
Brownian motion and stochastic calculus:

Errata and supplementary material

Martin Larsson

1 Course content and exam instructions

The course covers everything in the script except Sections 1.2–1.3 (Donsker’s theorem
and applications) and Section 4.9 (Backward stochastic differential equations). We also
did not discuss the rather long Example 2.10 on page 66–68. The material in the present
document (the errata and clarifications, as well as the proof of Itô’s representation theorem
and the review of regular conditional distributions) is also included. Note in particular
the points labeled with (∗) below. Note that the exercises contain material that is
important for the course; for instance, components of some proofs appear as exercises.

Instructions for the exam. There is a 30 minute oral exam. Two of the following
questions will be randomly selected for the exam. You will have 5 minutes to prepare, after
which there will be a 25 minute discussion based on the two questions. While preparing,
you will have access to the script. The discussion will involve statements and proofs, as
time allows. Note that there may be digressions, for instance about supporting definitions
and results.

The numbering below first indicates the chapter and then the numbering in the script.
For example, “Theorem 2.3.8” refers to Theorem 3.8 in Chapter 2.

(1) Proposition 1.5.9 and Theorem 1.5.11 (Lévy–Ciesielski construction of Brownian mo-
tion)

(2) Proposition 2.1.1, Corollary 2.1.2, Proposition 2.3.4 (properties of Brownian motion)

(3) Theorem 2.2.1 (nowhere differentiability of Brownian paths)

(4) Theorem 2.3.8 (stopping theorem) and Corollary 2.3.10 (maximal inequality)

(5) Theorem 2.1.5 (the law of the iterated logarithm), proof given in Section 2.4.

(6) Definitions 3.1.4 and 3.1.6 (Markov processes) and Proposition 3.1.11 (characterization
of Markov property)

(7) Definition 3.2.2 (shift operator) and Proposition 3.2.4 (Markov property for the canon-
ical process), Definition 3.2.13 (strong Markov property)
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(8) Definition 3.2.18 (Feller property) and Theorem 3.2.19 (right-continuous Feller pro-
cesses are strong Markov)

(9) Theorem 3.3.2 (reflection principle) and Corollary 3.3.7.

(10) Theorem 3.3.8 (arcsine law) and Corollary 3.3.5.

(11) Definition 3.4.2 (infinitesimal generator) and Proposition 3.4.7 (a Feller process solves
the martingale problem for its infinitesimal generator)

(12) Theorem 3.4.9 (uniquely solvable martingale problem implies strong Markov property)

(13) Theorem 4.1.5 (quadratic variation of continuous local martingales)

(14) Proposition 4.1.10 (Kunita-Watanabe inequality)

(15) Theorem 4.2.5 (stochastic integral for square-integrable integrands)

(16) Properties of stochastic integrals: Proposition 4.2.13 (associativity and stopping) and
Theorem 4.2.19 (dominated convergence)

(17) Theorem 4.3.4 (Itô’s formula)

(18) Theorem 4.3.13 (Lévy’s characterization of Brownian motion)

(19) Theorem 4.3.16 (BDG inequalities)

(20) Theorem 4.4.6 (Girsanov transformation), including Proposition 4.4.4.

(21) Theorem 4.6.3 (Itô’s representation theorem); see also Theorem 3.1 below.

(22) Definition 4.7.2 (strong solution to SDE) and Theorem 4.7.4 (existence and unique-
ness), comparison with weak solutions.

(23) Theorem 4.8.11 (Feynman-Kac formula)

(24) Definition 5.1.1 (Lévy process) and statement of Theorem 5.1.4.

(25) Theorem 5.2.6 (a restarted Lévy process is Lévy)

(26) Proposition 5.3.6 (sums of jumps of Lévy processes)

(27) Theorem 5.4.1 (Lévy–Itô decomposition), formulation, interpretation, and main steps
of the proof.

2 Errata and clarifications as of 09.06.2017

Errors and typos from the script are listed below, along with corrections. Some instances
are also included which, while mathematically correct, may merit additional clarification.
There is no guarantee that the list below is complete. Some points are labeled with
(∗) to indicate that they are particularly important.

