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Linear Regression � a fundamental learning algorithm

Supervised learning method

It assumes the dependence of Y on X is linear

Largely used in many disciplines

Simple and interpretable

Fundamental in data science
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Linear Regression Models

Simple linear regression

Y = β0 + β1X + ε

Multiple linear regression

Y = β0 + β1X + . . .+ βpXp + ε

Y : dependent variable (response, outcome)

X 's: independent variable (covariates, explanatory variable)

β's: regression coe�cients

ε: random error (irreducible error)
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Linear Regression Models

Using matrix format

Y = Xβ + ε

X is called design matrix with �rst column being 1's

The estimated linear regression model is

Ŷ = E(Y |X ) = Xβ̂

Goal: estimate regression coe�cient β
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Model Assumptions

E(Y |X ) is a linear function of X or its basis expansion such as
X 2
1 , X

3
2 , . . .

The error term {εi , . . . , εn}
i .i .d .∼ N(0, σ2)
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Least Square Solution
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Least Square Solution

We want to minimize residual sum squares

RSS(β) =
n∑

i=1

(yi − xTi β)2

= (y − Xβ)T (y − Xβ)

Take �rst-order derivative with respect to β and set to 0

0 =
∂RSS(β)

∂β
= −2XT (y − Xβ)

XTy = XTXβ

This is called normal equation.
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Least Square Solution

By assuming p < n, the solution is β̂ = (XTX)−1XTy

The predicted value is ŷ = X(XTX)−1XTy

H = X(XTX)−1XT is called hat matrix or projection matrix
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Model Assessment � R Square and MSE

It is proportion of variation in Y explained by the model

R2 =
TSS − RSS

TSS
= 1− RSS

TSS

R2 increases monotonically as number of explanatory variable
increasing.

Adjusted R2

R2
adj = 1− n − 1

n − p − 1

RSS

TSS

Mean Squared Error (MSE)

MSE =
1

n − p − 1
× RSS

It is an unbiased estimate of σ2 for irreducible error ε.
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Model Assessment � AIC, BIC, Cp, CV

Akaike information criterion (AIC), the smaller the better

AIC = −2 log(L̂) + 2p

Bayesian information criteria (BIC), the smaller the better

BIC = −2 log(L̂) + log(n)p

where L̂ is estimated likelihood function

Mellow's Cp is the same as AIC for linear regression

Cross-validation error (CV score)
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Hypothesis Testing � Test individual coe�cients

Is a speci�c X relevant?

Testing for individual β
- H0: βj = 0; H1: βj 6= 0
- Using T-test since the true variance is unknown

T =
β̂j

se(β̂j)
=

β̂j
σ̂
√
vj
∼ tn−p−1

where vj is the jth diagonal element of (XTX)−1

- Reject H0 if p-value < α or |T | > T
(n−p−1)
1−α

Con�dence interval: β̂ ± se(β̂)× T
(n−p−1)
1−α
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Hypothesis Testing � Test multiple coe�cients

F -test for overall signi�cance
- H0: β1 = . . . = βp = 0; H1: at least one β 6= 0
- F statistics

F ∗ =
(TSS − RSS)/p

RSS/(n − p − 1)
∼ Fp,n−p−1

where TSS =
∑n

i=1(yi − ȳ)2, is total sum squares
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Bootstrap

Resampling method

A powerful tool to quantify uncertainty
- standard error
- con�dence interval

Random sampling with replacement

Example:
- train a model with 1000 bootstrap samples
- store all the parameter estimates
- calculate standard error and con�dence interval
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Model Diagnostics

Check the assumptions on the error term
- Independent normal distribution?
- E(εi ) = 0?
- Var(εi ) = σ2 =constant?

Residual plot (an ideal residual plot looks like this)2

2source: Camm, et al., Essentials of Business Analytics
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Residual plot

Which type of assumption is violated?

3

3source: Camm, et al., Essentials of Business Analytics
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Other Diagnostic Plots

Normal Quantile-Quantile Plot
- It plots the standardized residual vs. theoretical quantiles
- An easy way to visually test the normality assumption
- If residual follows normal distribution, you should expect all
dots lie on the diagonal straight line.

