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BUCKLING OF SUPERCONDUCTING STRUCTURES.

A VARIATIONAL APPROACH USING THE LAW

OF BlOT AND SAVART

A.A.F. van de Ven and L.G.F.C. van Bree

Department of Mathematics and Computing Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT

A structure of superconducting coils can collapse, due to the Lorentz forces acting between
the members of the structure, whenever the electric current through the structure exceeds
a certain critical value, the so called buckling current. A method is presented based upon
a variational principle, which uses as admissible fields those derived from the Biot-Savart
law. This method combines the mathematical exactness of the variational principle with the
straightforward availability of the Biot-Savart fields. Applications are presented for sets of n
parallel rods (n ~ 2) and for (finite or infinite) helical and spiral coils. For all these cases the
buckling current is calculated and, moreover, some information about the buckling modes is
provided. These buckling currents and modes are most easily found by using sinusoidal series
representations for the buckling displacements. In all applications it is assumed that we deal
with slender systems; the precise criterion for this is presented for each specific system. It
turns out that for all systems considered in this paper the formula for the buckling current
is globally the same; only a pre-factor differs in each case.



1. Introduction

In this paper we shall consider superconducting slender (beam-like) bodies, or systems of such
bodies, carrying a prescribed current 10. The system is placed in a vacuum. The magnetic
field in the vacuum is solely due to the own field of the conductors generated by the current
10 • The Lorentz forces which are due to the interaction of this magnetic field with the current
10 can cause the structural system to become unstable. We call this magnetoelastic buckling
and the critical value of the current 10 for which the system becomes unstable is called the
buckling current.

The research on magnetoelastic buckling as started by F.C. Moon was in first instance fo­
cussed on the buckling of soft ferromagnetic beams or plates (cf. for instance [1]). In later
years from a technical point more important subject of magnetoelastic stability of super­
conducting structures came into view. For an excellent review of magnetoelastic buckling
problems see the monograph of F.C. Moon [2]. Moon, in cooperation with S. Chattopadhyay,
reported on the buckling and vibration of structures (such as rods or rings) carrying electric
current already in 1975 (d. [3] and [4]). The magnetoelastic stability of a superconducting
ring in its own field was investigated by Van de Ven and Couwenberg, [5] (who proved that
this system was always stable). In recent years a lot of papers on the buckling of supercon­
ducting structures has appeared, but we confine ourselves here to mentioning only the work
of Miya et al. [6], [7] and of Geiger and Jiingst, [8] (these works are more specifically directed
to technologically relevant solutions than the present one, whose first object it is to built a
firm theoretical basis). For a more complete list of references we refer to [2].

In a series of papers, [9]-[12], the first author together with his coworkers Van Lieshout,
Rongen and Smits, presented a variational principle that could be applied to magnetoelastic
buckling problems for both soft ferromagnetic as well as superconducting structures. This
method was based upon a chosen expression for the Lagrangian for a soft magnetic or su­
perconducting body in vacuum. This Lagrangian was developed up to the second order in
perturbations which are due to the buckling displacements of the body. From the thus ob­
tained second variation an explicit expression for the buckling current was derived. This
method was presented in [9], whereas in [10], [11] and [12] applications are given to sets of
superconducting rods or rings. In [10]-[12] also a second more direct method was presented.
This method starts from a formula for the Lorentz force on a current carrier derived from
the Biot-Savart law (d. [2], Sect. 2.6). Therefore, we refer to this method as the Biot­
Savart method. The second method is less exact than the first one, but much easier to work
with in practice. A comparison of the results of both methods showed a reasonable agreement.

In this respect, it seems profitable to use to look for a method that combines the advan­
tages of the two methods mentioned above, Le. the greater exactness of the variational
method and the convenience for the user pertinent to the Biot-Savart method. To this end
we shall use in the variational formulation of the first method an admissable field obtained
on base of the Biot-Savart law. Our expectation that this combined approach will yield a
useful approximation for the buckling current is supported by the observed correspondence
between the results of the two respective methods.

In Section 3 the details of this combined method will be presented. However, before doing so,
we shall give in Section 2 short descriptions of the variational method and the Biot-Savart
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method. Moreover, we shall list the main results obtained by these two methods thusfar.
A comparison of the results leads us to the conclusion that, firstly, the differences in the
results of the two methods are small (under certain conditions) and that, secondly, certain
simplifications in the model are admissable. The specific nature of these simplifications and
the restrictions under which they are allowable will be given in Section 2.

The combined approach of Section 3 together with the simplifications of Section 2 results
in a method for the calculation of buckling currents of (more or less) complex structures that
is on one hand sufficiently precize (provided certain explicit given conditions are fulfilled)
and on the other convenient in applications. As an illustration of the combined method we
shall in Section 4 reconsider the buckling problem of two parallel superconducting rods (this
problem was earlier treated in [10], and solved there by means of the two basical methods).
The obtained result could easily be generalized to an arbitrary number (n) of rods (n ~ 2,
including n -- (0). One of the results of this section turned out to be directly applicable to
the more complex problems dealt with in the Sections 5 and 6.

In Section 5 we shall apply the combined method to two types of cylindrical helical conduc­
tors. We shall consider, firstly, an infinitely long superconductor in the form of a cylindrical
helix, periodically supported in equidistant points and, secondly, a finite helix (n turns) sup­
ported in its end points. As a second example, in Section 6 we shall investigate the buckling
problem for a conductor wound in the form of a fiat spiral. For both examples we shall cal­
culate by numerical means a set of values for the buckling current as a function of the system
parameters (e.g. the number of coils n). It turns out that for all the systems considered
here the formula for the buckling current has essentially the same basic form. Moreover we
succeeded in finding a pair of empirical formulas, very simple of nature, giving directly the
buckling value for a helical or a spiral conductor.
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2. Description of the two basic methods and earlier results

We start by giving in main lines a description of our variational method for a superconducting
body in vacuum. Essential in our model for a superconductor is the assumption that the
current runs over the surface of the superconductor only, thus shielding the body from a
magnetic field. Hence, there is no internal magnetic field inside the body. The magnetic
field in the vacuum surrounding the body is denoted by B and has to satisfy Ampere's law
(Po = 411' X 10-7)

/ (B, t) ds = Po 10 ,

c
(2.1)

where C is a contour entirely in the vacuum, encircling the current carrier, while t is the unit
tangent vector at C. Moreover, 10 is the prescribed total current through the current carrier.

