple but very important propo-

sition:

Proposition. The orthogonal complement of a subspace in-

variant with respect to an orthogonal mapping is also invari-

ant.

If all eigenvalues of an orthogonal mapping are real, this

claim ensures that there always exists a basis of V
composed of eigenvectors. Indeed, the restriction of

f to the orthogonal complement of an invariant sub-

space is again an orthogonal mapping, therefore we

can add one eigenvector to the basis after another, until we

obtain the whole decomposition of V . However, mostly the

eigenvalues of orthogonal mappings are not real. We need to

deviate into complex vector spaces. We formulate the result

right away:
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in the positive sense in the plane given by the basis uλ + uλ,

i(uλ − uλ).

2.G.9. Determine what linear mapping is given by the ma-

trix 
3
5

16
25

−12
25

−16
25

93
125

24
125

12
25

24
125

107
125

 .

Solution. First we notice, that the matrix is orthogonal

(rows are mutually orhogonal, and equivalently the same with

columns). The matrix has the following eigenvalues and cor-

responding eigenvectors: 1, v1 = (0, 1, 4
3 );

3
5 + 4

5 i, v2 =

(1, 4
5 i,−

3
5 i);

3
5 − 4

5 i, v3 = (1,−4
5 i,

3
5 i). All three eigenval-

ues have absolute value one, which together with the obser-

vation of orthogonality tells us that the matrix is a matrix of

rotation. Its axis is given by the eigenvector corresponding

to the eigenvalue 1, that is the vector (0, 1, 4
3 ). The plane

of rotation is the real plane in R3, which is given by the in-

tersection of two dimensional complex space in C3 gener-

ated by the remaining eigenvectors with R3. It is the plane

span{(1, 0, 0), (0,−4, 3)} (the �rst generator is the (real mul-
tiple of) v2 + v3, the other one is the (real multiple of)

i(v2−v3), see 2.4.7). We can determine the rotation angle in

this plane, It is a rotation by the angle arccos( 35 )
.
= 0, 295π,

which is the argument of the eigenvalue 3
5 +

4
5 i (or minus that

number, if we would choose the other eigenvalue).

It remains to determine the direction of the rotation. First,

recall that the meaning of the direction of the rotation changes

when we change the orientation of the axis (it has no mean-

ing to speak of the direction of the rotation if we do not have

an orientation of the axis). Using the ideas from the proof of

the theorem 2.4.7, we see that the given matrix acts by rotat-

ing by arccos( 35 )) in the positive sense in the plane given by

the basis ((1, 0, 0), (0,−4
5 ,

3
5 )). The �rst vector of the basis

is the imaginary part of the eigenvector associated with the

eigenvalue 3
5 +

4
5 i, the second is then the (common) real part

of the eigenvectors associated with the complex eigenvalues.

The order of the vectors in the basis is important (by changing

their order the meaning of the direction changes). The axis

of rotation is perpendicular to the plane. If we orient using

the right-hand rule (the perpendicular direction is obtained

by taking the product of the vectors in the basis) then the di-

rection of the rotation agrees with the direction of rotation in

the plane with the given basis. In our case we obtain by the

vector product (0, 1,−1) × (1, 1,−1) = (0,−1,−1). It is



CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

Orthogonal mapping decomposition

Theorem. Let f : V → V be an orthogonal mapping on a

real vector space V with scalar product. Then all the (in gen-

eral complex) roots of the characteristic polynomial f have

length one. There exists the decomposition of V into one-

dimensional eigenspaces corresponding to the real eigen-

values λ = ±1 and two-dimensional subspaces Pλ,λ̄ with

λ ∈ C\R, where f acts by the rotation by the angle equal to

the argument of the complex number λ in the positive sense.

All these subspaces are mutually orthogonal.

Proof. Without loss of generality we can work with the

space V = Rm with the standard scalar prod-

uct. The mapping is thus given by an orthogo-

nal matrix A which can be equally well seen as

the matrix of a (complex) linear mapping on the

complex space Cm (which just happens to have all of its co-

e�cients real).

There exist exactly m (complex) roots of the character-

istic polynomial of A, counting their algebraic multiplicities
(see the fundamental theorem of algebra, ??). Furthermore,

because the characteristic polynomial of themapping has only

real coe�cients, the roots are either real or there are a pair

of roots which are complex conjugates λ and λ̄. The associ-
ated eigenvectors inCm for such pairs of complex conjugates

are actually solutions of two systems of linear homogeneous

equations which are also complex conjugate to each other �

the corresponding matrices of the systems have real compo-

nents, except for the eigenvalues λ. Therefore the solutions
of this systems are also complex conjugates (check this!).

Next, we exploit the fact that for every invariant sub-

space its orthogonal complement is also invariant. First we

�nd the eigenspaces V±1 associated with the real eigenval-

ues, and restrict the mapping to the orthogonal complement

of their sum. Without loss of generality we can thus assume

that our orthogonal mapping has no real eigenvalues and that

dimV = 2n > 0.
Now choose an eigenvalueλ and letuλ be the eigenvector

in C2n associated to the eigenvalue λ = α + iβ, β ̸= 0.
Analogously to the case of rotation in the plane discussed in

paragraph 2.4.1 in terms of the matrix D, we are interested

in the real part of the sum of two one-dimensional (complex)

subspaces W = span{uλ} ⊕ span{ūλ}, where ūλ is the

eigenvector associated to the conjugated eigenvalue λ̄.
Now we want the intersection of the 2-dimensional com-

plex subspace W with the real subspace R2n ⊂ C2n, which

is clearly generated (over R) by the vectors uλ + ūλ and

i(uλ− ūλ). We call this real 2-dimensional subspace Pλ,λ̄ ⊂
R2n and notice, this subspace is generated by the basis given

by the real and imaginary part of uλ

xλ = Reuλ, −yλ = − Imuλ.

