Broader Impacts Showcase

ACS Fall 2005 National Meeting & Exposition Washington, D.C.

http://chemistry.clemson.edu/NSF-broaderimpactsposters/

Welcome to the Broader Impacts Showcase

On behalf of the chemists serving on the NSF Mathematical and Physical Sciences Advisory Committee (MPSAC) and the Division of Chemistry, it is a pleasure to welcome you to the Broader Impacts Showcase. The Showcase is the result of a request from our community for additional education regarding the broader impacts criterion used to evaluate NSF proposals, particularly as it applies to Division-supported

Luis Echegoyen and Art Ellis

research. We are grateful to the dozens of principal investigators (PIs) participating in this Showcase for their willingness to share with the community the broader impacts associated with their projects. We hope that the message that emerges for PIs and reviewers from this Showcase is that the broader impacts criterion is a large umbrella, affording a wide range of opportunities to enhance the impact of Division-supported projects.

Thank you for attending. Please feel free to consult with NSF staff (www.nsf.gov/chem) and MPSAC chemists if you have questions regarding the broader impacts of your projects.

Sincerely,

Luis Echegoyen, Organizer, Broader Impacts Showcase, on behalf of the MPSAC chemists (Shenda Baker, Mostafa El-Sayed, Jean Futrell, Carl Lineberger, David Oxtoby) Iuis@clemson.edu

Arthur B. Ellis, Director, Division of Chemistry, NSF aellis@nsf.gov

Broader Impacts Criterion: What are the broader impacts of the proposed activity?

- How well does the activity advance discovery and understanding while promoting teaching, training and learning?
- How well does the proposed activity broaden the participation of underrepresented groups (e.g., gender, ethnicity, disability, geographic, etc.)?
- To what extent will it enhance the infrastructure for research and education, such as facilities, instrumentation, networks and partnerships?
- Will the results be disseminated broadly to enhance scientific and technological understanding?
- What may be the benefits of the proposed activity to society?

Photo by Ralph Isovitch Xavier University of Louisiana

Advance Discovery and Understanding While Promoting Teaching, Training and Learning

- training and mentoring students
- presenting seminars, organizing workshops and symposia
- updating the curriculum by writing texts and developing new classroom instructional materials and laboratory experiments
- sharing laboratory methods, instrumentation, software for data analysis, and samples of compounds
- devising and sharing safer laboratory procedures and more economical research practices

Example Posters 1 - 20

Photo by Sue Clites

Broaden Participation of Underrepresented Groups

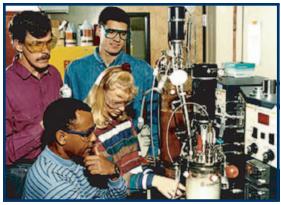


Photo Credit: Idaho EPSCoR Program

- including students from underrepresented groups as participants in the proposed research and education activities
- establishing research and education collaborations with faculty who are members of underrepresented groups or are from minority-serving institutions, community colleges, undergraduate institutions and colleges for women

Example Posters 21-33

Photo credit: Argonne National Laboratory

Enhance Infrastructure for Research and Education

- mentoring early-career scientists and engineers
- consulting with industrial and government colleagues
- establishing collaborations with scientists from around the world
- maintaining, operating and modernizing shared instrumentation and facilities
- developing the computing infrastructure that will allow cyber-enabled chemistry

Example Posters 34-38

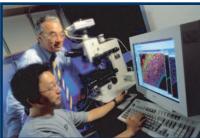


Photo by Gary Meek

Credit: @2001 Paul Taylor

Broad Dissemination to Enhance Scientific and Technological Understanding

- writing scholarly review articles and articles describing research to non-specialist audiences
- creating websites enhanced by engaging animations and movies
- working with science centers on new exhibits
- assisting journalists with their stories on technical topics
- developing new art forms for communicating science to wider audiences