Our variational method is based upon a chosen expression for the Lagrangian for an elastic
superconducting body which in this case reads (cf. [11], (2.4), or [13], (2»

L = - / pU dV + _1_ / (B,B)dV ,
2JLo

G- G+

(2.2)

where the first integral represents the elastic energy of the deformed body (pU is the elastic
energy density) and the second one is the magnetic energy of the vacuum field. Note that
in (2.2) a- and a+ are the configurations of the body and the vacuum, respectively, in the
deformed state.
Variation of (2.2) with respect to B and to the displacement u under the constraints (2.1)
and

curl B = 0, x E a+ ; B -+ 0, Ixl -+ 00 , (2.3)

leads to the common 3-dimensional model of magnetoelastic interactions (see e.g. [14]). In
this model the electromagnetic forces are Lorentz forces acting at the surface of the body.
These forces cause a deformation of the body. For stability considerations we have to distin­
guish between two different equilibrium states of the body, Le. (i) the intermediate state and
(ii) the final (or buckled) state. Since in the intermediate state the deformations are small
(and in first approximation irrelevant for the determination of the buckling point) we may
approximate this state by the rigid-body state. The only unknown then is the rigid-body
field Bo. In the final state the unknowns are the displacement u and the magnetic field B.
The latter is written as

B =Bo +b, (2.4)

so b is the perturbation of the external magnetic field due to the buckling deflection of the
body.

In [11] (in analogy with [9]) the Lagrangian (2.2) is developed up to the second order in
the perturbations u and b. Thus, the variation of L with respect to these variables can be
written as
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(2.5)

Since the intermediate state is an equilibrium state the first variation of L must be zero, so

and

6L = 0, (2.6)

(2.7)

where J is a homogeneously quadratic functional in the perturbations. The final state is an
equilibrium state and, therefore, the first variation of J must be zero, Le.

6J(h, u) =0 . (2.8)

In what follows we shall choose admissable fields for B o and b and, thereafter, we shall equate
the first variation of J with respect to u equal to zero. This yields a linear eigenvalue problem
for l~ from which the buckling value 10 can be obt,ained.

For the examples considered in [10], [l1J and [12], however, we were able to calculate the
exact fields Bo and h, thus obtaining exact values for the buckling current 10 • In these
papers the following systems were investigated

i) two parallel rods, distance 2a, support length 1 (see also Sect. 4),

ii) two concentric (coplanar) rings, radii b1 = b+a, b2 = b - a,

iii) two coaxial rings, distance 2a, radii b1 = b2 = b,

iv) a set of n parallel rods (for n = 3,4,5), distances 2a, support length I.

In all these examples the cross-section of the current carrier (rod or ring) is circular, radius
R. Moreover, all systems are assumed to be slender, meaning that

R<a<..l, (2.9)

where 1 must be replaced by 1rb for the cases ii) and iii).
The resulting buckling values are listed in the first column of Table 1. There, E is Young's
modulus, II is Poisson's modulus and Q is a numerical factor depending on ajR only (cf. [10J,
Table 4).

The second method is based upon a generalisation of the law of Biot and Savart as is described
by Moon in [2], Sect. 2.6. Let B(x) be the magnetic field in a point x E a+ created by an
electric circuit I:, to be considered as a one-dimensional curve. Then (d. [2], Eq. (2-6.3))

B(x) = /Lo 10 ! t(s) x R(s,x) d
41r R3(S,X) S ,

£,
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where t(s) is the unit tangent vector on I:- in a point P on I:- having arc length s, and R(s,x)
is the position vector of the point x with respect to peR = IRI).

In a way as suggested by Moon this formula can be used for the determination of the Lorentz
force F in a point on one circuit due to another circuit. The thus obtained expression is
linearized with respect to the displacements. The linear part of F serves as a load parameter
in for instance a beam or a ring equation. That value for the current through the circuits
for which the equation mentioned above has a non- trivial solution is the looked for buckling
value 10 , We refer to this more direct method as the Biot-Savart method. More details of
this method are given in [10], [11] and [12], where we have applied this method to the same
examples as we did for the variational method (plus the case n = 00 for example iv)). The
results are listed in the second column of Table 1. We conclude that:

Table l.

Buckling currents from the variational method (laV}) and the Biot-Savart method (If,S}) for
sets of (i) two parallel rods, (ii) two concentric rings, (iii) two coaxial rings, and (iv) n parallel
rods (n = 3,4,5,00). (E is Young's modulus, v is Poisson's modulus and Q is a numerical
factor depending on aiR only (cf. [10], Table 4.))

L{V} is}
0 0

(i) 11"3R3 JE 1I"3aR2 {!
12 /1oQ 12 /10

(ii) 311"R
3 JE 311"aR

2 {!
b2 /1oQ b2 /10

(iii) 611"R3 {i!; 611"aR2 {!
-15 +v b2 /1oQ -15 +v b2 /10

(iv) n=3 ~ 11"3R
3 {i!; ~ 1I"3aR

2 {!
3" -P:- /1oQ 3" -12- /10

n=4 1I"
3
R

3 {i!; 0.753 1I"3
a

R
2 V!0.753 12 /1oQ 12 /10

1I"3R3 {i!; 1I"3aR2 V!n=5 0.723 -P:- /1oQ 0.723 -1-2- /10

211"2 R3 {i!; 211"2 aR
2 {!n = 00 -- --

12 /1oQ 12 /10

1. The results per column only differ in a fixed factor, independent of a, R or l(b). This
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factor is solely due to the different elastic energies of the systems; the integral K takes
for all these systems the same value (at least if we replace I by 1rb for the ring-systems).
Since K is the same for a slender system of two rings as for a set of two rods, one may
for the evaluation of the magnetic interaction between two rings replace these rings
locally by two straight lines. This is exactly what is actually done in the Biot-Savart­
method.

2. The results of the variational and the Biot-Savart-method differ from each other only
in a factor

Hence, the results of both methods should be in agreement if

(2.11)

It turns out ([10], Table 4) that for (a/R) not too close to unity the difference between
Q-l/2 and (a/R) is small and decreases with increasing (a/R) (e.g. for a/R ~ 4, the
relative difference is less than 5%).

We claim that, once our model of a superconducting body is accepted, our variational theory is
mathematically exact for slender systems (i.e. in the limit a/I ---+ 0). The Biot-Savart method
is not exact in that, firstly, the three-dimensional current carrying bodies are considered as
one-dimensional curves and, secondly, the force due to the self field of the conductor is
neglected. The second point is not so important as our variational method shows that this
self-effect is an O(a2 /12 )-effect and, hence, negligible for slender systems. Due to the first
point the specific shape of the cross-section and the distribution of the current over the cross­
section are disregarded. It is precisely this aspect that causes the differences between the
variational and the Biot-Savart-method. Since these differences are small for systems the
members of which are not too close to each other (i.e. a/R not too close to 1) we conclude
that in these cases the precise distribution of the current over the cross-section is not a
question of the utmost importance.
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3. The combined method

In this section we shall formulate our variational principle explicitly, in the form according
to [11], and we shall use in this principle as an admissible field the one we shall obtain from
the Biot-Savart law as given in (2.10).