Page 5: In (0.9), the statement that the σ-field B(R)[0,∞) is “much smaller than the
product-σ-field on R[0,∞)” should be replaced by the statement that it is “much smaller
than the Borel σ-field on R[0,∞) equipped with the product topology”.

Let us provide some further explanation. Given a measurable space (S,S) and an
arbitrary set J , define SJ := {all maps f : J → S}. The product σ-field on SJ , denoted SJ ,
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is defined as the smallest σ-field such that the coordinate map SJ → R, f 7→ f(t), becomes
measurable for every t ∈ J . In symbols, this can be expressed as SJ := σ(Yt : t ∈ J),
where Yt, t ∈ J , denote the coordinate maps. In the context of (0.9), we have S = R and
J = [0,∞), and therefore

B(R)[0,∞) is equal to the product σ-field on R[0,∞).

Suppose now that S is a topological space and S is the Borel σ-field. Then SJ can be
equipped with the product topology, namely the smallest topology such that the coordinate
map f 7→ f(t) becomes continuous for every t ∈ J . Convergence in this topology is
equivalent to pointwise convergence: fα → f in SJ if and only if fα(t) → f(t) in S for
every t ∈ J . As usual, let B(SJ) denote the Borel σ-field on SJ . The key point is now that
if J is countable, then B(SJ) = B(S)J . But if J is uncountable, as in (0.9), and if S is rich
enough (S = R is enough) then B(SJ) ) B(S)J .

Page 25: In the proof of Proposition 4.3, on page 25, line 4, “|Yn,1” should be replaced
by “|Yn,1|” (an absolute value bar is missing). Moreover, on line 6, the unspecified constant
should be inside the exponential. That is, one has

P [Mn ≤ an] ≤ exp

(
−c1

k1−α
n√

log kn

)
=: f(kn)

for some constant c1, where now f(x) := exp
(
−c1

x1−α√
log x

)
. This leads to minor changes in

the subsequent lines, but the argument remains the same: using that kn ≥ c2n for some
constant c2, one derives

f(kn) ≤ exp

(
−c3

k1−α
n√

log kn

)
for all large n,

where c3 is a different constant (for example, c3 = c1c
1−α
2 /2 does the job). This still implies

that
∑∞

n=1 P [Mn ≤ an] <∞, as needed to apply Borel–Cantelli.

Page 27: On the second-to-last line, “f0 ≡ 0” should be replaced by “f0 ≡ 1”.

Page 29: On the third-to-last line, “ϕm,`(t)” should be replaced by “ϕn,k(t)”.

Page 32: On line 10, “Jn,k” should be replaced by “Jk,n”. Moreover, on line 16, all four
occurrences of n should be replaced by N .

Page 36: On the first line, the symbol µ|C(0,1] denotes the law under µ of the process
Y |(0,1] := (Yt)0<t≤1, where Y = (Yt)0≤t≤1 is the coordinate process on C[0, 1]. In particular,
µ|C(0,1] is a probability measure on C(0, 1].
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Page 41: There is no error here, but on line 6, “tni ∧ t” and “tni+1 ∧ t” can be replaced
by “tni ” and “tni+1”, respectively, since it has been assumed that t = 1. Here, while not
explicitly mentioned in the proof, it should be clear that tni and tni+1 are taken from the
given partition Πn of [0, 1].

Page 44: On line 12, “e−α(Wt−Ws)” should be replaced by “eα(Wt−Ws)” inside the condi-
tional expectation. Note that, strictly speaking, there is no error here because −α(Wt−Ws)
and α(Wt −Ws) both have the same Fs-conditional law, namely N (0, α2(t− s)).

(∗) Pages 44–45: On page 44, line 19, the definition of Fτ should read

Fτ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0} . (1)

The difference is that “F” has been replaced by “F∞”. This is to ensure that for τ ≡ ∞ we
have Fτ = F∞, and is consistent with the book by Revuz and Yor (see page 42 in the book).
Due to this change, an extra assumption is needed in Lemma 3.7 on page 45. Namely, on
line 14 we must assume that X∞ is not only well-defined, but also F∞-measurable.

