

Pre & Post Visit Activities • Vocabulary & Resource Lists • Curriculum Connections

Before Your Visit :

Prepare your students for their visit with these introductory pre-visit activities.

- **1** Introduce the *Build a Geodesic Dome Vocabulary List* on Page 2 to your students so they can be active participants during our discussion and construction process at the Center for Architecture.
- 2 Share the *Geodesic Dome Fact Sheet* on Page 3 with your students so they can discover some of the geometry involved in creating this important structure. This handout also provides a brief historical background.
- Ensure your students understand the properties of a circle by completing the *Circles and Spheres Activity* on Page 4 These geometric relationships, diagrams, and calculations directly relate to the dimensions of the Geodesic Dome we will build at the Center for Architecture. An answer key can be found on Page 5.

During Your Visit :

The program begins by introducing students to various examples of Geodesic Domes from around the world. During this discussion, we will highlight ideas of modular construction and tessellation by identifying how triangles form larger shapes such as trapezoids, pentagons, and hexagons. We will discuss how this method of triangulation is derived from a sphere and can give strength to a structure to resist the forces of tension and compression. To make these ideas tangible, the whole class will work together to construct a 14-foot geodesic dome. This elegant structural form, made famous by engineer and inventor Buckminster Fuller, will offer a unique opportunity to experience the real-life applications of geometry and physics we had previously discussed. After a group photo inside the dome, students will be given the opportunity to test out their own structural ideas by creating individual scale models inspired by the dome's geometry.

After Your Visit :

Continue the learning by facilitating these suggested extension activities.

Frequency and Tessellation Drawing Activity: Use the *Frequency and Tessellation* activity sheet on Page 6 to encourage your students to practice measurement, proportion, division, and precision in drawing. Note that the higher the frequency they choose, the more challenging this drawing will become. On Page 7, you will find a completed version with a frequency of 2.

Construct an Icosahedron: Use the Icosahedron Template sheet on Page 8 to construct a physical model of an Icosahedron,
 the base geometry for the geodesic dome. If available, this sheet should be copied onto cardstock. Using this template as an example, challenge your students to design their own paper model of a triangulated structure.

Writing Activity: Using their experience of construction at the Center for Architecture and the *Geodesic Dome Fact Sheet* on Page 3 as a starting point, ask your students to research and respond to one of the following prompts:

3 What are the pros and cons of building with a geodesic dome? If you were designing a new piece of architecture for your neighborhood, how would you utilize this structure?

How does the structure of a geodesic dome support Buckminster Fuller's notion of Spaceship Earth?

Build a Geode	esic Dome Vocabulary List
Circumference	The perimeter or outside boundary of a circle.
Compression	A pushing or pressing force.
Diameter	A straight line passing through the center of a circle or sphere that divides it into two equal halves; measured as twice the radius.
Dome	A hemispherical structure typically forming a roof or ceiling.
Frequency	The rate at which something occurs or is repeated within a particular unit.
Geodesic	Relating to the shortest line between two points on a sphere; from the Greek word <i>geodaisia</i> meaning "division of the Earth."
Great Circle	A circle on the surface of a sphere that lies in a plane passing through the sphere's center.
Hexagon	A polygon with six sides and six angles; a regular hexagon has interior angles of 120°.
Icosahedron	A solid geometric figure with twenty triangular faces; typically equilateral triangles.
Pentagon	A polygon with five sides and five angles; a regular pentagon has interior angles of 108°.
Polygon	A two-dimensional shape with many straight sides.
Polyhedron	A solid three-dimensional figure with many planar faces.
Radius	A straight line from the center of a circle or sphere to the outside edge; measured as half the diameter.
Sphere	A perfectly round three-dimensional figure in which all points on the surface are equidistant from the center.
Structure	The parts of a building that hold up weight and provide support.
Surface Area	The total area of the surface defining of a solid figure.
Tension	A pulling or stretching force.
Triangulation	The use of a network of triangles to create a strong and rigid structure.
Volume	The measure of the amount of space inside of a solid figure.

Additional Resources

Buckminster Fuller in 3 Minutes Video by Prosocial Progress Foundation on YouTube

Buckminster Fuller Institute (www.bfi.org)

Building Big: Domes by PBS (www.pbs.org/wgbh/buildingbig/dome)

Geodesic Dome Article by Encyclopedia Britannica (<u>www.britannica.com/technology/geodesic-dome</u>)

Geodesic Dome Fact Sheet

Definition

A *Geodesic Dome* is a curved, three-dimensional *structure* formed through a network of triangles. The more complex this network of triangles becomes, the closer it begins to approximate the geometry of a true *sphere*, or any fraction of one. The word *Geodesic* comes from the Greek root *geodaisia*, meaning "division of the Earth."

