Building a System in Clojure

and ClojureScript

ient C Persistence Component

Twitterclient Component ‘stores tweets in ElasticSearch

‘connects to Streaming API, reconnects when necessary Switchboard Component

hunk-chan with il hunk elasticsearch

‘stream-buffer ‘map json filter tweet? log-count Persistence-Channels persistence

e Loremm o
store.
pipe
tap
Interop Component Percolation Component Q.,
‘communicales via Redis Pub/Sub finds percolation matches in ElasticSearch
Percolation-Channels Pipeline Pe
transducing

Redis
Pub/Sub

] [Persistence Component
PersitenceChannels
Iter0p-Channels [‘Component l o
Component
message 0 ransducing elasticsearch
‘handler _ ‘_‘
function :query-results
Pipeline query
put : =i] Tweet
ttweot-aissing) ‘transducing I index
Interop Component S function

get index stats

Communicator Component

message distribution via core.match ‘Communicator-Channels
‘Component

[:cmd/query

Percolation Component
finds percolation matches in ElasticSearch

[:cmd/missing

%

elasticsearch

[:cmd/percolate

T T Component

register
query

Pecolator
index

el h:g O teststats

l uurmum

sentr ===y soioop

unolup ‘send-ioop. unﬂ-lunP _H |
mncnn

all clients. ‘addressed by uid

Browser

Building a System in Clojure (and
ClojureScript)

Matthias Nehlsen

This book is for sale at http://leanpub.com/building-a-system-in-clojure

This version was published on 2016-07-25

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build

traction once you do.

© 2014 - 2016 Matthias Nehlsen

http://leanpub.com/building-a-system-in-clojure
http://leanpub.com
http://leanpub.com/manifesto

Contents

3.9

1. Introduction 1
2. Example application: Counter L 3
3. WebSocket Latency Visualization Example 12
3.1 :client/mouse-cmp Lo 15
3.2 Server/ptr-cmp ... 21
3.3 example.coreon clientside L 22
3.4 example.core on serverside 24
3.5 Application Reload fromthe REPL 26
3.6 cclient/store-cmp Lo 26
3.7 :client/histogram-cmp L. Lo 30
3.8 matthiasn.systems-toolbox-ui.charts.histogram 32

matthiasn.systems-toolbox-ui.chartsmath 38

1. Introduction

Hamburg, June 2016

A year and a half ago I started working on this book. The initial chapters just poured out of
me, and then [realized that the kind of application that I was trying to build would greatly benefit
from a library that makes composing a system out of individual components or subsystems that
communicate via message passing much simpler. Then I had this gig that allowed me to explore
the problem space further, and build a commercial application on top of it.

For a long time, I had wanted to get back to the book. But two things held me back:

1) I was waiting for inspiration to strike me once again, and then a few weeks later regain full
conscience, noticing to my pleasant surprise that the book had completed itself in the meantime.
Imagine my disappointment when I noticed that it doesn’t work that way.

2) I was dreading having to write the documentation of the library without a mechanism
in place that validates its usage, the messages passed around, and alterations to the managed
component state. I had looked into schema' a few times, but somehow did not feel compelled to
adopt it. No validation wasn’t viable either, as then everything depends on the wording of the
documentation, and that’s a source of ambiguity that’s best avoided.

Then, along came clojure.spec?, and I was stunned how well it fit the bill. Within days, I
had adapted the systems-* libraries and all of the sample applications, and 'm very excited how
much more sense the entire approach makes after THE source of errors I had dealt with just fall
by the wayside. The biggest problem had always been maps not structured as expected, and me
as the developer having to keep those expectations in my head, rather than have the program do
it for me. The capacity of my brain is way too small to keep such stuff in working memory.

In particular, I had those issues while working on my latest application, iWasWhere*, which
is an application for helping me get more done while being happier, in a geolocation-aware
context. No worries, I'll get to that as it’ll be one of the sample applications of this book. Among
other things, iWasWhere is supposed to help me reach longer-term goals, such as finishing
this very book, and I write it using the systems-toolbox libraries. Thus, I expect some cross-
pollination between the book and the project. Anyway, building this application luckily put me
back in the position of a user of the libraries, and that’s a welcome change of perspective for
moving it forward. And now with clojure.spec, this has become much more pleasant.