Page 45: This is a follows-up on the previous point. On the third-to-last line on page 45,
we should define M∞(ω) := lim infn→∞Mn(ω), which exists for every ω and gives an F∞-
measurable random variable. The application of Lemma 3.7 on page 46, line 8, is then
unproblematic. Note that the martingale convergence theorem still tells us that, in fact,
M∞ = limn→∞Mn holds P -a.s. and in L1(P ).

(∗) Page 46: Remark 3.9 should be updated to state that “If (Ω,F ,F, P ) satisfies the
usual conditions, then any martingale has a version with RCLL paths.” Here, a martingale
M = (Mt)t≥0 having RCCL paths means that M·(ω) is an RCLL function for every ω. A
good reference for this is Revuz and Yor, Theorem II.2.9. If the filtration is right-continuous
but not complete, martingales do have right-continuous versions, but left limits might fail
to exist on a nullset.

Page 51: On line 12, the “const.” in front of
(

log 1
hn+1

)−(1+δ)
is not needed.

(∗) Page 57: In Definition 1.6, P [Xt+h ∈ A | Gt] stands for E[1{Xt+h∈A} | Gt], and this
notation is used in general throughout the script. See also the review of regular conditional
distributions in Section 4 below.
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Page 59: In Proposition 1.11, the functions f0, f1, . . . , fn should in addition be bounded.
Moreover, the notation ν ⊗Kt1 ⊗Kt2−t2 ⊗ · · · ⊗Ktn−tn−1 represents the measure on the
product σ-field S ⊗ · · · ⊗ S (n+ 1 copies) given by

(ν ⊗Kt1 ⊗Kt2−t2 ⊗ · · · ⊗Ktn−tn−1)(A0 ×A1 × · · · ×An)

:=

∫
A0

ν(dx0)

∫
A1

Kt1(x0, dx1)

∫
A2

Kt2−t1(x1, dx2) · · ·
∫
An

Ktn−tn−1(xn−1, dxn).

Page 77: On line 10 it is stated that the proof of Theorem 3.8 does not use the strong
Markov property. This is not accurate: the proof uses Corollary 3.5, which uses the
reflection principle for Brownian motion, which uses the strong Markov property.

Page 79: Lines 4–7 describe why X is a Markov process, but they do not reference the
fact that τ is exponential. This fact is however crucial. A calculation shows (→ exercise)
that for any x ≥ 0 and without assumptions on τ ,

P [Xt+h > x | F0
t ] = P [τ − t < h− x | τ ≥ t]1{Xt=0} + 1{Xt>(x−h)+}.

But τ is exponential, so the conditional distribution of τ − t given that τ ≥ t is again
exponential. Therefore,

P [Xt+h > x | F0
t ] = Kh(Xt, (x,∞)) :=

{(
1− e−(h−x)+

)
1{Xt=0} + 1{Xt>(x−h)+}, x ≥ 0,

1, x < 0,

which gives the Markov property.

Page 85: On line 1, “Markov process” should be replaced by “Feller process”.

Page 85: In Theorem 4.9, “(for F sufficiently large)” should be deleted; the proof does
not depend on it. Nonetheless, the assumption that the martingale problem MP (A, F )
has a unique solution for every x ∈ S can only be satisfied if the family F ⊆ C0(S) is rich
enough. As an extreme illustration, convince yourself that uniqueness will fail in general
if F = {0} only contains the zero function!

Page 85: An important part of the proof of Theorem 4.9 is to verify that (4.10) holds.
However, not all of (4.10) is discussed in the script. What is not argued is that the starting
point under R(ω, ·) is Yτ (ω). More precisely, the statement which is not proved in the
script is

R(ω, {Y0 = Yτ (ω)}) = 1 for Qx-a.e. ω. (2)
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Some details for this were given in class. Specifically, let H : D(S) × D(S) → R be the
measurable function given by

H(ω′, y) := 1{y(0)=Yτ (ω′)} for any (ω′, y) ∈ D(S)× D(S).