According to [11], (2.22) (with t!J.1/J = 1/J.ii =0, see (2.23)) the functional J takes the form (in
the original, Le. not-normalized, variables and with B = Bo)

J = i f [Tile Ui j1c Ui - ~ ( V e1c1c ell + e1c1 e 1cl ) ] dV
• 1 +v 1- 2v

G-

_1 B· B1c(U'k +Uk .) U· + (01•. +B· . U· - B· U· .) 01.] N·dS .2 3 3, .3' '1-'.' ',3 3 3 ',3 'I-' •

Here, B is the rigid-body field, 1/J the perturbed magnetic potential, Le.

(3.1)

(3.2)

E and v are Young's and Poisson's modulus, respectively, Tij are the pre-stresses (Le. the
stresses before buckling) and eij the linear deformations, Le.

(3.3)

Furthermore, G- and 8G are the original undeformed configuration of the body and its
boundary, respectively, and N is the unit outward normal on 8G.

In [11], as well as in [10] and [12], we used in (3.1) the exact solutions for Band 1/J. However,
if the systems become more complex it will become increasingly difficult (not to say impos­
sible) to determine these fields exactly. Therefore, we note that cJ = 0 for variations of B,
1/J and u satisfying the following sets of constraints:

i) (2.1) and (2.3).

ii) t!J.1/J = 1/J.ii =0, x E G+ ; 1/J -+ 0, Ixl -+ 00 • (3.4)

Fields B(x) and 1/J(x) which satisfy these constraints are called admissible fields.

If we can find admissible fields for Band 1/J that are not too far away from the exact fields,
we can use these fields in (3.1) to obtain an approximation for J. Here, we shall use the
Biot-Savart fields as they can be derived from (2.10). We shall show that these fields are
admissible. The good correspondence between the results of the variational method and the
Biot-Savart method as found in the preceding section, supports us in our opinion that the
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above choice leads to useful admissible fields and to a good approximation of the buckling
current.

Before proceeding with the explicit derivation of the admissible fields, we first simplify the
expression (3.1). To this end, we realize that we wish to apply (3.1) to the buckling of slender
(beam-like) bodies. In this kind of buckling the pure deformations are much smaller than the
local rotations of the body. This brings us to neglect in the magnetic term in (3.1) (i.e. the
second integral on the right-hand side of (3.1» those terms that contain a factor ofthe order
B211eiill (in fact the second and third term). Since, moreover, the term with the pre-stresses
Tii occurring in the first integral is of the same order, this term can be neglected too. We
like to mention that, as is shown in [HI] and [11], the neglect of the above terms leads to an
error of the order (R/ I) and, hence, is justified for systems of slender bodies. Alltogether this
leads us to the following simplified expression for J

J = - (E ) f [ v ekk ell +ekl ekl] dV
2 1 +v 1- 2v

G-

- 2:0 f [('l/J +Bk uk),i Bi Ui + (t/J,i + Bi,j ui - Bi ui,i) 'l/J] Ni dB
8G

=-W+l~](. (3.5)

We have written the last term in (3.5) as l~](, because ]( is independent of 10 then. This is
due to the fact that Band 'l/J are linear in 10 •

With Bi,i = Bi,i (as follows from (2.3)1) we can reduce the integral ~ ]( as given by (3.5)
still somewhat more to obtain

l~ ]( = - 2~0 f [( t/J + Bk Uk),; (Bi Ui Ni + 'l/J N;)] dB ,
8G

where we have neglected again a term proportional to B2l1eiill.

(3.6)

It is possible to derive explicit expressions for admissible B(x) and 'l/J(x) from (2.10) for
arbitrary (curved) circuits, but we shall refrain from doing so here. The results of Sect. 2,
especially conclusion 1, learned us that for the determination of the above ](- integral it
suffices to calculate its value for an interaction between two straight rods. This value for
]( can then also be used for systems of curved beams, such as a pair of rings, but also for
helical or spiral conductors as we shall show in due course ofthis paper, provided this system
satisfies the condition of slenderness (2.9). In this paper we shall restrict ourselves to such
systems. Hence, we only need to calculate Band 'l/J for a straight current carrier £', as we
shall do now first.

Consider an infinite one-dimensional current carrier £', carrying a current 10 • In the original
state £, forms a straight line along the e3-axis and a point P of £, on this line is given by its
position vector e= (e3.

9



The rigid-body field B(x) in an arbitrary point x E G+, with x = xel + ye2 +ze3, follows
then from (2.10) as

B(x) = J-Lolo
411"

00

! e3 X (x - e) d( =
Ix - e1 3/ 2

-00

00

! d( _
[x2+ y2 + (z _ ()2]3/2 -

-00

Clearly this field satisfies the constraints (2.1) and (2.3).

(3.7)

For the calculation of 1jJ(x) we assume that the rod .c has a normal deflection in the el­
direction, Le.

u = U«()el .

Then,

(3.8)

t = u' el +e3 , ( ' _ d)
- d( , (3.9.1)

and (up to the first order in u)

and with this (2.10) yields for the perturbed field in x E G+,

(3.9.2)

(3.9.3)

00

J-Lolo ! 1 [3X ,]hex) = - R3 R2 (xe2- yel) u(e) - Hz - ()e2 - ye3} u (e) - U(e)e2 de =
411" 0 0

-00

= - J-L:~o [3xy i u~~) de· el
-00

00 00+! ~~ {u( ()+(z - () u'(e) - ~; u(en de . e2 - Y ! U~~) de· e3] =
-00 -00
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(3.10)

where the latter step follows after partial integration.
From (3.10) it follows that curl hex) = 0 and, hence, there exists a potential 'I/J(x) such that

hex) = grad 'I/J(x) ,

and this potential is equal to

00

'I/J(x) = IJ::o f y~~() d( .
-00

(3.11)

(3.12)

It is easily checked that ~'I/J(x) = 0 and 'I/J(x) -+ 0 for Ixl -+ 00 so this result indeed satisfies
the constraints (3.4).

We assume that the current carrier £, is periodically supported over distances I. In that
case u(z) = 0 in all points z =±kl, k E IN, and, moreover, u(z) is a periodic function of z
with period 21. We now can write (3.12) as

IJolo [ foo d( foo U«()';gu(z) dl"]
'I/J(x) =~ y u(z) -00 Rg +-00 .. =

IJolo 2y [(R2 R) ]= 411" • (X2+y2) u(z) 1+0 [2 In T . (3.13)

In the latter step we have used the mean value theorem and we have assumed that for x ~ 8G
x and yare such that (x2+ y2)j12 = 0(R2/12) (in all our applications the latter condition is
fulfilled). We note that with 'I/J according to (3.13) the constraint ~'I/J = 0 is only satisfied up
to an order (R2/12)-term; to see this we have to introduce the non-dimensional coordinates
x=x/R, y=y/R, z=z/I.