From Circles to Triangles

A **great circle** is a circle on the surface of a sphere that lies in a plane passing through the sphere's center. Another way to think of this is a circle that cuts a sphere perfectly in half, as shown in *Figure A*. The intersection of 3 great circles can define 3 points and a triangular surface, as shown in *Figure B*. Triangles are incredibly strong on their own but when used in a network, they work together to distribute stress (weight and other forces) across the entire structure. This **triangulation** is what makes a geodesic dome such an efficient and stable structure.

Fun Facts

The more triangles that are used in a dome, the rounder it becomes. The **frequency** of a dome indiciates this relationship such that the higher the number, the rounder the surface. See the diagram to the right.

A sphere is the geometric figure with the highest ratio of enclosed **Volume** to external **Surface Area**. When building a structure, this means that a sphere, dome, or geodesic dome will allow you to create the most space with the least amount of material.

Because hot air rises, warm air inside of a dome can create a rising effect similar to that of a hot-air balloon. This phenomenon can actually lift the dome enough to noticeably change the weight of the entire structure. Larger domes that enclose more hot air experience a stronger lifting force.

One of the first domes presented to a wider audience was a pavilion at the 1964 World's Fair in New York City. This dome is now used as an aviary by the Queens Zoo in Flushing Meadows Corona Park.

A

with 20 triangular faces. Using tessalation, these faces can be broken

up into smaller triangles. The more triangles, the more closely it

approximates the true shape of a sphere.

Circles and Spheres Activity

We can use the 2-D geometry of a circle and the 3-D geometry of a sphere to help us understand the properties of a geodesic dome. Use the formulas below to determine the values for each shape below. Round your answers to the nearest whole number.

Circle			
	Radius	r = 7'	<i>r</i> =
7 feet	Diameter	d = 2r	d =
	Circumference	$C = 2\pi r$	<i>C</i> =
	Area	$A = \pi r^2$	A =
Snhoro			
Spriere		Δ	
7 feet	Volume	$V = \frac{1}{3}\pi r^3$	V =
	Surface Area	$SA = 4\pi r^2$	SA =
Hemisphere (Dome)			
	Volume	$V = \frac{2}{3}\pi r^3$	V =
7 feet	Surface Area	$SA = 2\pi r^2$	SA =
	How does buildir <i>Surface Area</i> of a	ng a volume from tr a Geodesic Dome o	iangles affect these calculations? How would the <i>Volume</i> and compare to your calculations above? Explain your reasoning:

Circles and Spheres Activity

We can use the 2-D geometry of a circle and the 3-D geometry of a sphere to help us understand the properties of a geodesic dome. Use the formulas below to determine the values for each shape below. Round your answers to the nearest whole number.

Circle			
	Radius	r = 7'	r = 7 ft
7 feet	Diameter	d = 2r	$d = 14 \mathbf{ft}$
•••••	Circumference	$C = 2\pi r$	C = 44 ft
	Area	$A = \pi r^2$	$A = 154 \mathbf{ft}^2$
Snhere			
7 feet	Volume	$V = \frac{4}{3}\pi r^3$	$V = 1,436 ft^3$
	Surface Area	$SA = 4\pi r^2$	$SA = 615 \mathbf{ft}^2$
Hemisphere (Dome)			
	Volume	$V = \frac{2}{3}\pi r^3$	$V = 718 f t^3$
	Surface Area	$SA = 2\pi r^2$	$SA = 308 ft^2$
	How does buildir <i>Surface Area</i> of a Calculating the smaller values triangles creat	ng a volume from ti a geodesic dome c e true <i>Volume</i> an than that of a pe es a smaller, pla	riangles affect these calculations? How would the <i>Volume</i> and ompare to your calculations above? Explain your reasoning: ad <i>Surface Area</i> of a geodesic dome would reveal erfect hemisphere because building a volume from nar approximation of the form.

Frequency and Tessellation

Complete the drawing below to create a geodesic dome with a **frequency** of 2 or greater. Measure and divide each triangular face to indicate the individual pieces needed to build this dome. Hint: You will need to measure each line in order to divide its length into the appropriate number of equal parts for that frequency (i.e. 2 equal parts for a 2-frequency dome.) Look for patterns to save time!