Then, by a property of regular conditional distributions (see Lemma 4.3 below), one has
the delicate equality∫

D(S)
H(ω, y)R(ω, dy) = EQx [H(·, Yτ+·) | Yτ ] (ω) for Qx-a.e. ω.

The left-hand side is equal to R(ω, {Y0 = Yτ (ω)}), while the right-hand side is equal to
one, since H(ω′, Yτ+·(ω

′)) = 1{Yτ+0(ω′)=Yτ (ω′)} = 1. This proves (2).

Page 88: In Remark 1.3, one must additionally assume that Z0 is bounded, i.e. |Z0| ≤ c
P -a.s. for some constant c. As an illustration, consider a constant process Z ≡ Z0, where
Z0 ∼ N(0, 1) is a standard normal random variable!

(∗) Pages 92 and 106: Remark 1.15 on page 92 is somewhat inaccurate. Consider a
continuous semimartingale X = X0 +M +A, where M ∈ Mc

0,loc and A ∈ cFV0. We then
define the quadratic variation process 〈X〉 by

〈X〉 := 〈M〉.

(This is not clearly stated in the script, but has been mentioned several times in class.)
Observe that this is well-defined. Indeed, if X = X0 + M ′ + A′ is another decomposition
of X with M ′ ∈ Mc

0,loc and A′ ∈ cFV0, then M −M ′ = A′ − A ∈ Mc
0,loc ∩ cFV0, so that

M ′ = M by Proposition 1.4 on page 88. In particular, 〈M ′〉 = 〈M〉. Furthermore, if Y is
another continuous semimartingale, we use polarization to define

〈X,Y 〉 :=
1

4
(〈X + Y 〉 − 〈X − Y 〉) =

1

4
(〈M +N〉 − 〈M −N〉) = 〈M,N〉.

Coming back to Remark 1.15, the statement that “X has quadratic variation 〈M〉” is now
a matter of definition.

Next, on page 106 it is claimed that 〈Xk, X`〉 satisfies (3.3) for all t ≥ 0, P -a.s., where
X is an Rd-valued continuous semimartingale with components Xk = Xk

0 + Mk + Ak,
k = 1, . . . , d. This follows from (1.9) on page 91, along with the fact that Ak and A` are
FV. Indeed, writing ∆iYt := Yti+1∧t − Yti for any process Y , observe that∑

ti∈Πn,
ti≤t

(∆iX
k
t )(∆iX

`
t ) =

∑
ti∈Πn,
ti≤t

(∆iM
k
t )(∆iM

`
t ) +Rnt ,
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where
Rnt :=

∑
ti∈Πn,
ti≤t

(
(∆iX

k
t )(∆iA

`
t) + (∆iA

k
t )(∆iM

`
t )
)
.

Since almost all trajectories of Ak and A` are of finite variation, one has limn→∞R
n
t = 0

for all t ≥ 0, P -a.s. One then obtains (3.3) on page 106 from (1.9) on page 91, using also
that 〈Xk, X`〉 = 〈Mk,M `〉 by definition.

Page 93: On line 9, “since our filtration F is right-continuous” should be replaced by
“since our filtration F satisfies the usual conditions”. Without completeness, martingales
need not have RCLL versions in general. (However, right-continuity of F is enough to
prove that any martingale has a right-continuous version, and even an almost surely RCLL
version.)

Page 95: In part 2) of Remark 2.2, one has to assume that H0 is F0-measurable to
deduce that H is optional.

Page 107: Line 16 (the display) should be replaced by:∑
ti∈Πn,
ti≤s

(∆ix)2 −→ 〈X〉s(ω) for all s ∈ [0, t] as n→∞.

Furthermore, on line 18, “〈x〉” should be replaced by “〈X〉(ω)”, and similarly on line 21,
“
∫ t

0 g(s)d〈x〉(s)” should be replaced by “
∫ t

0 g(s)d〈X〉s(ω)”.