In the next section we shall use the above result for the solution of the buckling problem
of a set of two parallel straight rods. The solution of this problem is already known from
[10], but we nevertheless treat this example first for three reasons:

1. as an illustration of the method proposed in this section;

2. because, and this is the most important reason, one of the results of this example,
namely the value of the integral K, can directly be applied to more complex problems
such as those that will be treated in Sections 5 and 6;

3. in order to show that the combined method leads to a solution that is even closer to
the result of the variational method than the Biot- Savart result itself.
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4. A set of two parallel rods

Consider two straight conductors £1 and £2, both carrying a current 10 • The conductors are
infinitely long and periodically supported over length 1. A cross-sectional view of the set is
drawn in Figure 1.

p

II----a~...... _a~r I

Figure 1. Cross-section of a system of two parallel rods.

The circular cross-sections of the rods have radius R and the distance between the rods is 2a.
The system is slender in so far that R < a ~ 1 (R and a are taken to be of the same order
of magnitude). An orthogonal basis {e1 e2 e3} is chosen as given in Fig. 1. The deflections
of the rods are in the e1-direction and given by

(4.1)

From (3.7) and (3.13) we find the fields B(x) and 'IjJ(x) in an arbitrary point P due to the
currents in £1 and £2 by simple superposition. This results in

and

B(x) =_110
1

0
211" [ (

y Y) (X +a X- a) ]-+- e1- --+-- e2 ,
r 2 r 2 r 2 r2

1 2 1 2

(4.2)

where

12

(4.3)

(4.4)



Note that in the formula (4.3) for 'ljJ(x) only enter the displacements of that point of £1 or
£2 that has the same z-coordinate as the object point P.
For two rods

Introducing

in (3.6) we obtain

(n = 1,2) ,

(4.5)

(4.6)

(4.7)

We may restrict aGn to the region for one period, say z E [-1,1] (this is due to the periodicity
of the displacement u(z); cf. [10], Sect. 2). With the use of (4.1)-(4.3) the right-hand side
of (4.7) then becomes

2 1 211' -(n) -(n)

I~ K = - ~ L ! ! [¢(n)~ +Bg~ u(n)] I d8 dz ,
2J.to -1 ar ay r ..

n- -I 0

where we have to use

x = (-a + R cos 8), y =R sin 8, for x E r1 ,

and

x = (a +R cos 8), y = R sin 8, for x E r2 •

(4.8)

(4.9.1)

(4.9.2)

With the use of (4.2) and (4.3) the integrals in (4.8) can be evaluated. After some lengthy
but elementary calculations this results in

(4.10)

where

(4.11)
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For the elastic energy for one period of the system we find the classical expression for the
energy in bending

(4.12)

where

(4.13)

is the moment of inertia about the y-axis of the circular cross-section of the rod.

The displacements U(l)(z) and u(2)(z) must satisfy the support conditions

(4.14)

for i E [1,2] and for all k E 7l. An admissible set of displacements (containing the lowest
buckling mode) is then

(4.15)

Variation of J with respect to u(l) and u(2) results in the linear eigenvalue problem for I~

(note that Wand K are homogeneously quadratic in (AI, A2 ) and independent of 10 )

oW 2 oK
o~ - 10 oAi = 0, i E [1,2] . (4.16)

The lowest eigenvalue of (4.16) corresponds to the buckling current 10 , which turns out to be
equal to

(4.17)

We have compared this value with the corresponding values from the variational method
and the Biot-Savart-method as can be found in Table 1. The result is displayed in Figure
2. In this graph the buckling currents according to the variational method (V.M.) and to
the combined method (C.M.), both normalized with respect to the buckling current from the
Biot-Savart-method, are displayed as function of aJR. This graph shows that the C.M.-value
lies between the V.M.-value and the B.S.-value, or

(4.18)

14



10
][BY 1••

o .
, V.~I.
'0,
\,,,

\

\,,
c.~~. \

\ \
'.. \.,

" "". ....... "'........ ....--..........-
•........._-- ~-------_.-_..

1,...--..,--..z--...a---.---,....,;.;~~,

Figure 2. Comparison ofthe buckling values according to the variational method (V.M.),
the combined method (C.M.) and the Biot-Savart method.

Hence, as could be expected, the combined method yields an improvement of the B.S.-value
in the direction ofthe V.M.-value. However, the differences are small, and only in the region
1 < ajR < 3 of some technical relevance. For ajR ~ 3 the corrections are only in the order
of some few percents.

We can easily generalize the above method to sets of n (n ~ 2) parallel rods. To see
this more clearly it is better to write (4.10) as

(4.19)

where the first and second integral should, in principle, be performed over £1 and over £2,
respectively. Moreover, it should be noted that 2a is the distance between the two rods.

The generalization to n rods is then straight-forward and yields

~ n n I

~ K = ~71":~ :E:E . 1 . 2 f [U(i)(z) - U(j)(z)]2 dz •
i=l i=1 (j - t) I

i¢i -

15

(4.20)



This formula can also be applied to more complex structures such as helical or spiral conduc­
tors. Then, n denotes the number of turns of the structures and 2a is the distance between
two subsequent turns. These cases will be discussed in the next two sections.
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5. Helical conductors

5.1. General description

Figure 3. The helical conductor.

Let us consider a conductor in the form of a cylindrical helix (see Fig. 3). The radius of
the helix is b and the (constant) pitch is h. For the distance 2a between two turns we then
have 2a = 21rh. For a slender helix 1rh <:: b. In the undeformed configuration a point on the
central line of the helix is given by its position vector

x =X( I.p) =b cos I.fJez +b sin 1.fJe'll +hl.fJer. = be,. +h<per. • (5.1)

We shall consider both finite helices of n turns (in this case <p E [0,21rn]) as well as infi­
nite ones (<p E [-00,00) then). In the first case the helix is simply supported in its end
points, whereas in the latter case the helix is periodically supported in the points given by
I.p = 0, <p = ±21rn, <p = ±41rn, etc. The cross- section of the conductor is circular, radius
R (R < 1rh <:: b). The total current f o running through the conductor is prescribed.

Since the pitch angle ex is very small (ex ~ b/h <:: 1) we assume the displacement in buckling
in the axial or z-direction, Le.

u = u(rp) ez • (5.2)

Here, u(rp) is the displacement of the central line of the helical conductor, causing besides a
bending also a torsion of the helix. We denote the torsion angle by {j(rp). This torsion has
no influence on the value of the integral K, it only enters the elastic energy W. By variation
of W with respect to {j we can obtain a relation expressing {j(rp) in terms of u(rp).

For the determination of the buckling current we need expressions for the integrals K and

17



W. The basic idea for the calculation of J( is completely analogous to the one underlying the
derivation of (4.10). For a finite helix of n turns, this brings us to the following expression
for J(, (we have to replace a -+ 1rh, here)

n n 1
K Po'" "" "" ! [(i)() (i)( )]2 bd= 32 3h2 L..J L..J (. _ ')2 U cp - u cp cp ,

1r i=l j=l J t
j~i Ci

where I:-i stands for the traject

Moreover, for cp E I:-i

U(i) = u(cp) , and uU) = u(cp+ 2(j - i)1r).