Because A · (uλ + ūλ) = λuλ + λ̄ūλ and similarly with the

second basis vector, it is clearly an invariant subspace with
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thus a rotation through arccos( 35 ) in the positive sense about

the vector (0,−1,−1), that is, a rotation through arccos( 35 )

in the negative sense about the vector (0, 1, 1). □

2.G.10. Determine what linear mapping is given by the ma-

trix 
−1
5

3
5

−1
5

−8
5

9
5

2
5

8
5

−4
5

3
5

 .

Solution. By already known method we �nd out that the ma-

trix has the following eigenvalues and corresponding eigen-

vectors: 1, (1, 2, 0); 3
5 + 4

5 i, 1, (1, 1 + i,−1 − i); 3
5 −

4
5 i, (1, 1 − i,−1 + i). Though all three eigenvectors have

absolute value 1, they are not orthogonal to each other, thus

the matrix is not orthogonal. Consequently it is not a ma-

trix of rotation. Nevertheless, it is a linear mapping which is

"close" to a rotation. It is a rotation in the plane given by two

complex eigenvectors (but this plane is not orthogonal to the

vector (1, 2, 0), but it is preserved by the map). It remains to

determine the direction of the rotation. First, we should re-

call that the meaning of the direction of the rotation changes

when we change the orientation of the axis (it has no meaning

to speak of the direction of the rotation if we do not have an

orientation of the axis).

Using the same ideas as in the previous example, we see

that the givenmatrix acts by rotating by arccos( 35 )) in the pos-

itive sense in the plane given by the basis ((1, 1,−1), (0, 1, ).

The �rst vector of the basis is the imaginary part of the eigen-

vector associated with the eigenvalue 3
5 + 4

5 i, the second

is then the (common) real part of the eigenvectors associ-

ated with the complex eigenvalues. The order of the vec-

tors in the basis is important (by changing their order the

meaning of the direction changes). The "axis" of rotation

is not perpendicular to the plane, but we can orient the vec-

tors lying in the whole half-plane using the right-hand rule

(the perpendicular direction is obtained by taking the prod-

uct of the vectors in the basis) then the direction of the ro-

tation agrees with the direction of rotation in the plane with

the given basis. In our case we obtain by the vector prod-

uct (0, 1,−1) × (1, 1,−1) = (0,−1,−1). It is thus a rota-

tion through arccos( 35 ) in the positive sense about the vector

(0,−1,−1), that is, a rotation through arccos( 35 ) in the nega-

tive sense about the vector (0, 1, 1). □
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respect to multiplication by the matrix A and we obtain

A · xλ = αxλ + βyλ, A · yλ = −αyλ + βxλ.

Because our mapping preserves lengths, the absolute value

of the eigenvalue λ must equal one. But that means that the

restriction of our mapping to Pλ,λ̄ is the rotation by the argu-

ment of the eigenvalue λ. Note that the choice of the eigen-
value λ̄ instead of λ leads to the same subspace with the same

rotation, we would just have expressed it in the basis xλ, yλ,
that is, the same rotation will in these coordinates go by the

same angle, but with the opposite sign, as expected.

The proof of the whole theorem is completed by restrict-

ing the mapping to the orthogonal complement and �nding

another 2-dimensional subspace, until we get the required de-

composition. □
We return to the ideas in this proof once again in chapter

three, where we study complex extensions of the Euclidean

vector spaces, see ??.

Remark. The previous theorem is very powerful in dimen-

sion three. Here at least one eigenvalue must

be real ±1, since three is odd. But then the as-
sociated eigenspace is an axis of the rotation of

the three-dimensional space through the angle

given by the argument of the other eigenvalues. Try to think

how to detect in which direction the space is rotated. Note

also that the eigenvalue −1 means an additional re�ection

through the plane perpendicular to the axis of the rotation.

We shall return to the discussion of such properties of

matrices and linear mappings in more details at the end of the

next chapter, after illustrating the power of thematrix calculus

in several practical applications. We close this section with a

general quite widely used de�nition:

Spectrum of linear mapping

2.4.8. De�nition. The spectrum of a linear mapping f :
V → V, or the spectrum of a square matrixA, is a sequence
of roots of the characteristic polynomial f or A, along with
their multiplicities, respectively. The algebraic multiplicity

of an eigenvalue means the multiplicity of the root of the

characteristic polynomial, while the geometric multiplicity

of the eigenvalue is the dimension of the associated subspace

of eigenvectors.

The spectral diameter of a linear mapping (or matrix)

is the greatest of the absolute values of the eigenvalues.

In this terminology, our results about orthogonal map-

pings can be formulated as follows: the spectrum of an orthog-

onal mapping is always a subset of the unit circle in the com-

plex plane. Thus only the values ±1 may appear in the real

part of the spectrum and their algebraic and geometric multi-

plicities are always the same. Complex values of the spectrum

then correspond to rotations in suitable two-dimensional sub-

spaces which are mutually perpendicular.
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2.G.11. Without any computation, write down the spectrum

of the linear mapping f : R3 → R3 given by (x1, x2, x3) 7→
(x1 + x3, x2, x1 + x3). ⃝

2.G.12. Find the dimension of the eigenspaces of the eigen-

values λi of the matrix
4 0 0 0
1 4 0 0
5 2 3 0
0 4 0 3

 .