Now, this is going to be a reboot of the book project. For now, I will move all the existing
chapters into the appendix, for reference. However, your time is probably better spent reading
the new material, and then joining a discussion about it. [want this book to help you approach
this beautiful language named Clojure, and I can do that best when you let me know what you
found unclear, or where you would like additional explanations. To provide feedback, you can
either contact me directly under matthias.nehlsen@gmail.com or create an issue in this book’s
GitHub project’, ideally with file and line number.

"https://github.com/plumatic/schema
*http://clojure.org/about/spec
*https://github.com/matthiasn/systems-toolbox
“https://github.com/matthiasn/iWasWhere
*https://github.com/matthiasn/clojure-system-book

https://github.com/plumatic/schema
http://clojure.org/about/spec
https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/iWasWhere
mailto:matthias.nehlsen@gmail.com
https://github.com/matthiasn/clojure-system-book
https://github.com/plumatic/schema
http://clojure.org/about/spec
https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/iWasWhere
https://github.com/matthiasn/clojure-system-book

Introduction 2

I imagine the systems-toolbox libraries to be helpful when you want to build applications
like the ones described in this book. For anything that you find missing or where you want
something improved, please also consider opening an issue on GitHub®.

Now have fun playing around with the sample applications. I'm confident you will learn the
most when checking out the code, changing stuff here and there, and build something different
out of these applications. All of them here are compatible with FigWheel’, by the way. It’s instant
feedback make coding all the more gratifying.

Okay, that’s all, let me know how I can help!

Matthias

P.S. I'm curious about what you will build on top of these libraries. If you have a project you
would like me to look at, shoot me an email. If it’s an open source project, I'll be happy to do a
code review for free. All else can be discussed.

®https://github.com/matthiasn/systems-toolbox
"https://github.com/bhauman/lein-figwheel

https://github.com/matthiasn/systems-toolbox
https://github.com/bhauman/lein-figwheel
https://github.com/matthiasn/systems-toolbox
https://github.com/bhauman/lein-figwheel

2. Example application: Counter

In Clojure (and ClojureScript), we like to use persistent data structures' because they are
immutable®. Immutable data structures are great, because they make a program easier to reason
about, and they make an entire class of potential bugs disappear: with immutable values, there is
no possibility for accidentally mutating something. If you haven’t seen Rich Hickey’s talk “The
Value of Values”, you should watch it now, or read the transcript®, and then continue with this
chapter.

Okay, now you’re familiar with Rich Hickey’s thoughts on immutable data. Hopefully, we’re
now on the same page about their value. Ideally, when building a UI, we would want to create
functions that take some immutable data and return some HTML. On the server side, that’s
exactly how you would have done it for years. With something like Hiccup®*, you can build such
functions easily. However, this doesn’t easily transfer to the ClojureScript world. Server-side
rendering means having to reload the page when anything changes and long gone are the days
in which that was sufficient. We can no longer expect that users will happily refresh a page and
wait, wait, wait.

Rather, nowadays, we want to build highly interactive web applications that feel like
desktop applications or mobile apps, rather than the typical thing of the early web, where
you submit a form and wait for some page to appear, seconds later.

Ideally, we should be able to do the same thing on the client as we do on the server. Pass some
data to a function, get some DOM subtree back, and move on. But for a long time there was no
decent solution for this problem, which presumably has to do with the DOM? being this highly
mutable construct, which UI frameworks such as Angular]S 1.x° use directly for attaching data
and functionality. I tried to use Angular]S with ClojureScript a long time ago, and it just doesn’t
seem to work properly, in a way I’d call predictable.

Then, along came React’, which changed everything. It allows us to write pure functions that
we can feed immutable data, and that will build an entire DOM subtree out of the data every
single time. Then, when a change in the data is detected, the render function is called again,
generating the entire output. React will then do some diffing between the previous version and
the latest version, in a virtual DOM, and deal with the messy DOM mutation to enact the detected
changes in the “real” DOM. This approach may sound like a lot of work, but in reality, it’s super
fast, faster than anything we’d have to worry about in most cases.