(5.3)

(5.4)

(5.5)

For the elastic energy W we use the classical expression for a slender curved beam (of circular
cross-section)

EI ! Gl !W = 2b4 (u" - bf3? bdcp + 2b: (u' +bf3'? bdcp =
C C

1rER4 ! 1=-- {(utI - bf3)2 + (u' +bf3')2} dcp
8b3 (1+v) ,

C

(5.6)

where we have used Ip = 2I = 1rR4/2, and G = E/2(1 +v), v denoting Poisson's modulus,
while I:- stands for the total length of the helix, Le.

(5.7)

As a first application we consider in the next subsection the infinite helix, followed by calcu­
lations of the buckling current for finite helices in Subsection 5.3.

5.2. The infinite helix

For the infinite helix with periodic supports over n turns, we choose for the buckling dis­
placement field (corresponding to the lowest buckling mode)

u(cp) = A sin (;:) . (5.8)

Note that this field satisfies the support conditions and the periodicity requirements (k E ~)

u(21rnk) =0, and u(cp+ 41rnk) =u(cp) ,

18
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respectively. Due to the above periodicity we may restrict the value of J( for an infinite helix
to that for one full period (say <p E [0,41rn]). According to (5.3) we then obtain

= Po Kbn A2 ~ ~ (1 _ cos 1rk) = Po Kb (1 _ ..!..) A 2 •
41r2h2 L...J k2 n 8h2 2n

1c=1

(5.10)

Apart from the factor K, this result corresponds with the J(-value as found in a different way
in [13], Eq. (25).
In accordance with (5.8) we assume the torsion angle (3(<p) of the form

(3(<p) = t B sin (~) , (5.11)

Substitution of (5.8) and (5.11) into (5.6) yields for the elastic energy of one full period

(5.12)

Since the first variation of J must be zero and because J( is independent of (3 (or B) it follows
that 8W/8B = 0, yielding

B = _ (2+11)
4(1 + v) n2 +1 A ,

and with this

(5.13)

(5.14)

We note that the contribution to W of the O(n-2)-term in the right-hand side of (5.14) is
rather small; even for n = 2 it is less than 18% whereas for n ~ 5 it is less than 3%. Since, in
practice, we are only interested in larger values of n (say n ~ 5) we may neglect the O(n-2 )­

term in (5.14). Inspection shows us that the remaining result for W is only due to the term
with u' in (5.6). This leads us to the conclusion that, for n ~ 5, we may approximate the
elastic energy by
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(5.15)

In the next section we shall check in how far this result also holds for a finite helical conductor.

With use of (5.10) and (5.14) in J = -W +1~ J( (see (3.5)) we find from

6J = 0 ==> (5.16)

the following rela.tion for the buckling current

N(n) E
(2n-1)~ (1+v)Jlo '

(5.17)

where

N(n) = (1 - ~)2 / [1 + ( 1) 2] =1+O(n-2
) •

4n 4 1 + v n
(5.18)

Apart from the factor ~ this result corresponds with that of [13]. According to its definition
above N depends on v, however, only in a very weak sense. For v running from 0 to 0.5 the
value of N changes less than 2%.

From (5.18) we conclude that 10 is proportional to

as found in all systems considered thus far (see Table 1; 1rh +-+ a, b +-+ 1) arid, furthermore,
that for the helix the buckling current is proportional to n-1/ 2 for large values of n.

5.3. The finite helix

Let us consider a finite helix (as described in Section 5.1) of n turns, hence, with <p running
from <p = 0 to 21rn. For the evaluation of K and W we have to select a representation for
the displacement field u(<p). Due to the finiteness of the helix this representation is no longer
as simple as it was in the preceding section. Here, we shall construct in two different ways a
representation for u(<p).

i) A representation in a series of sine-functions according to (we assume the first buckling
mode to be symmetric about <p =1rn)

N ((2k - 1) )u(<p) = L: Ale sin <p ,
1c=1 2n

20
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ii) A representation in splines. For this we divide each winding in ](1 parts and we approx­
imate u( cp) over each part by a third order polynomial in cpo In the knots between two
parts we require continuity in u( cp) and in its first and second derivative.

We start with the evaluation of approach i). In analogy with (5.19) we choose for the torsion
angle

bf3(cp) = t Ble sin (2k - l)CP) .
1c=1 2n

(5.20)

Substitution of (5.19) and (5.20) into the expression for the elastic energy according to (5.6)
leads us to

411'n

W = 11" ER4 ! {['" (2k _1)2 (A B ) cos (2k -1)CP)]2
8b3(1 +v) 0 ~ 2n Ie + Ie 2n

+(l+v) [~ (2k
4
: 21)2 Ale +BIe) sin (2k;n

1
)CP)t}dCP=

1I"2 nER
4

(2k - 1)2 2 (2k
4
-
n2

1)2 A.- +BJ-) 2} .
= 8b3(1+v) ~ { 4n2 (AIe+BIe) +(1+v) ....

(5.21)

From

aw
aBle = 0 ,

we obtain

yielding, after substitution in (5.21)

with

(5.22)

(5.23)

(5.24)

(5.25)

From (5.24) we conclude that with respect to the elastic energy W the Ale-modes are uncou­
pled.

For the magnetic K-integral (5.3) we obtain (with m = j - i)
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n n-i
, flo ",b " "

I... = 3211"3 h2 L.i L.i
i=l m=-(i-l)

m,tO

. ((2k - 1) <,0 (2k - 1)11" m) ]}2 d
-~ + <,0=2n n

1 211'(n-m)

= flo",b ~ 2.- J [" A {sin ((2k - 1) <,0)
1611"3 h2 L.i m2 L.i Ie 2n

m=l 0 Ie

. ((2k-1)<,o (2k-1)1I"m)}]2 d-sm + <,0
2n n

(5.26)

with

kid =I: 2n [~(n _ m) _ 1 sin ((2k - 1) 11" m)] sin2 ((2k -2~) 11" m) , if k = 1 ,
m=l m2 n (2k-1) n

k _ ~ 2n [ 1 . ((k+I-1)1I"m) 1 . ((k-/)1I"m)]
lei - - ~1 m2 (k +1- 1) sm n + (k -I) sm n

(5.27)

With (5.24) and (5.26) we obtain from (3.5)

(5.28)

where

Variation of J with respect to Ale yields the lineair eigenvalue problem

N

Wle Ale - A L klcl A, = 0, k = 1,2, ••• ,N .
1=1

(5.29)

(5.30)