⃝
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H. Additional exercises for the whole chapter

2.H.1. Kirchho�'s Circuit Laws. We consider an application of Linear Algebra to analysis of electric circuits, using Ohm's

law and Kirchho�'s voltage and current laws.

Consider an electric circuit as in the �gure and write down the values of the currents there if you know the values

V1 = 20, V2 = 120, V3 = 50, R1 = 10, R2 = 30, R3 = 4, R4 = 5, R5 = 10,

Notice that the quantities Ii denote the electric currents, while Rj are resistances, and Vk are voltages.

Solution. There are two closed loops, namely ABEF and EBCD and two branching vertices B and E of degree no less

than 3. On every segment of the circuit, bounded by branching points, the electric current is constant. Set it to be I1 on the

segment EFAB, I2 on EB, and I3 on BCDE.

Applying Kirchho�'s current law to branching points B and E we obtain: I1 + I2 = I3 and I3 − I1 = I2, which are,

of course the same equations. In case there are many branching vertices, we write all Kirchhho�'s Current Law equations to

the system, having at least one of those equations redundant.

Choose the counter clockwise orientations of the loops ABEF and EBCD. Applying Kirchho� Voltage Law and

Ohm's Law to the loop ABEF we obtain the equation:

V1 + I1R3 − I2R5 + V3 + I1R1 + I1R4 = 0.

Similarly, the loop EBCD implies

−V2 + I3R2 − V3 +R5I2 = 0.

By combining all equations, we obtain the system

I1 + I2 − I3 = 0,
(R3 +R1 +R4)I1 − R5I2 + = −V1 − V3,

R5I2 + R2I3 = V2 + V3.

Substituing the prescribed values we obtain the linear system

I1 + I2 − I3 = 0,
19I1 − 10I2 + = −70,

10I2 + 30I3 = 170.

This has solutions I1 = − 80
53 ≈ −1.509, I2 = 219

53 ≈ 4.132, I3 = 139
53 ≈ 2.623. □

2.H.2. The general case. In general, the method for electrical circuit analysis can be formulated along the following steps:

i) Identify all branching vertices of the circuit, i.e vertices of degree no less than 3;

ii) Identify all closed loops of the circuit;

iii) Introduce variables Ik, denoting oriented currents on each segment of the circuit between two branching vertices;
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iv) Write down Kirchho�'s current conservation law for each branching vertex. The total incoming current equals the total

outgoing current;

v) Choose an orientation on every closed loop of the circuit and write down Kirchho�'s voltage conservation law according

to the chosen orientation. If you �nd an electric charge of voltage Vj and you go from the short bar to the long bar, the

contribution of this charge is Vj . It is−Vj if you go from the long bar to the short one. If you go in the positive direction

of a current I and �nd a resistor with resistance Rj , the contribution is−RjI, and it is RjI if the orientation of the loop

is opposite to the direction of the current I. The total voltage change along each closed loop must be zero.

vi) Compose the system of linear equations collecting all equations, representing Kirchho�'s current and voltage laws and

solve it with respect to the variables, representing currents. Notice that some equations may be redundant, however, the

solution should be unique.

To illustrate this general approach, consider the circuit example in the diagram.

Solution.

i) The set of branching vertices is {B,C, F,G,H}.
ii) The set of closed loops is {ABHG,FHBC,GHF,CDEF}.
iii) Let I1 be the current on the segment GAB, I2 on the segment GH, I3 on the segment HB, I4 on the segment BC, I5

on the segment FC, I6 on the segment FH, I7 on GF , and I8 on CDEF .

iv) Write Kirchho�'s current conservation laws for the branching vertices:

• vertex B: I1 + I3 = I4

• vertex C: I4 + I5 = I8

• vertex F: I8 = I5 + I6 − I7

• vertex G: −I7 = I1 + I2

• vertex H: I2 + I6 = I3

v) Write Kirchho�'s voltage conservation for each of the closed loops traversed counter-clockwise:

• loop ABHG: −R1I2 + V3 +R2I1 − V2 = 0

• loop FHBC: V4 +R3I4 − V3 = 0

• loop GHF : R1I2 − V1 = 0

• loop CDEF : R4I8 − V4 = 0

Set the parameters: R1 = 4, R2 = 7, R3 = 9, R4 = 12, V1 = 10, V2 = 20, , V3 = 60, , V4 = 120, to

obtain the system

I1 + I3 − I4 = 0

I4 + I5 − I87 = 0

I5 + I6 − I7 − I8 = 0

I1 + I2 + I7 = 0
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I2 − I3 + I6 = 0

7I1 − 4I2 = −40

9I4 = −60

4I2 = 10

12I8 = 120

with the solution set I1 = −30
7 , I2 = 5

2 , I3 = −50
21 , I4 = −20

3 , I5 = 50
3 , I6 = −205

42 , I7 = 25
14 , I8 = 10.

□

2.H.3. Solve the system of equations

x1 + x2 + x3 + x4 − 2x5 = 3,
2x2 + 2x3 + 2x4 − 4x5 = 5,

−x1 − x2 − x3 + x4 + 2x5 = 0,
−2x1 + 3x2 + 3x3 − 6x5 = 2.

Solution. The extended matrix of the system is
1 1 1 1 −2 3
0 2 2 2 −4 5
−1 −1 −1 1 2 0
−2 3 3 0 −6 2

 .

Adding the �rst row to the third, adding its 2-multiple to the fourth, and adding the (−5/2)-multiple of the second to the

fourth we obtain
1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3
0 5 5 2 −10 8

 ∼


1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3
0 0 0 −3 0 −9/2

 .