Then there are ClojureScript libraries that make React available to us Clojure(Script)
developers. The one that was available first was Om®. I prefer writing user interfaces in Hiccup,
because I find this notation very terse and succinct, and it also makes for something that’s

"https://en.wikipedia.org/wiki/Persistent_data_structure

*https://en.wikipedia.org/wiki/Immutable_object
*https://github.com/matthiasn/talk-transcripts/blob/4f17b730a370cf454266c90525ea5f0d 1£38098/Hickey_Rich/ValueOfValues.md
“https://github.com/weavejester/hiccup

*https://en.wikipedia.org/wiki/Document_Object_Model

®https://angularjs.org/

"https://facebook github.io/react/

®https://github.com/omcljs/om

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Immutable_object
https://github.com/matthiasn/talk-transcripts/blob/4f17b730a370cf454266c90525ea5ff0d1f38098/Hickey_Rich/ValueOfValues.md
https://github.com/weavejester/hiccup
https://en.wikipedia.org/wiki/Document_Object_Model
https://angularjs.org/
https://facebook.github.io/react/
https://github.com/omcljs/om
https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Immutable_object
https://github.com/matthiasn/talk-transcripts/blob/4f17b730a370cf454266c90525ea5ff0d1f38098/Hickey_Rich/ValueOfValues.md
https://github.com/weavejester/hiccup
https://en.wikipedia.org/wiki/Document_Object_Model
https://angularjs.org/
https://facebook.github.io/react/
https://github.com/omcljs/om

Example application: Counter 4

particularly easy to test, but more about that another time. Luckily, there’s Reagent’, which
provides just that: a way to use Hiccup on the client, with React.

With Reagent, you can then start building applications, right from where its tutorials leave
you. The promise there is that all you need to do is share a Reagent atom between the different
parts of your application. Hmm, sounds simple enough, but every time I tried to build an evolving
system around it, I ended up writing something that quickly became hard to maintain. Like,
repeatedly. And pull-my-hair-out hard.

It turns out that those problems have nothing to do with Reagent. Rather, they were dealing
with the same kinds of problems at Facebook, where React originated (via Instagram), so they
came up with the Flux pattern®.

Flux deals with structuring the application in a way that all state mutation happens in a
single place, rather than ad-hoc where UI functions have write access to data. The latter is just
terribly hard to maintain and difficult to debug, and that’s my experience when using Reagent
also - which, after all, is only a thin wrapper on top of React.

Flux is an approach, not a library. However, there’s Redux''. Redux is called a predictable
state container. What’s that? Well, basically a place where your data lives, and also the only
place where that data changes. Every other part of the application only has read access. It’s very
helpful when you want to reason about an application. Without a structured approach to state
management, | often find my mental complexity budget stretched beyond the point of breaking.
As in, pulling my hair out because of not finding bugs that should not have existed in the first
place.

As it turns out, the systems-toolbox library'? allows for the same kind of approach suggested
by Redux. There’s a predictable state container, which is interacted with via immutable
messages only, for example when clicking a button. Then, there are other components that
observe the state in that container and get notified when it changes. These can for example then
render an updated user interface. I found this to a be a helpful way for structuring applications,
and I've written a handful in this pattern so far, probably most notably the latest incarnation of
BirdWatch*’.

That application wouldn’t make for a gentle introduction so let’s instead start with something
very simple. In the Redux tutorials, there’s an example with a counter', where clicks on
increment and decrement buttons change app state, which then again is re-rendered by React.
Let’s do the same thing in ClojureScript, using the systems-toolbox and systems-toolbox-ui*’
libraries.