This problem is solved numerically and from the thus obtained lowest eigenvalue Athe buck­
ling current can be calculated. The eigenvalue A is independent of all system parameters
except for the number of turns n (and also, but only in a very weak sense, except for v).
Hence A= A(n), and from (5.29) it follows that
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10 = (5.31)

a result which is in form identical to all the other results listed in Table 1 (see also (5.17)).

ii) For the spline representation we first define a traject lie (lie C £) by

(5.32)

for k E [1, N], where N = nK1 , the total number of trajects (K1 is the number of trajects
per winding). We introduce local coordinates Ole (Ole E (0,1)) by

(5.33)

Let Wle = WIe( Ole) be the spline approximation for u(<p) for <p E lie' If Wle is known then WIe+1
is found by the relation (from now on we write 0 in stead of Ole)

(5.34)

This definition of WIe+1 guarantees the continuity of u(<p), u'(<p) and u"(<p) in the knots
<p =21rk/K1. The support conditions in <p =0, reading u(O) =u"(O) =0 (simply supported),
are satisfied by taking

(5.35)

An iterative scheme based upon (5.34) and (5.35) yields the following general formula for Wle

Ie

'v'leE[1.N] WIe(O) = (k - 1 + 0) b1 +L (k - 1+ 0)3 dz .
Z=1

(5.36)

The support conditions in the end point <p = 21rn, knowing u(21rn) = u"(21rn) = 0, are
satisfied by taking

and

1 N-1

b1 = - N L (N +2 -I) (N + 1-1) (N -I)dz ,
Z=1

N-1

dN = - L (N +1 - I) dz .
Z=1

(5.37.1)

(5.37.2)

Thus, there remain the (N - 1) unknown coefficients d1 , d2 , ••• ,dN-1, which must be deter­
mined from
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6J = a ===}
8J
8~ = 0, i E [1, N - 1] . (5.38)

However, before we can calculate 6J we first have to express J( and W in terms of dj.
The procedure in which this is done is quite analogous to the preceding one for the sine­
representation, although the arithmetics are more cumbersome here. In order to diminish
these calculations we have used for W the reduced formula (5.15).
Based on the results of the preceding section we expected that this would give a fairly good
approximation for not too small n. In how far this is true (or not) will be discussed in the
next section. We here refrain from giving the further details of the evaluation of this spline
representation. We only say that it amounts in a lineair eigenvalue problem of more or less
the same type as (5.30), but, now, the matrix derived from 8Wj8A/c is not diagonal. Thus,
we here arrive at (to be compared with (5.30»

N

L: {W/elA,- Ak/elA,} = 0, k = 1,2, ... ,N.
1=1

(5.39)

Again this eigenvalue problem is solved numerically. However, since the number N in this
case becomes much higher than for the first case, the numerical calculations took much more
time in the latter case. We return to this subject in the next section in which the explicit
numerical results are presented.

5.4. Results

The lowest eigenvalues Aof the lineair eigenvalue problems derived in the preceding section
are calculated numerically for a set of numbers n running from 2 to 15. We have performed
these calculations for the following cases

i) eq. (5.30); Le. the sine-representation using the full expression for the elastic energy W;

ii) the sine-representation using the reduced expression (5.15) for W;

iii) eq. (5.39); Le. the spline-representation based on the reduced formula (5.15) for W.

In (i) we have used v = 0; the other two cases are independent of v. In Section 5.2, however,
we already showed that the influence on Aof v is very small. The results of our calculations
are presented in Table 2 and displayed graphically in Fig. 4.

Table 2.

The lowest eigenvalues A of (5.30) or (5.39) for a set of numbers n. Case (i) eq. (5.30); (ii)
eq. (5.30) with reduced W; (iii) eq. (5.39); iv) A = 1j(411"n).

n case 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A* 10:1 (i) 3.87 2.71 2.05 1.62 1.34 1.13 .983 .866 .773 .698 .636 .584 .539 .501

(~) 12.50 4.26 2.64 1.92 1.50 1.23 1.05 .911 .805 .721 .654 .598 .550 .510
(iii) 12.50 4.26 2.64 1.91 1.50 1.23 1.05 .911 .805 .721 .654 .598 .550 .510
(iv) 3.98 2.65 1.99 1.59 1.33 1.14 .995 .884 .796 .723 .663 .612 .568 .531
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Figure 4. Buckling values for finite helices (Doj line according to (5.41» and for infinite
helices (OJ line according to A= 1j41r2 n) as functions of n.

From a comparison of the results for i), ii) and iii) we learn firstly that the results due to the
sine-series (case ii)) and those of the spline-representation agree with each other. However,
for case ii) the number N in the expansion (5.19) needed to obtain this result was equal to
(n +2), whereas for case iii) we had to take ](1 ~ 3, yielding N ~ 3n, to obtain convergence.
The latter number becomes for large n much higher than (n +2). Since N is also the order
of the lineair systems (5.30) or (5.39) from which the eigenvalue A must be calculated the
calculation time for the spline-case is much longer, especially for larger n, than the one used
for the sine-expansion. Moreover, also the analytical derivations are much simpler in the first
than in the second case (even for the reduced elastic energy). Therefore, we conclude that the
approach based on (5.19) is simple and efficient, and should be preferred above the splines
representation.

Secondly, we compare the results of ii) or iii) with the more precize results of i). We see
that as expected the differences between the two results decrease with increasing n. So is for
n = 5 the relative difference still as large as 18.5%, whereas for n = 7 it is 9% and for n > 9 it
is less than 5%. Still, despite this convergence, we found one noteworthy difference between
the cases i) and ii). This difference lies in the buckling modes, more specifically in the values
of the coefficients Ak of the eigenvector. In case ii) only the first two or three coefficients Ak
submitted essentially to the determination of the buckling valuej all remaining coefficients Ak
could just as well have been taking zero. Hence, in this case the final value for the buckling
current was already found for N = 3. On the other hand, in case i) the following pecularity
was observed: again the first two coefficients A1 and A2 were dominant and it looks as if
convergence was reached for N = 3 or 4, but for N = n a sudden extra jump in A (small
but apparent) occurs. Calculation of the eigenvectors showed us that this jump was due to
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the fact that now, in contrast to ii), the coefficients An and An+l were no longer negligible
with respect to A1 or A2 • As a consequence, complete convergence was found here only for
N ~ n +2. As an example let us consider the case n = 8. For this case, we found for the
normalized eigenvector

A 1 = -.94, A 2 = .25, As = .02, As = .21, A9 =.15 . (5.40)

while all remaining coefficients are less than 10-2 • The coefficients As and A9 could only be
found by using the complete version of the elastic energy; for case ii) all Ale from k =4 on
were less than 10-2 • Results analogous to (5.40) were also found for other values of n. From
this we conclude that the buckling mode for helix constists of (i) a global part (represented
by A1 and A2 ), and (ii) a local part on the scale of one winding (represented by An and
An+d. The latter part must be due to the direct interaction between two adjacent windings.
Although this effect with regard to the buckling mode is very striking, the influence on the
buckling value itself is rather small (only a few percent).