Page 115: Some care is needed in the calculation in the proof of Proposition 4.4, since
only Q� P is assumed but not Q ≈ P . A detailed calculation is as follows:

EQ[Uτ1A] = EQ[Uτ1A∩{Zσ>0}] (Zσ > 0, Q-a.s.)

= EP [ZτUτ1A∩{Zσ>0}] (Lemma 4.2)

= EP
[
EP [ZτUτ | Fσ]1A∩{Zσ>0}

]
(tower rule)

= EP

[
Zσ

1

Zσ
EP [ZτUτ | Fσ]1A∩{Zσ>0}

]
(Zσ/Zσ = 1 on {Zσ > 0})

= EQ

[
1

Zσ
EP [ZτUτ | Fσ]1A∩{Zσ>0}

]
(Lemma 4.2)

= EQ

[
1

Zσ
EP [ZτUτ | Fσ]1A

]
(Zσ > 0, Q-a.s.)

The point that is not explicit in the script is that Zσ > 0 Q-a.s., which however follows
from an obvious calculation: Q[Zσ = 0] = EP [Zσ1{Zσ=0}] = 0.
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Page 116: On line 20, “Z” should be replaced by “Z − Z0”.

Page 118: On line 4, Novikov’s condition is correctly claimed to imply 〈L〉∞ <∞ P -a.s.
However, more is true: Due to the inequality x ≤ ex/2, Novikov’s condition even implies
〈L〉∞ ∈ L1(P ). Therefore L ∈ H2,c

0 by Lemma 1.18 on page 94, and in particular L∞ exists
and is finite, so that Z∞ := E(L)∞ = exp(L∞ − 1

2〈L〉∞) > 0 P -a.s. We deduce that the
measure Q defined by dQ := Z∞dP is actually equivalent to P .

Page 127: On line 7, “functions a, b” should be replaced by “measurable functions a, b”.

Page 130: On line 16, “every strong solution is also a weak solution” should be replaced
by “every strong solution gives rise to a weak solution”. This is an issue of terminology:
a weak solution is a tuple (Ω,F ,F, Q,W,X), while a strong solution is a process X with
certain properties. They can therefore not be the same, but once a strong solution is given
(which in particular means that some probability space, filtration, etc. are also given), one
can easily build a weak solution.

Page 133: On line 5, “Markov” should be replaced by “Feller”.

Page 152: On line 20, the last equality in the display, E[Xt−s]− (t− s)E[X1] = 0, needs
an argument. Taking d = 1 for simplicity, one can use that E[eiuXh ] = ehψ(u) to get

E[Xh] = −i d
du
ehψ(u)|u=0 = −iψ′(0)h,

and hence E[Xh] = hE[X1]. See also Exercise 14.2(e).

Page 155: Before speaking about the strong Markov property of a Lévy process X, we
should make sure that X is indeed a Markov process. Fortunately, this easily follows from
the defining properties (L1)–(L2), with the transition semigroup given by Kh(x,A) :=
P [x+Xh ∈ A]. (Exercise: check this! See also Example 1.9 on page 58.)

Page 157: On line 2, “f : Rd → R” should be replaced by “f : Rd → Rd”. Indeed, on
line 5 we wish to take f(x) = x for x ∈ Rd.

Page 159: On lines 12–13, “In particular, the measure ν from (3.3) is finite.” should be
deleted.
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Page 160: On line 2, the inequality P [|Xt| > 2nC] ≤ etαn is only proved for integer n.
Therefore, on line 4, one has to write

P

[
|Xt| >

logm

γ

]
≤ P

[
|Xt| > 2C

⌊
logm

2Cγ

⌋]
≤ etα

⌊
logm
2Cγ

⌋
≤ 1

α
etα

logm
2Cγ ,

where bxc denotes the integer part of x. The subsequent calculations work as before, up
to an inconsequential factor 1/α.

3 An alternative proof of Itô’s representation theorem

Itô’s representation theorem (Theorem 6.3 on page 123) can be stated as follows, where
the setting is as described in (6.1) on page 123.