*https://reagent-project.github.io/
https://facebook.github.io/flux/
https://github.com/reactjs/redux
https://github.com/matthiasn/systems-toolbox
Phttps://github.com/matthiasn/BirdWatch

14

Phttps://github.com/matthiasn/systems-toolbox-ui

https://reagent-project.github.io/
https://facebook.github.io/flux/
https://github.com/reactjs/redux
https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/BirdWatch
https://github.com/matthiasn/systems-toolbox-ui
https://reagent-project.github.io/
https://facebook.github.io/flux/
https://github.com/reactjs/redux
https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/BirdWatch
https://github.com/matthiasn/systems-toolbox-ui

Example application: Counter 5

® © ¥ counter % - . : .
yBsrc) Oclis) Edexar 41~ b @ b P& Y

< C @ localhost:8888 w9 i fx (D example.index x () example.core X) e.cour

@ messages passed around and the new state retur:

{:counters [2 0 1]} f.spec. This eliminates an entire class of possil
iructure expectations might now immediately beco
\re [cljs.spec :as s]))

emove add
=handler
ir for incrementing specific counter”
2 I [current-state msg-payload]}]
itate (update-in
_ current-state
dec inc [:counters (:counter msg-payload)]

* #+ % 1))}

O =handler

ir for decrementing specific counter”
i [current-state msg-payload]}]

dec | ne itate (update-in current-state [:counters (:coun
love-handler

1 ir for removing last counter”
i lcurrent-statel}]

dec | Inc itate (update-in current-state [:counters] #(int

|=handler

ir for adding counter at the end"

I lcurrent-state] }]

itate (update-in current-state [:counters] conj

Counter Example

We start with three counters, which each can be incremented or decremented using a button,
and we can also add or remove counters. Simple, right? You could certainly do the same with just
Reagent and an atom, but in my experience, that doesn’t scale when things get more complex
than this. Let’s instead keep state and Ul separate and see what that looks like.

Let me briefly introduce the systems-toolbox model now. There’s a component. A compo-
nent is an entity that has a lifecycle. It has some state, and it reacts to messages. It then also has
some observable state, which other parts of the application can look at, read-only.

In this example, there’s the store component, let’s just look at the code'®. in the example.store
namespace'’:

(ns example.store
"In this namespace, the app state 1is managed. One can only 1interact with the
state by sending immutable messages. Each such message is then handled by a
handler function. These handler functions here are pure functions, they
receive message and previous state and return the new state.

Both the messages passed around and the new state returned by the handlers
are validated using clojure.spec. This eliminates an entire class of possible
bugs, where failing to comply with data structure expectations might now
immediately become obvious."

(:require [cljs.spec :as s]))

“The links should always point to the latest version in the codebase and be in sync with the text in the book chapters. If you find that that
is not the case, it means I messed up somewhere and need your help. Just send me an email to matthias.nehlsen@gmail.com and I will update
the chapter text as quickly as possible. Thanks!

https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux- counter01/src/cljs/example/store.cljs

https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/store.cljs
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/store.cljs
mailto:matthias.nehlsen@gmail.com
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/store.cljs

Example application: Counter 6

(defn inc-handler
"Handler for -incrementing specific counter"
[{:keys [current-state msg-payload]}]
{:new-state
(update-in current-state [:counters (:counter msg-payload)] #(+ % 1))3})

(defn dec-handler
"Handler for decrementing specific counter"
[{:keys [current-state msg-payload]}]
{:new-state (update-in current-state [:counters (:counter msg-payload)] dec)})

(defn remove-handler
"Handler for removing last counter"
[{:keys [current-state]}]
{:new-state (update-in current-state [:counters] #(into [] (butlast %)))})

(defn add-handler
"Handler for adding counter at the end"
[{:keys [current-state]}]
{:new-state (update-in current-state [:counters] conj 0)})

(defn state-fn
"Returns clean 1initial component state atom"
[_put-fn]
{:state (atom {:counters [2 0 1]3})})

55 validate messages using clojure.spec

(s/def :redux-exl/counter #(and (integer? %) (>= % 0)))
(s/def :cnt/inc (s/keys :req-un [:redux-exl/counter]))
(s/def :cnt/dec (s/keys :req-un [:redux-exl/counter]))

;3 validate component state using clojure.spec
(s/def :redux-exl/counters (s/coll-of 1integer? []))