One more comparison can be made on the hand of Table 2 or Fig. 4. We can compare
the values of ~ according to i) with the values of (1/471"n) as listed in row (iv) of Table 2 (see
also the line in Fig. 4). We see a good agreement between these two sets of values: nowhere
for n between 2 and 15 the relative difference exceeds 5%. Hence, for practical purposes it
seems allowed to use for the buckling value ~ the very simple formula

1
~=-.

471"n
(5.41)

For the buckling current of a finite simply supported helix use of this formula in (5.31) yields

71" E
2nK (1 + v)JLo

(5.42)

Comparing this result with the analogous result for an infinite helix, Le. (5.17), we conclude
that in both cases the buckling current 10 is proportional to n-1!2 for large values of n.
However, the buckling current for a finite helix is always (no matter how large n becomes)
a factor Vi times the one for an infinite helix (see also Fig. 4). This result contradicts the
expectation stated in the conclusions of [13] saying that it is reasonable to assume that in
case n is large enough the formula for the buckling current for the infinite helix also governs
(in good approximation) the buckling of a finite helix of n turns. For the case of the infinite
helix we separated one complete period (.c-), Le. r.p E (0, 471"n) , from the remaining part of
the helix (.c+). The statement in [13] was based on the assumption that the influence of
the current in .c+ on the forces in .c- becomes smaller for increasing n, and practically was
restricted to a close neighbourhood of the endpoints of .c-. If this is true, the influence of
.c+ on the buckling value diminishes and noninterference between .c- and .c+ is attained for
n ~ 00. However, the results of this section reveal that even for exceedingly large values of
n the remote parts of the infinite helix remain to interfere with the inner part .c-. Hence,
the replacement of the finite helix by an infinite one, in order to get an easier problem, is not
allowed.
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6. Spiral conductor

6.1. General description

Figure 5. The flat spiral conductor.

In this section we consider a conductor in the form of a flat spiral lying in the x - y-plane
(see Fig. 5). In the undeformed configuration a point on the central line ofthe spiral is given
by its position vector

with

x = X(cp) = b(cp) cos cp ez +b(cp) sin cp ell = b(cp) e,. ,

b(cp) = bo +hcp, for 0::; cp ::; 21rn ,

(6.1)

(6.2)

where bo is the radius in the begin point of the spiral, 21rh is the distance between two
adjacent turns (a = 1rh) and n is the number of turns. The cross-section of the conductor is
circular, radius R. The system is called slender if

(6.3)

The spiral is simply supported in begin and end point. The total current 10 running through
the conductor is prescribed.

We assume that the coil buckles in its plane and that the pertinent displacement is given by
(in polar coordinates)

u = u(cp) = u(cp)e,. + v(cp)elp .
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The spiral is taken inextensible, yielding

(' -- d~~) .u(ep) + v'(ep) = 0 , or (6.5)

The expression for the J(-integral is completely analogous to the one of the preceding chapter
according to (5.3)-(5.5), however, we must realize that in (5.3) b = beep) now. Note that in
this expression only the radial displacement u(ep) turns up. For an inextensible curved (almost
circular) beam the elastic energy due to in-plane bending is taken equal to

where

21m

W= lEI! b3~) [u"(ep)+u(ep)]2dep,

EI = ~ ER4 ,
4

(6.6)

(6.7)

is the bending stiffness of a beam of circular cross-section (actually, the precize formula for
W is somewhat more complex, but the extra terms are small of the order O(hjb) with respect
to the main term given in (6.6».

6.2. Determination of the buckling current

Just as in the preceding section we have used here for the evaluation of I( and W two different
kinds of representations for u(ep), namely, firstly a series of sine-functions and secondly a spline
approximation. Again the approach via splines was rather cumbersome, using an extensive
amount of computer time. Therefore, we restrict ourselves here to a description of the sine­
approach only. Since, in contrast to the helix, the spiral is not symmetric about the midpoint
ep = 1rn, we have to use here a complete series, that is

N

U(ep) =:E Ale sin (kep)
1e=1 2n

Use of (6.9) in (6.6) yields

where

21m

llel = / 193~ep) sin (~:) sin (~~) dep,
o

28

(6.9)

(6.10)

(6.11)



and

. h
fi(<p) = 1 + b

o
<p. (6.12)

The evaluation of K is completely analogous to the one of the precedi!lg section (see (5.26»
leading to

(6.13)

where

(6.14)

Introducing A as (we use here b1 = bo+ trnh, the mean radius of the spiral, in stead of bo in
order to weaken the influence of h on A)

(6.15)

substituting (6.10) and (6.13) into (3.5) and taking the first variation of J with respect to
Ak we arrive at the lineair eigenvalue problem

N

L: (Wkl- Akkl) A, = 0, k = 1,2, ... ,N .
1=1

Explicit expressions for Wkl and kkl can readily be read off from (6.10) and (6.13).

(6.16)

By a numerical solution of (6.16) the lowest eigenvalue A can be calculated. This A only
depends on nand h and is related to the buckling current 10 according to (6.15).

NOTE
The coefficient A2n does not contribute to W nor to K. In fact this mode represents a rigid­
body translation of the spiral. Therefore, in case N 2: 2n we take A2n = O.

6.3. Results

We have calculated numerically the lowest eigenvalues of (6.16) for n running from 2 to 10
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and for several values of h. The results are presented in Table 3 and displayed graphically in
Figure 6.

Table 3.

The eigenvalues A* 102 , calculated from (6.16), for several values of nand hj the values in
every second row are the outcomes of formula (6.20).

n= 2 3 4 5 6 7 8 9 10
h = .050 11.78 6.00 3.82 2.70 2.04 1.61 1.31 1.10 .96

10.97 5.97 3.88 2.77 2.11 1.67 1.37 1.15 .98

h = .075 11.32 5.43 3.36 2.35 1.76 1.39 1.14 .95 .83
9·45 5.16 3.35 2·40 1.82 1·45 1.18 .99 .85

h = .100 10.91 5.00 3.05 2.12 1.59 1.26 1.03 .87 .76
8.54 4·65 3.02 2.16 1.64 1.30 1.07 .89 .76

h = .125 10.54 4.69 2.83 1.97 1.48 1.18 .97 .82 .72
7.89 4·29 2.79 1.99 1.52 1.20 .99 .83 .71

h = .150 10.24 4.45 2.67 1.86 1.40 1.12 .92 .78 .69
7.38 4·02 2.61 1.87 1·42 1.13 .92 .77 .66

In performing these calculations the results for the eigenvectors A showed us that of the
coefficients A, those for 1 in the neighbourhood of 2n where dominant. As an example let
us consider the case h = .125 and n = 10. For this case we found for the (normalized)
coefficients A"

A19 = -.657

A17 = -.209

A21 = -.513

A23 = -.068

A18 = .435

A16 = .057 ,

A22 = .257

while all other coefficients were ~ 10-2 • Therefore, we changed the order of the summation
in (6.9) in the following way

(6.17)

(then ..41 =A2n-1, ..42 =A2n+l, etc.).
This reordening improved the rate of convergence substantially. In fact, we did obtain a very
satisfactory convergence already for N = 5.
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Figure 6. Buckling values for spiral conductors as function of h, for n = 5 (.6.), n = 7 (0)
and n = 10 (0), and as function of n for h = .075 (.6.) and h = .15 (0), both plotted on a

double logarithmic scale.