The last row is clearly a multiple of the previous, and thus we can omit it. The pivots are located in the �rst, second and fourth.

Thus the free variables are x3 and x5 which we substitute by the real parameters t and s. Thus we consider the system

x1 + x2 + t + x4 − 2s = 3,
2x2 + 2t + 2x4 − 4s = 5,

2x4 = 3.

We see that x4 = 3/2. The second equation gives

2x2 + 2t+ 3− 4s = 5, that is, x2 = 1− t+ 2s.

From the �rst we have

x1 + 1− t+ 2s+ t+ 3/2− 2s = 3, tj. x1 = 1/2.

Altogether,

(x1, x2, x3, x4, x5) = (1/2, 1−t+2s, t, 3/2, s), t, s ∈ R.

Alternatively, we can consider the extended matrix and transform it using the row transformations into the row echelon

form. We arrange it so that the �rst non-zero number in every row is 1, and the remaining numbers in the column containing

this 1 are 0. We omit the fourth equation, which is a combination of the �rst three. Sequentially, multiplying the second and
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the third row by the number 1/2, subtracting the third row from the second and from the �rst and by subtracting the second

row from the �rst we obtain 1 1 1 1 −2 3
0 2 2 2 −4 5
0 0 0 2 0 3

 ∼

 1 1 1 1 −2 3
0 1 1 1 −2 5/2
0 0 0 1 0 3/2

 ∼

 1 1 1 0 −2 3/2
0 1 1 0 −2 1
0 0 0 1 0 3/2

 ∼

 1 0 0 0 0 1/2
0 1 1 0 −2 1
0 0 0 1 0 3/2

 .

If we choose again x3 = t, x5 = s (t, s ∈ R), we obtain the general solution (2.H.3) as above. □

2.H.4. Find the solution of the system of linear equations given by the extended matrix
3 3 2 1 3
2 1 1 0 4
0 5 −4 3 1
5 3 3 −3 5

 .

Solution. We transform the given extended matrix into the row echelon form. We �rst copy the �rst three rows and into the

last row we write the sum of the (2)-multiple of the �rst and of the (−3)-multiple of the last row. By this we obtain
3 3 2 1 3
2 1 1 0 4
0 5 −4 3 1
5 3 3 −3 5

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 5 −4 3 1
0 6 1 14 0

 .

Copying the �rst two rows and adding a 5-multiple of the second row to the 3-multiple of the third and its 2-multiple to the

fourth gives
3 3 2 1 3
0 −3 −1 −2 6
0 5 −4 3 1
0 6 1 14 0

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 −17 −1 33
0 0 −1 10 12

 .

Copying the �rst, second and fourth row, and adding the fourth to the third, yields
3 3 2 1 3
0 −3 −1 −2 6
0 0 −17 −1 33
0 0 −1 10 12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 −18 9 45
0 0 −1 10 12

 .

With three more row transformations, we arrive at
3 3 2 1 3
0 −3 −1 −2 6
0 0 −18 9 45
0 0 −1 10 12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 2 −1 −5
0 0 1 −10 −12

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 2 −1 −5

 ∼


3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 0 19 19

 .

The system has exactly 1 solution. We determine it by backwards elimination
3 3 2 1 3
0 −3 −1 −2 6
0 0 1 −10 −12
0 0 0 1 1

 ∼


3 3 2 0 2
0 −3 −1 0 8
0 0 1 0 −2
0 0 0 1 1

 ∼


3 3 0 0 6
0 −3 0 0 6
0 0 1 0 −2
0 0 0 1 1

 ∼


1 1 0 0 2
0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 1

 ∼


1 0 0 0 4
0 1 0 0 −2
0 0 1 0 −2
0 0 0 1 1

 .
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The solution is

x1 = 4, x2 = −2, x3 = −2, x4 = 1.

□

2.H.5. Find all the solutions of the homogeneous system

x+ y = 2z + v, z + 4u+ v = 0, −3u = 0, z = −v

of four linear equations with 5 variables x, y, z, u, v.

Solution. We rewrite the system into a matrix such that in the �rst column there are coe�cients of x, in the second there are

coe�cients of y, and so on. We put all the variables in equations to the left side. By this, we obtain the matrix
1 1 −2 0 −1
0 0 1 4 1
0 0 0 −3 0
0 0 1 0 1

 .

We add (4/3)-multiple of the third row to the second and subtract then the second row from the fourth to obtain
1 1 −2 0 −1
0 0 1 4 1
0 0 0 −3 0
0 0 1 0 1

 ∼


1 1 −2 0 −1
0 0 1 0 1
0 0 0 −3 0
0 0 0 0 0

 .

We multiply the third row by the number −1/3 and add the 2-multiple of the second row to the �rst, which gives
1 1 −2 0 −1
0 0 1 0 1
0 0 0 −3 0
0 0 0 0 0

 ∼


1 1 0 0 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

 .

From the last matrix, we get immediately (reading from bottom to top) u = 0, z + v = 0, x + y + v = 0. Letting ??

and v = s and y = t, the complete solution is

(x, y, z, u, v) = (−t− s, t, −s, 0, s) , t, s ∈ R.

which can be rewritten as
x
y
z
u
v

 = t


−1
1
0
0
0

+ s


−1
0
−1
0
1

 , t, s ∈ R,

Notice that the second and the �fth column of the matrix together form a basis for the solutions. These are the columns which

do not contain a leading 1 in any of its entries. □

2.H.6. Determine the number of solutions for the systems

(a)

12x1 +
√
5x2 + 11x3 = −9,

x1 − 5x3 = −9,
x1 + 2x3 = −7;

(b)

4x1 + 2x2 − 12x3 = 0,
5x1 + 2x2 − x3 = 0,

−2x1 − x2 + 6x3 = 4;
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(c)

4x1 + 2x2 − 12x3 = 0,
5x1 + 2x2 − x3 = 1,

−2x1 − x2 + 6x3 = 0.