(s/def :redux-exl/store-spec (s/keys :req-un [:redux-exl/counters]))

(defn cmp-map

[cmp-id]
{:cmp-id cmp-id
:state-fn state-fn
:state-spec :redux-exl/store-spec
thandler-map {:cnt/inc inc-handler
:cnt/dec dec-handler

:cnt/remove remove-handler
:cnt/add add-handler}})

Above, you can see that there are four handlers, for four different message types: :cnt/inc,
:cnt/dec, :cnt/add and :cnt/remove.
Then, there’s application state. The initial state is returned by the state-fn:

Example application: Counter 7

{:counters [2 0 1]}

Each of these three counters has an initial value, which can be changed by clicking the
respective buttons. That’s all there is to the app state. Each handler takes the current-state
argument and returns the : new-state in the respective key in the returned map.

Then, as a recent addition to the library, there is also validation provided by the excellent
clojure.spec'®, which for me changes everything in Clojure for the better. With it, we can specify
precisely how both messages passed around and returned state changes are supposed to look like,
and fail otherwise. This validation gives you the best of both worlds. You get the sanity check
from a typed world, only better in some regards, and without all the clutter.

Next, let’s have an eye on a Ul component that makes use of this state to render something,
and finally, look at how messages get passed back and forth between those components.

The UI functions are super simple. There are only three functions in the example.counter-ui
namespace'’, counter-view, counters-view, and cmp-map:

(ns example.counter-ui
(:require [matthiasn.systems-toolbox-ui.reagent :as r]
[matthiasn.systems-toolbox-ui.helpers :as h]))

(defn counter-view
"Renders individual counter view, with buttons for increasing or decreasing
the value."
[idx v put-fn]
[:div
[:h1l v]
[:button {:on-click #(put-fn [:cnt/dec {:counter 1idx}])} "dec"]
[:button {:on-click #(put-fn [:cnt/inc {:counter 1idx}])} "inc"]])

(defn counters-view
"Renders counters view which observes the state held by the state component.
Contains two buttons for adding or removing counters, plus a counter-view
for every element in the observed state."
[{:keys [current-state put-fn]}]
(let [indexed (map-indexed vector (:counters current-state))]
[:div.counters
[h/pp-div current-state]
[:button {:on-click #(put-fn [:cnt/remove])} "remove"]
[:button {:on-click #(put-fn [:cnt/add])} "add"]
(for [[idx v] indexed]
M :key idx} [counter-view idx v put-fn])]))

(defn cmp-map
[cmp-id]
(r/cmp-map {:cmp-id cmp-id
:view-fn counters-view
:dom-id "counter'}))

Bhttps://clojure.org/about/spec

https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/counter_ui.cljs

https://clojure.org/about/spec
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/counter_ui.cljs
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/counter_ui.cljs
https://clojure.org/about/spec
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/counter_ui.cljs

Example application: Counter 8

The cmp-map function returns a configuration map that systems-toolbox needs to start a
component of this kind. In this case, that’s a component that renders a small piece of UI into
the element with the specified element ID in the DOM. There, it specifies that the counters-view
function should be called to turn data into a piece of user interface.

This counters-view then gets passed the current-state and turns that into a tree
structure of DOM elements, with add and remove buttons once, and then a counter-view for
each indexed element in the counters in the current-state. Then, note that there’s the put-fn,
which we can call when the component is supposed to send something, so in this case when the
respective button is clicked. Note that the index is used to identify which of the (initially three)
counters to increment or decrement.

That’s all there is to the UI component. Now let’s look at how those components are wired
together, in the core namespace. There’s the switchboard, which you can think of like this:

L AD
Telephony switchboard

Someone connects a wire, and you can start talking. Only that here, the wires are uni-
directional. Under the hood, there are core.async® channels connected to each other, but you
don’t need to worry about that for now.