Example Posters 39-43

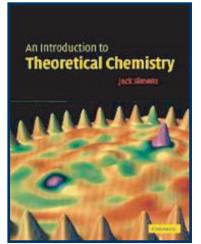


Photo Credit: Cover of Simons' text An Introduction to Theoretical Chemistry by Cambridge University Press

Photo by Sheryl A. Tucker University of Missouri - Columbia

Benefits to Society

Photo credit: University of New Mexico Hydrogeoecology Group

- designing new routes to commodity and fine chemicals
- preparing new compounds of industrial, medical, and environmental significance
- identifying more effective ways to use energy resources
- developing new devices and methodologies for national security
- forming start-up companies for disseminating new technologies

Example Posters 44-50

Photo by Kamil K. Matyska

Photo by Madeleine M. Joullié University of Pennsylvania

List of Poster Authors

PI Last Name	PI First Name	Institution	#
Anderson	Diana	Northern Arizona University	21
Beck	John	Sweet Briar College	22
Bothun	Geoff	North Carolina A&T State University	1
Bowen	Kit	Johns Hopkins University	23
Bryant-Friedrich	Amanda	Oakland University	24
Collinson	Maryanne	Kansas State University	2
Conte	Eric	Western Kentucky University	3
Dantus	Marcos	Michigan State University	39
Drucker	Stephen	University of Wisconsin - Eau Claire	34
Epstein	Irving	Brandeis University	4
Epstein	Irving	Brandeis University	44
Fitzgerald	M.C.	Duke University	5
Fraenkel	Gideon	The Ohio State University	40
Fraser	Cassandra	University of Virginia	6
Fritsch	Ingrid	University of Arkansas, Fayetteville	45
Geiger	Franz	Northwestern University	25
Hatcher	Patrick	The Ohio State University	7
Hipps	Kerry	Washington State University	8
Hirschmugl	Carol	University Wisconsin-Milwaukee	35
Holcombe	James	University of Texas at Austin	9
Holme	Thomas	University Wisconsin-Milwaukee	10
lsovitsch	Ralph	Xavier University of Louisiana	26
Iuliucci	Robbie	Washington & Jefferson College	27
Kahr	Bart	University of Washington	11
Kahr	Bart	University of Washington	46
Kaiser	Ralf	University of Hawaii at Manoa	36
Lambert	Joseph	Northwestern University	47
Lewis	Frederick	Northwestern University	28
Maier	Raina	University of Arizona	37
Malin	John	American Chemical Society	29

List of Poster Authors

PI Last Name	PI First Name	Institution	#
Nelson	Keith	Massachusetts Institute of Technology	12
Nickolaisen	Scott	California State University, Los Angeles	30
Odom	Teri	Northwestern University	13
Oertel	Catherine	Cornell University	48
Penn	Lee	University of Minnesota-Twin Cities	14
Pesek	Joseph	San Jose State University	49
Reeder	Richard	Stony Brook State University of New York	31
Richmond	Geri	University of Oregon	32
Simons	Jack	University of Utah	41
Sinnott	Susan	University of Florida	15
Steinfeld	Jeffrey	Massachusetts Institute of Technology	50
Tebo	Bradley	Scripps Institute of Oceanography/UCSD	42
Tucker	Sheryl A.	University of Missouri-Columbia	33
Tyson	Julian	University of Massachusetts Amherst	16
Ulness	Darin	Concordia College	17
Vertes	Akos	The George Washington University	18
Weiss	Richard	Georgetown University	38
Wenzel	Thomas	Bates College	43
Yardley	James	Columbia University	19
Yardley	James	Columbia University	20

For more information concerning Broader Impacts, please visit us: www.nsf.gov/chem/broaderimpacts

Photo by James Yardley, Columbia University

Posters can be found at: http://chemistry.clemson.edu/ NSF-broaderimpactsposters/

For information regarding funding opportunities, please visit us at: www.nsf.gov/chem

National Science Foundation Division of Chemistry 4201 Wilson Boulevard Arlington, VA 22230 Phone: (703) 292-8840 Fax: (703) 292-9037