Theorem 3.1. Every (P,FW )-local martingale N is of the form

N = N0 +

∫
HdW for some H ∈ L2

loc(W ), (3)

and in particular admits a continuous version. Consequently, every random variable F ∈
L1(FW∞ , P ) admits a unique representation

F = E[F ] +

∫ ∞
0

HsdWs P -a.s. (4)

for some H ∈ L2
loc(P ) such that

∫
HdW is a uniformly integrable martingale.

The following proof based on the Kunita-Watanabe decomposition was given in class;
it differs somewhat from the (sketch of) proof given in the notes.

Proof. (a) The representation (4) follows by applying (3) to Nt := E[F | FWt ], t ≥ 0. The
uniqueness statement follows because Ht = d〈N,W 〉t/dt up to nullsets.

(b) It is therefore enough to prove (3). We first do this for N locally in H2. By
localization, and after subtracting N0, we may assume that N ∈ H2

0. Then, by Lemma 5.4
(with M := W ) and Proposition 5.5 (with A := I(M) = I(W )), we get

N = H ·W + L for some H ∈ L2(W ) and L ⊥ I(W ),

where “⊥” as usual denotes strong orthogonality. We must show that L = 0 P -a.s.
(c) We claim that for any deterministic K = (Ks)s≥0 with

∫∞
0 K2

sds <∞, the random
variable

Z := exp

(
i

∫ ∞
0

KsdWs

)
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satisfies E[LtZ] = 0 for all t ≥ 0. The proof proceeds by Itô’s formula in manner reminiscent
of the proof of Lévy’s characterization of Brownian motion, Theorem 3.13 on page 111.
The independent increments property of Brownian motion yields

Mt := E[Z | FWt ] = exp

(
i

∫ t

0
KsdWs

)
E

[
exp

(
i

∫ ∞
t

KsdWs

)]
,

and since
∫∞
t KsdWs is N (0,

∫∞
t K2

sds) distributed,

Mt = exp

(
i

∫ t

0
KsdWs −

1

2

∫ ∞
t

K2
sds

)
.

Itô’s formula applied to the real and imaginary parts of M gives

Mt = M0 + i

∫ t

0
MsKsdWs,

so that (the real and imaginary part of) M −M0 lies in I(W ). Thus LM is a martingale,
and we get

E[LtZ] = E[LtMt] = L0M0 = 0.

This proves the claim.
(d) Applying what we just proved with K of the form Ks :=

∑n
j=1 λj1[0,tj ](s) gives, for

all t ≥ 0,

E

Lt exp

i n∑
j=1

λjWtj

 = 0 for all t1, . . . tn ∈ [0,∞), λ1, . . . , λn ∈ R. (5)

To prove that this implies Lt = 0, we follow the last part of Lemma 6.7 in the script.
Define the signed measure µ on FW∞ by dµ

dP := Lt, and observe that the left-hand side of
(5) is the Fourier transform of the image measure µ ◦ (Wt1 , . . . ,Wtn)−1 on B(Rn). Since
this Fourier transform is zero, so is the image measure. Therefore µ|σ(Wt1 ,...,Wtn ) = 0
(the zero measure) for any t1, . . . , tn, which by an application of the π-λ-theorem yields
µ = µ|FW∞ = 0. Therefore

E[|Lt|] = E[Ltsign(Lt)] =

∫
Ω

sign(Lt(ω))dµ(ω) = 0,

so that Lt = 0 P -a.s. Since t ≥ 0 was arbitrary, we have L = 0 P -a.s. Consequently, (3)
holds for every N locally in H2.

(e) Let now N be an arbitrary local martingale; from here on, the proof follows points
3) and 4) in the outline on page 124 in the script. By localization, we may assume that N
is a uniformly integrable martingale. Then Nt = E[F | FWt ] for F := N∞ ∈ L1(P ). Pick
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Fn ∈ L2(P ) such that Fn → F in L1(P ) (for instance, Fn := F1{|F |≤n} does the job).