The behaviour of >. as function of n or h is shown in the graphs of Figure 6. When plotted on
a logarithmic scale this behaviour was rectilinear (in a good approximation) bot for h (h E
[.05; .15]) as for, not too small, n (for n ~ 4). This implies that>. = >.(n, h) must be of the
form

(6.18)

By means of a least square approximation the best values for the exponentials a and {3 are
calculated. Thus, we found

A = 10.55, a = -.36 f3 = 1.5 , (6.19)

yielding

(-hI) .36 (-nl ) 1.5 ,>. = 10.55 (6.20)

holding for the range h E [.05; .15] and n ~ 4. The results of this formula are also listed in
Table 3 (see also Figure 6). Everywhere in the given range the errors made by using (6.20)
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in stead of (6.15) are less than 5%. Hence, (6.20) represents a useful empirical formula for
the buckling current, which then follows from (6.15) as

(6.21)

We also have performed calculations for .\ on basis of a spline approximation and by a dis­
cretization for the displacement field u(<p). The obtained numerical results showed a corre­
spondence with the results presented here, but despite of a much greater amount of computer
time, the results were still less precise than those from the sine- approach. Hence, the use of a
series of sines for u(<p) turns out to be preferable here as well as it was for the helical conductor.

From the calculated values of the coefficients A, of the eigenvector we could obtain an impres­
sion of the buckling mode. After the elimination of an apparent rigid body mode we found
buckling displacement fields as shown for two cases in Figure 7. The rigid body field was
eliminated by adding to the series in (6.17) an extra mode of the form Ao sin <p , (note that
this term does not contribute to either W or K, and that u = Ao sin <p in combination with
v = Ao cos <p, and in a small (hJb) approximation, represents a rigid-body translation). The
coefficient Ao was chosen such as to minimize this rigid-body displacement. For the example
h = .125 and n = 10 given in the beginning of this section this led us to a value of Ao =.70.
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Figure 7. Buckling modes for spiral conductors for i) h =.075, n = 9, and ii)

h = .125, n = 10.

The results, displayed in Figure 7 for the cases h = .075, n =9 and h = .125, n = 10, show
that the displacements in the outer coils prevail over those in the inner coils. This could be
expected in virtue of the larger mechanical stiffness of the inner coils compared to the outer
ones.
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7. Conclusions

We have established a new method for the determination of the buckling current of a supercon­
ducting structure, which is a combination of two older methods. This so called combination
method (C.M.) is so constructed as to retain the advantages of the two basical methods (Le.
a variational method (V.M.) and the Biot-Savart method (B.S.)) and, at the same time, to
get rid of the associated disadvantages. This led us to a method which is both sufficiently
exact for practical purposes as well as convenient to use in practice. For the example of a
system of n parallel rods we have shown that the values from C.M. are in between those from
V.M. and B.S. (which are already not so far apart). The solution of the system of n rods
also provided us with an expression for the magnetic interaction term which could be used
for helical and spiral conductors. This result, i.e. an easy manageable expression for the
magnetic interaction integral occurring in our variational principle, was one of the main goals
ofthis research. With use ohhis expression we have solved the buckling problem for (in)finite
helical and spiral conductors (both simply supported in their end points). We recapitulate
some of the main results.

i) For an infinite helix, periodically supported over n turns, we have (see (5.17))

10 = N(n) 1rhR2 fE
(2n - 1) (1 + v) K~ V~ , (7.1)

(where N (n) and K are numerical factors close to unity).

ii) For a finite helix of n turns «5.31) and (5.42))

10 = (7.2)

iii) For both the finite and infinite helix the buckling current 10 is proportional to (1/n)l
for n :::> 1. However, for large values of n the buckling current for the finite helix is Vi
times the one for the infinite helix.

iv) For a (flat) spiral of n turns «6.21))

10 = (7.3)

with ,\ according to (6.20), showing that 10 oc (1/n)~ for n :::> 1.

v) In buckling the displacements of the outer coils of the spiral are dominant over those
of the inner coils (which remain practically undeformed).

As a general conclusion we can state that for all cases mentioned in this paper the buckling
formula is always of the same form, namely (here, 1 is a characteristic global measure of
length, e.g. 1= 1rb for the helix or spiral)
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(7.4)

(a = 11" h, for helix or spiral) where the pre-factor A, which differs from case to case, is inde­
pendent of Rand 1 (it may depend on a and further on n and v). Specific expressions for A
can be red from Table 1 or the results (7.1)-(7.3) listed above. In (5.42) and (6.20) empirical
formulas for A are given, valid for a wide range of the parameters n and A, which are very
easy for direct practical use.

In all the structures considered here the cross-section was always taken to be circular. How­
ever, for the calculation of the magnetic integral we used the Biot-Savart field as an admissible
field, but in the Biot-Savart approach the current carrier is considered as a one-dimensional
curve, irrespective of the specific form of the cross-section. Hence, since we have shown that
the preciseness of the Biot-Savart method was more than acceptable, the specific form of the
cross-section is, at least as far as the magnetic part of our Lagrangian concerns, not very
relevant. Of course, the form of the cross-section does be of relevance for the calculation of
the elastic energy.

In returning to Section 2, where we shortly outlined the variational method, and to our
earlier work we recall that the most difficult part in the application of the variational method
was the determination of the magnetic integral (K)j the determination of the elastic energy
(W) was often a straightforward (classical) problem. However, we must admit that we have
considered here only pure systems, meaning that W was only coming from the current car­
rying structure itself. In other words, we did not include elastic stiffness of, for instance,
a matrix supporting the conductor. This made it practically impossible to compare our
theoretical results with experimental results, as far as they are available. There are some
experimental results, a.o. from Miya et al., [6], [7], but they all apply to constructions of em­
bedded conductors. Of course, these kind of constructions are of greater practical relevance
then the pure constructions considered by us.
However, our first aim was to construct on a firm theoretical basis an expression for the mag­
netic interaction term (characteristic for the magnetic forces on the structure) and I think
we have succeeded in this goal. Since this magnetic term is not influenced by the matrix
material (nor by any other type of elastic support) this particular result remains valid for
superconducting structures embedded in a matrix. We only have to recalculate the elastic
energy term. This seems to me a subject for future research and, possibly, then comparison
with experimental results can be made.
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