Residual-Leverage Plot
- This plot checks if there are any in�uential points, which could
alter your analysis by excluding them
- The points that lie outside the dashed line, Cook's distance, are
considered as in�uential points
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Variable Selection Methods For Linear Regression

Why? Try to improve the model: exclude unnecessary predictors
- Interpretation and simplicity
- Prediction stability and accuracy
- Less computational cost
- Bias-variance tradeo�

Common approaches
- Subset selection
- Shrinkage (also called regularization)
- Dimension reduction (project p predictors into a M-dimensional
subspace)

Some times it is subjective, and needs domain knowledge so that
certain variable has to be in the model.
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Best Subset Selection

Select the best subset of predictors such that the model is
optimal in terms of a certain assessment metric

Computationally expensive even infeasible
- leaps and bounds (an R package �leaps") algorithm makes it
feasible for p as large as 30 or 40.

Suppose there are 10 predictors. How many models need to be
�tted and evaluated?
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Example of Best Subset Selection
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Forward, Backward, and Stepwise Selection

Computationally less expensive than best subset

Iteratively adding or dropping one variable at a time

Forward/backward is greedy procedure. That is, they won't
adjust any added/dropped variables in previous step

Stepwise: start with forward, and then iteratively add and drop
variables

Selection criteria: AIC or BIC

R package: "step"

An illustration: click here
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Shrinkage Methods

Also called penalized estimation

Shrink the regression coe�cients toward 0 by constraints
(regularization)

Shrinkage methods are always preferred over best subset or
stepwise methods. Why?

A game of bias-variance tradeo�

We discuss two popular shrinkage methods:
- Ridge regression
- LASSO
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Ridge Regression

Recall least square. We solve the optimization

β̂LS = arg min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

Ridge regression solves a (L2) penalized least square

β̂Ridge = arg min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

β2
j

λ is a tuning parameter, called shrinkage parameter

Writing in matrix form, we can get the analytical solution

β̂Ridge = (XTX + λI)−1XTy (Exercise: Show it!)
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Ridge Regression

It is equivalent to solve a constrained optimization problem

min
n∑

i=1

yi − β0 −
p∑

j=1

βjxij

2

s.t.

p∑
j=1

β2
j = a

a corresponds to the tuning parameter λ
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An Illustration
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Ridge Regression Solution Path � Boston Housing Data
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LASSO

Least absolute shrinkage and selection operator (LASSO)

Introduced by Tibshirani (1996)

Shrinkage estimation

It estimates the coe�cients and perform variable selection
simultaneously
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LASSO

LASSO solves the (L1) penalized least square

β̂LASSO = arg min
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj |

It is a convex optimization problem

It is equivalent to solve a constrained optimization problem

min
n∑

i=1

yi − β0 −
p∑

j=1

βjxij

2

s.t.

p∑
j=1

|βj | = a

Intro to Machine Learning Lecture 3. Linear Regression 27 / 33

s674l142
Pencil

s674l142
Pencil



An Illustration
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LASSO Regression Solution Path � Boston Housing Data
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Tuning Parameter λ Selection

λ controls the shrinkage level (di�erent lambda associates with
di�erent estimated model)

Cross-validation
- In R, use the function cv.glm() in package glmnet
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High-Dimensional Regression

Number of predictor is very large (even larger than sample size)

Ultra-high dimension p � n

It is very common for gene expression and image data

Sparsity assumption: only a few predictors are relevant

OLS fails when n < p. Why?

LASSO or similar methods provide sparse solution
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Elastic Net Regression

Introduced by Zou and Hastie (2005)

Combination of Ridge and LASSO

β̂EN = arg min
β

n∑
i=1

(
yi − xTi β

)2
+ λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j

Convex optimization

Ridge and LASSO are special cases of Elastic Net

It incorporates the advantages of both Ridge and LASSO
- Ridge regression: lower variance; multicollinearity
- LASSO: variable selection (selects at most n variables if p > n)
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Some Comments

It is recommended to standardize all predictors in shrinkage
estimation. Why?

Solution of Ridge regression is equivalent to the posterior of
Bayesian estimates

There are many other type of penalized estimators with di�erent
penalty functions that can perform variable selection.
- Group Lasso (Yuan and Lin, 2006)
- Adaptive-LASSO (Zou, 2006)
- SCAD (Fan and Li, 2001)
- MCP (Zhang, 2010)
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