Answer Key for a Frequency of 2

Complete the drawing below to create a geodesic dome with a *frequency* of 2 or greater. Measure and divide each triangular face to indicate the individual pieces needed to build this dome. Hint: You will need to measure each line in order to divide its length into the appropriate number of equal parts for that frequency (i.e. 2 equal parts for a 2-frequency dome.) Look for patterns to save time!

Frequency: 2

8

Icosahedron Template

CENTER FOR Architecture

Student Day Curriculum Connections

	New York State Learning Standards for the Arts: Learning Standards for the Arts at Three Levels	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
1	Creating, Performing and Participating in the Arts		•					
2	Knowing and using Arts Materials and Resources		•		•	•		
3	Responding to and Analyzing Works of Art		•					
4	Understanding the Cultural Dimensions and Contributions of the Arts		•					
NYO	C Blueprint For Teaching and Learning in Visual Arts: Five Strands of Art Learning	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
ι.	Art Making		-	•	-	-		
١١.	Literacy in Visual Arts							
111.	Making Connections		•					
IV.	Community and Cultural Resources							
V.	Careers and Lifelong Learning		•					

1Make sense of problems and persevere in solving them.Image: Image: Image		Common Core State Standards for Mathematics: Standards for Mathematical Practice	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
2 Reason abstractly and quantitatively. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning arguments argument	1	Make sense of problems and persevere in solving them.							
3 Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. 4 Model with mathematics. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments and critique the reasoning of others. Image: Construct viable arguments argument ar	2	Reason abstractly and quantitatively.						-	
4 Model with mathematics. 5 Use appropriate tools strategically. 6 Attend to precision.	3	Construct viable arguments and critique the reasoning of others.							
5 Use appropriate tools strategically. 6 Attend to precision.	4	Model with mathematics.		-					
6 Attend to precision.	5	Use appropriate tools strategically.							
	6	Attend to precision.							

	NYC K-5 Science Scope & Sequence + NYC 6-12 Science Scope & Sequence	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 2	Exploring Properties How do we observe and describe objects and the physical properties of objects?							
Grade 1 Unit 2	Properties of Matter How do we describe the properties of matter?							
Grade 2 Unit 2	Forces & Motion What causes objects to move?							
Grade 3 Unit 2	Energy How does the use of various forms of energy affect our world?							
Grade 3 Unit 3	Simple Machines How do simple machines help us in our daily lives?							
Grade 6 Unit 4	Interdependence What factors affect the interdependence of living and nonliving things?							
Grade 7 Unit 2	Energy & Matter What materials are best to conserve and efficiently use energy?							
Grade 8 Unit 4	Humans and the Environment: Needs and Tradeoffs How can energy resources affect the future planning for the continuity of life on Earth?							

	New York State P-12 Science Learning Standards	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
DIME	INSION 1: SCIENTIFIC AND ENGINEERING PRACTICES							
1	Asking questions (for science) and defining problems (for engineering)							
2	Developing and using models							
3	Planning and carrying out investigations							
4	Analyzing and interpreting data	PV		PV		PV		
5	Using mathematics and computational thinking	PV		PV				
6	Constructing explanations (for science) and designing solutions (for engineering)			•			-	
7	Engaging in argument from evidence							
8	Obtaining, evaluating, and communicating information							
DIME	INSION 2: CROSSCUTTING CONCEPTS							
1	Patterns			-	•			
2	Cause and effect: Mechanism and explanation							
3	Scale, proportion, and quantity							
4	Systems and system models							
5	Energy and matter: Flows, cycles, and conservation							
6	Structure and function							
7	Stability and change							

Ne	ew York State P-12 Science Learning Standards (continued)	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
DIMEN	ISION 3: DISCIPINARY CORE IDEAS							
Physica	al Sciences							
PS1.A	Structure and Properties of Matter							
PS2.A	Forces and Motion							
PS2.C	Stability and Instability in Physical Systems		•					
PS3.A	Definitions of Energy							
PS3.B	Conservation of Energy and Energy Transfer							
PS3.D	Energy in Chemical Processes and Everyday Life							
Life Sci	ences							
LS2.A	Interdependent Relationships in Ecosystems							
LS2.C	Ecosystem Dynamics, Functioning, and Resilience							
LS2.D	Social Interactions and Group Behavior							
Earth 8	& Space Sciences							
ESS1.B	Earth and the Solar System							
ESS2.A	Earth Materials and Systems							
ESS2.D	Weather and Climate							
ESS3.A	Natural Resources							
ESS3.B	Natural Hazards							
ESS3.C	Human Impacts on Earth Systems							
ESS3.D	Global Climate Change							