The martingales Nn defined by Nn
t := E[Fn | FWt ] lie in H2 by Jensen’s inequality and

therefore, by what we already proved, have continuous paths P -a.s. Doob’s submartingale
inequality gives, for any ε > 0,

P

[
sup
t≥0
|Nt −Nn

t | ≥ ε
]
≤ 1

ε
E [|N∞ −Nn

∞|] =
1

ε
‖F − Fn‖L1(P ) → 0 (n→∞).1

Along a subsequence, the continuous processes Nn therefore converge uniformly to N P -
a.s., so N must be continuous as well. In particular, N is then locally in H2, and thus
satisfies (3) by what we already proved.

4 Brief review of regular conditional distributions

Fix a probability space (Ω,F , P ) and let X : Ω → E be a random variable with values in
a Polish space E.2 You can think of E = R, but in the script we also consider the case
E = D(S), the space of RCLL paths on a state space S. For a given sub-σ-field G ⊂ F , we
can consider the conditional probability

P (X ∈ B | G) := E[1{X∈B} | G] (6)

for any B ∈ B(E). A natural idea is to view (6) as a function of the set argument B, and
think of it as a conditional distribution of X given G. The problem, however, is that (6)
is uniquely determined only up to a nullset that may depend on B, which gives very little
control over the behavior of the map B 7→ P (X ∈ B | G)(ω) for fixed ω. The notion of
regular conditional distribution lets us to circumvent this difficulty.

Definition 4.1. A regular conditional distribution of X given G is a stochastic kernel R
from (Ω,G) into (E,B(E)) such that R(·, B) is a version of P (X ∈ B | G) for every
B ∈ B(E). More precisely, R : Ω× B(E)→ [0, 1] satisfies

• ω 7→ R(ω,B) is G-measurable for every B ∈ B(E),

• B 7→ R(ω,B) is a probability measure on B(E) for every ω ∈ Ω,

• for every B ∈ B(E), one has P (R(·, B) = P (X ∈ B | G)) = 1.

Existence of a regular conditional distribution turns out to depend crucially on the
image space E. Fortunately, if E is a Polish space with its Borel σ-field, regular conditional
distributions always exist.

1Doob’s submartingale inequality states that εP (supt≥0 Xt ≥ ε) ≤ supt≥0 E[Xt] for any ε > 0 and any
nonnegative submartingale X; see Revuz and Yor, Theorem II.1.7. Note that X := |M | is a submartingale
if M is a martingale, and that supt≥0 E[Xt] = E[|M∞|] if in addition M is uniformly integrable.

2That E is Polish means that it admits a metric for which it becomes a complete separable metric space.
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Theorem 4.2. Let (Ω,F , P ), G, E, and X be as above. Then there exists a regular
conditional distribution of X given G.

Rather than conditional probabilities (6), one is often interested in conditional expec-
tations of the form E[f(X) | G]. As expected, such conditional expectations are obtained
by integrating against R.

Lemma 4.3. Let (Ω,F , P ), G, E, and X be as above, and let R be a regular conditional
distribution of X given G. Then, for any G ⊗ B(E)-measurable map H : Ω × E → R that
is nonnegative or bounded, one has

E[H(·, X) | G](ω) =

∫
E
H(ω, x)R(ω, dx) P -a.e. ω.3

In particular, if f : E → R is measurable as well as nonnegative or bounded, then

E[f(X) | G](ω) =

∫
E
f(x)R(ω, dx) P -a.e. ω.

Proof. The result holds for every H of the form H(ω, x) = 1A×B(ω, x) with A ∈ G and
B ∈ B(E), because

E[H(·, X) | G](ω) = 1A(ω)P (X ∈ B | G)(ω)

= 1A(ω)R(ω,B)

=

∫
E
H(ω, x)R(ω, dx), P -a.e. ω.

The monotone class theorem now gives the result for all bounded measurable H. This relies
on the fact that the maps 1A×B as above generate G ⊗ B(E), and that the set of maps H
for which the result holds is a real vector space closed under pointwise increasing limits
(the latter uses both the conditional monotone convergence theorem and the unconditional
monotone convergence theorem).

3Here the left-hand side should be read as E[Y | G](ω) with Y given by Y (ω) := H(ω,X(ω)).
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