Let’s have a look at the example.core namespace®":

(ns example.core
(:require [example.store :as store]
[example.counter-ui :as cnt]
[matthiasn.systems-toolbox.switchboard :as sb]))

(enable-console-print!)
(defonce switchboard (sb/component :client/switchboard))

(defn init
[]
(sb/send-mult-cmd
switchboard
[[:cmd/init-comp (cnt/cmp-map :client/cnt-cmp)]
[:cmd/init-comp (store/cmp-map :client/store-cmp)]
[:cmd/route {:from :client/cnt-cmp :to :client/store-cmp}]
[:cmd/observe-state {:from :client/store-cmp :to :client/cnt-cmp}]]))

(init)

First, the switchboard is created. Then, we send a message to the switchboard, with
a vector containing multiple commands. We start with initializing the :client/cnt-cmp

*%https://github.com/clojure/core.async

*Thttps://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/core.cljs

https://github.com/clojure/core.async
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/core.cljs
https://github.com/clojure/core.async
https://github.com/matthiasn/systems-toolbox/blob/master/examples/redux-counter01/src/cljs/example/core.cljs

Example application: Counter 9

and :client/store-cmp components, which are responsible for Ul and state management,
respectively. The order here is not relevant, as these components don’t need to know about each
other anyway.

Then, we route messages from the UI component to the store component by using : cmd/route.
Routing means that a connection is made for all messages for which there is a handler, so here
:cnt/inc, :cnt/dec, :cnt/add and :cnt/remove, as we've seen in the : handler-map earlier.
With this, whenever we use the put-fn inside the UI and send a message of any of these types,
the store will receive it.

So far so good. Next, we need the UI to observe the state of the store component,
which happens when sending the :cmd/observe-state message. Whenever the state of
the:client/store-cmp changes, the Ul will now have a copy of the change in it’s local atom.

That’s all there is to it. Now, this example has been quite simple. However, you can build
much more complex applications in the same style. Very recently, this approach has become
much more viable thanks to clojure.spec®, which is a great addition to my development toolbox.
You should use it in your projects, too. If you have not heard the latest Cognicast®* where Rich
Hickey talks about it, you should do that right now.

Note that not only does clojure.spec allow us to validate our app-specific data structures
- it is also used dynamically in the switchboard when wiring components, so that validation
takes application state into account. This dynamic validation is powerful, and would be difficult
to achieve with a type system. Whenever there’s another cmp-id that the switchboard has
initialized, the set of possible values is updated, so that once it comes to route and observe-
state, only valid component ids can be used. Try changing a component ID and you’ll see an
error message that is surprisingly not terrible for Clojure. Yeah, I don’t like typical error messages
in Clojure, and anything that makes the situation better is much appreciated.

Oh, I should also note Figwheel*. Applications built with the systems-toolbox are compat-
ible with figwheel, with a page reload on every code change, while preserving application state.
The reload mechanism is very useful during development, especially when you have some login.
It’s tedious without, where you have to recreate the app state after reloading the page so that you
can judge the little change you made. Not so here, you make the change, and the page reloads
automatically, while retaining the application state.

**https://clojure.org/about/spec
Zhttp://blog.cognitect.com/cognicast/
**https://github.com/bhauman/lein-figwheel

https://clojure.org/about/spec
http://blog.cognitect.com/cognicast/
https://github.com/bhauman/lein-figwheel
https://clojure.org/about/spec
http://blog.cognitect.com/cognicast/
https://github.com/bhauman/lein-figwheel

Example application: Counter 10

Je

® ' W Counter X . : ;
yBsrc) Oclis) Edexar 41~ b @ b P& Y

< C @ localhost:8888 w9 i fx (D example.index x () example.core X) e.cour

@ messages passed around and the new state retuf

{:counters [2 0 1]} f.spec. This eliminates an entire class of possik
iructure expectations might now immediately beco
\re [cljs.spec :as s]))

remove add
=handler
ir for incrementing specific counter”

22 I [current-state msg-payload]}]
itate (update-in

_ current-state
dec inc [:counters (:counter msg-payload)]

* #+ % 1))}

(] =handler

ir for decrementing specific counter”
i [current-state msg-payload]}]

dec | ne itate (update-in current-state [:counters (:coun
love-handler

1 ir for removing last counter”
i lcurrent-statel}]

dec | inc itate (update-in current-state [:counters] #(int

|=handler

ir for adding counter at the end"
I lcurrent-state] }]

itate (update-in current-state [:counters] conj |

Figwheel in Action

Also, this is incredibly useful when doing CSS changes. Usually, you’d probably do tiny
changes in the developer tools until you have achieved the desired effect. But with Figwheel, the
page will also reload while retaining app state, typically without any jumpiness.