New York State P-12 Science Learning Standards (continued)	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
DIMENSION 3: DISCIPINARY CORE IDEAS (continued)							
Engineering, Technology, and Applications of Science							
ETS1.A Defining and Delimiting and Engineering Problem							
ETS1.B Developing Possible Solutions							
ETS1.C Optimizing the Design Solution							
ETS2.A Interdependence of Science, Engineering, and Technology							
ETS2.B Influence of Engineering, Technology, and Science on Society and the Natural World							
	-			-	-	-	
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects COLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR READING *	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects COLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR READING * 1 Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textural evidence when writing or speaking to support conclusions drawn from the text.	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects COLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR READING* 1 Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textural evidence when writing or speaking to support conclusions drawn from the text. 2 Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical SubjectsCOLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR READING*1Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textural evidence when writing or speaking to support conclusions drawn from the text.2Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.3Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects COLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR READING * 1 Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textural evidence when writing or speaking to support conclusions drawn from the text. 2 Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas. 2 Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words. COLLEGE AND CAREER READINESS ANCHOR STANDARDS FOR WRITING	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers

*At the Center for Architecture, we consider visual representations (i.e., photos, drawings, models, etc.) to be texts with their own set of vocabulary. Through this lens, we practice "reading a building" to consider its design and purpose.

^{PV} These standards are met by completing the suggested extension activities found in the Student Day Resource Packet.

Con	nmon Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects (continued)	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
COLL WRI	EGE AND CAREER READINESS ANCHOR STANDARDS FOR							
2	Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content.			PV	PV	PV		
7	Conduct short as well as more sustained research projects based on focused questions, demonstrating understanding of the subject under investigation.	PV	PV	PV	PV	PV		PV
COLL SPEA	EGE AND CAREER READINESS ANCHOR STANDARDS FOR KING AND LISTENING							
1	Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.							
2	Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally.		•	•				
4	Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.							
5	Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations.							
COLL LANG	EGE AND CAREER READINESS ANCHOR STANDARDS FOR GUAGE							
4	Determine or clarify the meaning of unknown and multiple-meaning words and phrases by using context clues, analyzing meaningful word parts, and consulting general and specialized reference materials, as appropriate.							
6	Acquire and use accurately a range of general academic and domain-specific words and phrases sufficient for reading, writing, speaking, and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when considering a word or phrase important to comprehension or expression.							

٢	New York State K-8 Social Studies Framework: Social Studies Practices	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
A G	athering, Using, and Interpreting Evidence							
вс	hronological Reasoning and Causation							
сс	omparison and Contextualization							
DG	eographic Reasoning							
FC	ivic Participation							
	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 3	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence Geography, People and the Environment What makes a community?	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 3 Grade 1 Unit 3	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence Geography, People and the Environment What makes a community? The Community What is a community?	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 3 Grade 1 Unit 3 Grade 2 Unit 2	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence 2 3 4 The Community 4 What is a community? 2 New York City Over Time How and why do communities change over time?	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 3 Grade 1 Unit 3 Grade 2 Unit 2 Grade 2 Unit 3	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence 2 3 4 7 6 6 7 7 7 8 9	Building Bridges	Geodesic Dome	Green Architecture	 Language of Arch. 	Neighborhood Design	Scale Model Building	Skyscrapers
K Unit 3 Grade 1 Unit 3 Grade 2 Unit 2 Grade 2 Unit 3 Grade 8 Unit 2	NYC K-8 Social Studies Scope & Sequence + NYC 9-12 Social Studies Scope & Sequence Geography, People and the Environment What makes a community? The Community What is a community? New York City Over Time How and why do communities change over time? Urban, Suburban and Rural Communities How are communities the same and different? A Changing Society and the Progressive Era How do people, policies and technological advances shape a nation?	Building Bridges	Geodesic Dome	Green Architecture	Language of Arch.	Neighborhood Design	Scale Model Building	Skyscrapers

This educational resource was made possible by generous funding from Deutsche Bank Americas Foundation.