Solution. The vectors (1, 0,−5), (1, 0, 2) are clearly linearly independent, (they are not multiples of each other) and the

vector (12,
√
5, 11) cannot be their linear combination (its second coordinate is non-zero). Therefore the matrix whose rows

are these three linearly independent vectors (from the left side) is invertible. Thus the system for case (a) has exactly one

solution.

For cases (b) and (c), it is enough to note that

(4, 2,−12) = −2(−2,−1, 6).

In case (b) adding the �rst equation to the third multiplied by two gives 0 = 8, hence there is no solution for the system. In

case (c) the third equation is a multiple of the �rst, so the system has in�nitely many distinct solutions. □

2.H.7. Find a linear system, whose set of solutions is exactly

{(t+ 1, 2t, 3t, 4t); t ∈ R}.

Solution. Such a system is for instance

2x1 − x2 = 2, 2x2 − x4 = 0, 4x3 − 3x4 = 0.

These solutions are satis�ed for every t ∈ R. The vectors

(2,−1, 0, 0), (0, 2, 0,−1), (0, 0, 4,−3)

giving the left-hand sides of the equations are linearly independent (the set of solutions contains a single parameter). □

2.H.8. Solve the system of homogeneous linear equations given by the matrix
0

√
2

√
3

√
6 0

2 2
√
3 −2 −

√
5

0 2
√
5 2

√
3 −

√
3

3 3
√
3 −3 0

 .

⃝

2.H.9. Determine all solutions of the system

x2 + x4 = 1,
3x1 − 2x2 − 3x3 + 4x4 = −2,
x1 + x2 − x3 + x4 = 2,
x1 − x3 = 1.

⃝

2.H.10. Solve

3x − 5y + 2u + 4z = 2,
5x + 7y − 4u − 6z = 3,
7x − 4y + + 3z = 4,
x + 6y − 2u − 5z = 2

⃝

2.H.11. Determine whether or not the system of linear equations

3x1 + 3x2 + x3 = 1,
2x1 + 3x2 − x3 = 8,
2x1 − 3x2 + x3 = 4,
3x1 − 2x2 + x3 = 6

of three variables x1, x2, x3 has a solution. ⃝
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2.H.12. Determine the number of solutions of the system of 5 linear equations

AT · x = (1, 2, 3, 4, 5)T ,

where

x = (x1, x2, x3)
T and A =

3 1 7 5 0
0 0 0 0 1
2 1 4 3 0

 .

Repeat the question for the system

AT · x = (1, 1, 1, 1, 1)T

⃝

2.H.13. Depending on the parameter a ∈ R, determine the solution of the system of linear equations

ax1 + 4x2 +2 x3 = 0,
2x1 + 3x2 − x3 = 0.

⃝

2.H.14. Depending on the parameter a ∈ R, determine the number of solutions of the system
4 1 4 a
2 3 6 8
3 2 5 4
6 −1 2 −8



x1

x2

x3

x4

 =


2
5
3
−3

 .

⃝

2.H.15. Decide whether or not there is a system of homogeneous linear equations of three variables whose set of solutions is

exactly

(a) {(0, 0, 0)};
(b) {(0, 1, 0), (0, 0, 0), (1, 1, 0)};
(c) {(x, 1, 0); x ∈ R};
(d) {(x, y, 2y); x, y ∈ R}.

⃝

2.H.16. Solve the system of linear equations, depending on the real parameters a, b.

x+ 2y + bz = a

x− y + 2z = 1

3x− y = 1.

⃝

2.H.17. Using the inverse matrix, compute the solution of the system

x1 + x2 + x3 + x4 = 2,

x1 + x2 − x3 − x4 = 3,

x1 − x2 + x3 − x4 = 3,

x1 − x2 − x3 + x4 = 5.

⃝
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2.H.18. For what values of parameters a, b ∈ R has the system of linear equations

x1 − ax2 − 2x3 = b,
x1 + (1− a)x2 = b− 3,
x1 + (1− a)x2 + ax3 = 2b− 1

(a) exactly one solution;

(b) no solution;

(c) at least 2 solutions? (i.e. in�nitely many solutions)

Solution. We rewrite it, as usual, in the extended matrix, and transform:1 −a −2 b
1 1− a 0 b− 3
1 1− a a 2b− 1

 ∼

1 −a −2 b
0 1 2 −3
0 1 a+ 2 b− 1


∼

1 −a −2 b
0 1 2 −3
0 0 a b+ 2

 .

At the �rst step we subtract the �rst row from the second and the third; and at the second step we subtract the second from

the third. We see that the system has a unique solution (determined by backward elimination) if and only if a ̸= 0. If a = 0

and b = −2, we have a zero row in the extended matrix. Choosing x3 ∈ R as a parameter then gives in�nitely many distinct

solutions. For a = 0 and b ̸= −2 the last equation a = b+ 2 cannot be satis�ed and the system has no solution.

Note that for a = 0, b = −2 the solutions are

(x1, x2, x3) = (−2 + 2t, −3− 2t, t) , t ∈ R

and for a ̸= 0 the unique solution is the triple(
−3a2 − ab− 4a+ 2b+ 4

a
, −2b+ 3a+ 4

a
,
b+ 2

a

)
.

□

2.H.19. Let

A =

4 5 1
3 4 0
1 1 1

 , x =

x1

x2

x3

 , b =

b1
b2
b3

 .

Find real numbers b1, b2, b3 such that the system of linear equations A · x = b has:

(a) in�nitely many solutions;

(b) unique solution;

(c) no solution;

(d) exactly four solutions.

Solution. It is enough to choose b1 = b2 + b3 in case a) and b1 ̸= b2 + b3 in case c). Since all possibilities for b1, b2, b3 are

catered for, variant d) cannot occur. Variant b) cannot occur, since the matrix A is not invertible. □

2.H.20.Factor the following permutations into a product of transpositions:

i)

(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
,

ii)

(
1 2 3 4 5 6 7 8
6 4 1 2 5 8 3 7

)
,

iii)

(
1 2 3 4 5 6 7 8 9 10
4 6 1 10 2 5 9 8 3 7

)
.

2.H.21.Determine the parity of the given permutations:

i)

(
1 2 3 4 5 6 7
7 5 6 4 1 2 3

)
,
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ii)

(
1 2 3 4 5 6 7 8
6 7 1 2 3 8 4 5

)
,

iii)

(
1 2 3 4 5 6 7 8 9 10
9 7 1 10 2 5 4 9 3 6

)
.

2.H.22. Find the algebraically adjoint matrix F ∗ for

F =

α β 0
γ δ 0
0 0 1

 , α, β, γ, δ ∈ R.

⃝

2.H.23. Calculate the algebraically adjoint matrix for the matrices

(a)


3 −2 0 −1
0 2 2 1
1 −2 −3 −2
0 1 2 1

 , (b)

(
1 + i 2i
3− 2i 6

)
,

where i denotes the imaginary unit.

⃝

2.H.24. Is the set V = {(1, x); x ∈ R} with operations

⊕ : V × V → V, (1, y)⊕ (1, z) = (1, z + y) for all z, y ∈ R

⊙ : R× V → V, z ⊙ (1, y) = (1, y · z) for all z, y ∈ R

a vector space? ⃝

2.H.25. Express the vector (5, 1, 11) as a linear combination of the vectors (3, 2, 2), (2, 3, 1), (1, 1, 3), that is, �nd numbers

p, q, r ∈ R, for which

(5, 1, 11) = p (3, 2, 2) + q (2, 3, 1) + r (1, 1, 3) .

⃝

2.H.26. In R3, determine the matrix of rotation through the angle 120◦ in the positive sense about the vector (1, 0, 1) ⃝

2.H.27. In the vector space R3, determine the matrix of the orthogonal projection onto the plane x+ y − 2z = 0. ⃝

2.H.28. In the vector space R3, determine the matrix of the orthogonal projection on the plane 2x− y + 2z = 0. ⃝

2.H.29. Determine whether the subspaces U = ⟨(2, 1, 2, 2)⟩ and V = ⟨(−1, 0,−1, 2) , (−1, 0, 1, 0) , (0, 0, 1,−1)⟩ of the
space R4 are orthogonal. If they are, is R4 = U ⊕ V , that is, is U⊥ = V ?

2.H.30. Let p be a given line:

p : [1, 1] + (4, 1)t, t ∈ R

Determine the parametric expression of all lines q that pass through the origin and have de�ection 60◦ with the line p. ⃝

2.H.31. Depending on the parameter t ∈ R, determine the dimension of the subspace U of the vector space R3, if U is

generated by the vectors

(a) u1 = (1, 1, 1), u2 = (1, t, 1), u3 = (2, 2, t);

(b) u1 = (t, t, t), u2 = (−4t,−4t, 4t), u3 = (−2,−2,−2).
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2.H.32. Construct an orthogonal basis of the subspace

⟨ (1, 1, 1, 1), (1, 1, 1,−1), (−1, 1, 1, 1) ⟩

of the space R4.

2.H.33. In the space R4, �nd an orthogonal basis of the subspace of all linear combinations of the vectors (1, 0, 1, 0),

(0, 1, 0,−7), (4,−2, 4, 14).

Find an orthogonal basis of the subspace generated by the vectors (1, 2, 2,−1), (1, 1,−5, 3), (3, 2, 8,−7).

2.H.34.For what values of the parameters a, b ∈ R are the vectors

(1, 1, 2, 0, 0), (1,−1, 0, 1, a), (1, b, 2, 3,−2)

in the space R5 pairwise orthogonal?

2.H.35. In the space R5, consider the subspace generated by the vectors

(1, 1,−1,−1, 0), (1,−1,−1, 0,−1), (1, 1, 0, 1, 1), (−1, 0,−1, 1, 1). Find a basis for its orthogonal complement.

2.H.36. Describe the orthogonal complement of the subspace V of the spaceR4, if V is generated by the vectors (−1, 2, 0, 1),

(3, 1,−2, 4), (−4, 1, 2,−4), (2, 3,−2, 5).

2.H.37. In the space R5, determine the orthogonal complementW⊥ of the subspaceW , if

(a) W = {(r + s+ t,−r + t, r + s,−t, s+ t); r, s, t ∈ R};
(b) W is the set of the solutions of the system of equations x1 − x3 = 0, x1 − x2 + x3 − x4 + x5 = 0.

2.H.38. In the space R4, let

(1,−2, 2, 1), (1, 3, 2, 1)

be given vectors. Extend these two vectors into an orthogonal basis of the whole R4. (You can do this in any way you wish,

for instance by using the Gram-Schmidt orthogonalization process.)

2.H.39. De�ne an inner product on the vector space of the matrices from the previous exercise. Compute the norm of the

matrix from the previous exercise, induced by the product you have de�ned. ⃝

2.H.40. Find a basis for the vector space of all antisymmetric real square matrices of the type 4 × 4. Consider the standard

inner product in this basis and using this inner product, express the size of the matrix
0 3 1 0
−3 0 1 2
−1 −1 0 2
0 −2 −2 0


. ⃝

2.H.41. Find the eigenvalues and the associated eigenspaces of eigenvectors of the matrix:

A =

 1 1 0
−1 3 0
2 −2 2

 .

Solution. The characteristic polynomial of the matrix is λ3 − 6λ2 + 12λ − 8, which is (λ − 2)3. The number 2 is thus an

eigenvalue with algebraic multiplicity three. Its geometric multiplicity is either one, two or three. We determine the vectors

associated to this eigenvalue as the solutions of the system

(A− 2E)x =
−x1 +x2 = 0,
−x1 +x2 = 0,
2x1 −2x2 = 0.
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Its solutions form the two-dimensional space ⟨(1,−1, 0), (0, 0, 1)⟩. Thus the eigenvalue 2 has algebraic multiplicity 3 and

geometric multiplicity 2.

□

2.H.42. Determine the eigenvalues of the matrix 
−13 5 4 2
0 −1 0 0

−30 12 9 5
−12 6 4 1

 .

⃝

2.H.43. Given that the numbers 1, −1 are eigenvalues of the matrix

A =


−11 5 4 1
−3 0 1 0
−21 11 8 2
−9 5 3 1

 ,

�nd all solutions of the characteristic equation |A−λE | = 0. Hint: if you denote all the roots of the polynomial |A−λE |
by λ1, λ2, λ3, λ4, then

|A | = λ1 · λ2 · λ3 · λ4, and trA = λ1 + λ2 + λ3 + λ4.

⃝

2.H.44. Find a four-dimensional matrix with eigenvalues λ1 = 6 and λ2 = 7 such that the multiplicity of λ2 as a root of the

characteristic polynomial is three, and that

(a) the dimension of the subspace of eigenvectors of λ2 is 3;

(b) the dimension of the subspace of eigenvectors of λ2 is 2;

(c) the dimension of the subspace of eigenvectors of λ2 is 1;

⃝

2.H.45. Find the eigenvalues and the eigenvectors of the matrix:−1 −5
6

5
3

0 −2
3 − 2

3
0 1

6 − 4
3

 .

2.H.46. Determine the characteristic polynomial |A− λE |, eigenvalues and eigenvectors of the matrix4 −1 6
2 1 6
2 −1 8

 .

⃝
respectively.
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Solutions to the exercises

2.A.11. There is only one such matrixX, and it is(
18 −32
5 −8

)
.

2.A.13. A−1 =

1 10 −4
1 12 −5
0 5 −2

 .

2.A.14.

A5 =

 122 −121 121
−121 122 −121
0 0 1

 , A−3 = 1
27

14 13 −13
13 14 13
0 0 27

 .

2.A.15.


2 −3 0 0 0
−5 8 0 0 0
0 0 −1 0 0
0 0 0 −5 2
0 0 0 3 −1

 .

2.A.16. C−1 = 1
2


0 1 1 0
0 1 0 −1
1 −1 0 0
1 −1 −1 1

 .

2.A.17. In the �rst case we have

A−1 =
1

2
·
(
3 −i
i 1

)
;

in the second

A−1 =

14 8 5
2 1 1
1 1 0

 .

2.D.7. (2 + 1√
3 , 2−

1√
3 ).

2.D.8. The vectors are dependent whenever at least one of the conditions

a = b = 1, a = c = 1, b = c = 1

is satis�ed.

2.D.9. Vectors are linearly independent.

2.D.10. It su�ces to add for instance the polynomial x.

2.F.5. cos =
√

2√
3 .

2.G.3. Je |A− λE | = −λ3 + 12λ2 − 47λ+ 60, . λ1 = 3, λ2 = 4, λ3 = 5.

2.G.11. The solution is the sequence 0, 1, 2.

2.G.12. The dimension is 1 for λ1 = 4 and 2 for λ2 = 3.

2.H.8. The solutions are all scalar multiples of the vector(
1 +
√
3, −
√
3, 0, 1, 0

)
.

2.H.9. x1 = 1 + t, x2 = 3
2
, x3 = t, x4 = − 1

2
, t ∈ R.

2.H.10. The system has no solution.

2.H.11. The system has a solution, because

3 ·


3
2
2
3

−


3
3
−3
−2

− 5 ·


1
−1
1
1

 =


1
8
4
6

 .
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2.H.12. The system of linear equations

3x1 + 2x3 = 1,
x1 + x3 = 2,

7x1 + 4x3 = 3,
5x1 + 3x3 = 4,

x2 = 5

has no solution, while the system

3x1 + 2x3 = 1,
x1 + x3 = 1,

7x1 + 4x3 = 1,
5x1 + 3x3 = 1,

x2 = 1

has a unique solution x1 = −1, x2 = 1, x3 = 2.

2.H.13. The set of all solutions is given by

{(−10t, (a+ 4)t, (3a− 8)t) ; t ∈ R}.

2.H.14. For a = 0, the system has no solution. For a ̸= 0 the system has in�nitely many solutions.

2.H.15. The correct answers are �yes�, �no�, �no� and �yes� respectively.

2.H.16. i) If b ̸= −7, then x = z = (2+ a)/(b+7), y = (3a− b− 1)/(b+ 7). ii) If b = −7 and a ̸= −2, then there is no solution. iii)
If a = −2 and b = −7 then the solution is x = z = t, y = 3t− 1, for any t.

2.H.17.
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


−1

1

4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

We can then easily obtain

x1 =
13

4
, x2 = −3

4
, x3 = −3

4
, x4 =

1

4
.

2.H.20. i) (1, 7)(2, 6)(5, 3), ii) (1, 6)(6, 8)(8, 7)(7, 3)(2, 4), iii) (1, 4)(4, 10)(10, 7)(7, 9)(9, 3)(2, 6)(6, 5)

2.H.21. i) 17 inversions, odd, ii) 12 inversions, even iii) 25 inversions, odd

2.H.22. From the knowledge of the inverse matrix F−1 we obtain

F ∗ = (αδ − βγ) F−1 =

 δ −β 0
−γ α 0
0 0 αδ − βγ

 ,

for any α, β, γ, δ ∈ R.
2.H.23. The matrices are

(a)


1 1 −2 −4
0 1 0 −1
−1 −1 3 6
2 1 −6 −10

 , (b)

(
6 −2i

−3 + 2i 1 + i

)
.

2.H.24. It is easy to check that it is a vector space. The �rst coordinate does not a�ect the results of the operations � it is just the vector

space (R,+, ·) written in a di�erent way.

2.H.25. There is a unique solution

p = 2, q = −2, r = 3.

2.H.26.  1/4 −
√
6/4 3/4√

6/4 −1/2 −
√
6/4

3/4
√
6/4 1/4


2.H.27.  5/6 −1/6 1/3

−1/6 5/6 1/3
1/3 1/3 1/3

 .



71

CHAPTER 2. ELEMENTARY LINEAR ALGEBRA

2.H.28.  5/9 2/9 −4/9
2/9 8/9 2/9
−4/9 2/9 5/9


2.H.29. The vector that determines the subspace U is perpendicular to each of the three vectors that generate V . The subspaces are thus

orthogonal. But it is not true that R4 = U ⊕ V . The subspace V is only two-dimensional, because

(−1, 0,−1, 2) = (−1, 0, 1, 0)− 2 (0, 0, 1,−1) .

2.H.30.

q1 : (2−
√
3

2
, 2
√
3 +

1

2
)t, q2 : (2 +

√
3

2
,−2
√
3 +

1

2
)t.

2.H.31. In the �rst case we have dim U = 2 for t ∈ {1, 2}, otherwise we have dim U = 3. In the second case we have dim U = 2 for

t ̸= 0 and dim U = 1 for t = 0.

2.H.32. Using the Gram-Schmidt orthogonalization process we can obtain the result

((1, 1, 1, 1), (1, 1, 1,−3), (−2, 1, 1, 0)) .

2.H.33. We have for instance the orthogonal bases

((1, 0, 1, 0), (0, 1, 0,−7))
for the �rst part, and

((1, 2, 2,−1), (2, 3,−3, 2), (2,−1,−1,−2)).

for the second part.

2.H.34. The solution is a = 9/2, b = −5, because
1 + b+ 4 + 0 + 0 = 0, 1− b+ 0 + 3− 2a = 0.

2.H.35. The basis must contain a single vector. It is

(3,−7, 1,−5, 9).

(or any non-zero scalar multiple thereof.

2.H.36. The orthogonal complement V ⊥ is the set of all scalar multiples of the vector (4, 2, 7, 0).

2.H.37.

(a) W⊥ = ⟨ (1, 0,−1, 1, 0), (1, 3, 2, 1,−3) ⟩ ;
(b) W⊥ = ⟨ (1, 0,−1, 0, 0), (1,−1, 1,−1, 1) ⟩.

2.H.38. There are in�nitely many possible extensions, of course. A very simple one is

(1,−2, 2, 1), (1, 3, 2, 1), (1, 0, 0,−1), (1, 0,−1, 1).

2.H.39. For instance, one can use the inner product that follows from the isomorphism of the space of all real 3× 3matrices with the space

R9. If we use the product from R9, we obtain an inner product that assigns to two matrices the sum of products of two corresponding

elements. For the given matrix we obtain∥∥∥∥∥∥
1 2 0
0 2 0
1 −2 −3

∥∥∥∥∥∥ =

⟨1 2 0
0 2 0
1 −2 −3

 ,

1 2 0
0 2 0
1 −2 −3

⟩
=

√
12 + 22 + 02 + 02 + 22 + 02 + 12 + (−2)2 + (−3)2 =

√
23.

2.H.40.

2.H.42. The matrix has only one eigenvalue, namely−1, since the characteristic polynomial is (λ+ 1)4.

2.H.43. The root −1 of the polynomial |A− λE | has multiplicity three.

2.H.44. Possible examples are,

(a)


6 0 0 0
0 7 0 0
0 0 7 0
0 0 0 7

 ; (b)


6 0 0 0
0 7 1 0
0 0 7 0
0 0 0 7

 ;

(c)


6 0 0 0
0 7 1 0
0 0 7 1
0 0 0 7

 .
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2.H.45. There is a triple eigenvalue−1. The corresponding eigenspace is ⟨(1, 0, 0), (0, 2, 1)⟩.

2.H.46. The characteristic polynomial is −(λ− 2)2(λ− 9), that is, the eigenvalues are 2 and 9 with associated eigenvectors

(1, 2, 0) , (−3, 0, 1) a (1, 1, 1)
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