Have a look and try it out for yourself. For that, I’d like you to clone the repository and run
the application as follows:

lein run

And in an additional terminal:

lein figwheel

And now go to the store and change what happens when clicking the inc button. Where
before, the value would be incremented by one, we could now have it increment by 11, like this:

(defn 1dinc-handler
"Handler for -incrementing specific counter"
[{:keys [current-state msg-payload]}]
{:new-state (update-in current-state [:counters (:counter msg-payload)] #(+ % 11))})

After saving store.cljs, youll briefly notice the figwheel logo overlayed on top of the
page, and next, you click the button and increment the previous counter value, only that now
you’ll add 11 or whatever else you chose as the number there in your changed inc-handler
function.

You can probably imagine how useful that can be when you build anything more complex.
And over the next couple of chapters, I will show you different examples of more complex
applications using the same pattern, only then composing more complex behavior out of the same
predictable handler functions. By the way, these handler functions are easily testable because

Example application: Counter 11

they are pure, acting on immutable data and returning new values, rather than mutating some
existing state. We'll get to that in a later chapter.

Now check out the example application, play around with it, and let me know what you
think. The systems-toolbox** has helped me build these applications so far:

« BirdWatch**
» iWasWhere”
a client project

» trailing mousepointer example?®
» redux counter example®

It may help you build your application, too.

P.S. I needed some integration test for the systems-toolbox-ui*’ library, something running
in an actual browser. So I wrote some tests running the example discussed above, clicking the
buttons, and then asserting that they change as expected. You can run those tests and see for
yourself, the instructions are here*'.

Zhttps://github.com/matthiasn/systems-toolbox

*®https://github.com/matthiasn/BirdWatch

*"https://github.com/matthiasn/iWasWhere
**https://github.com/matthiasn/systems-toolbox/tree/master/examples/trailing-mouse-pointer
29

*https://github.com/matthiasn/systems-toolbox-ui
*'https://github.com/matthiasn/systems-toolbox-ui

https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/BirdWatch
https://github.com/matthiasn/iWasWhere
https://github.com/matthiasn/systems-toolbox/tree/master/examples/trailing-mouse-pointer
https://github.com/matthiasn/systems-toolbox-ui
https://github.com/matthiasn/systems-toolbox-ui
https://github.com/matthiasn/systems-toolbox
https://github.com/matthiasn/BirdWatch
https://github.com/matthiasn/iWasWhere
https://github.com/matthiasn/systems-toolbox/tree/master/examples/trailing-mouse-pointer
https://github.com/matthiasn/systems-toolbox-ui
https://github.com/matthiasn/systems-toolbox-ui

3. WebSocket Latency Visualization
Example

Communication between backend and web applications via WebSockets' is an integral part of
delivering a rich user experience. With that addition, it is much easier to push new information
to the user at any given time, without having to resort to constant polling.

But how fast IS that communication? Let’s find out. The next sample application for the
systems-toolbox” deals with just that, visualizing the latency for messages sent from client to
server and back.

"https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_APT
®https://github.com/matthiasn/systems-toolbox

12

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/matthiasn/systems-toolbox
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/matthiasn/systems-toolbox

WebSocket Latency Visualization Example

WebSockets Latency Visualization

Matthias Nehlsen

WebSockets bring bi-directional
communication to the browser. This enables
you to deliver interactive, real time web
applications where all the data is as of right
now, rather than always being outdated, and
then constantly refreshed.

But how fast is this transport mechanism? Let's

have a look. You may have noticed the circle
around the mouse pointer on this page, or in
fact the two circles, where one of them
appears to follow the other. Both represent
your last mouse position, only that one was
sent to and returned from the server in the
meantime. This gives you an intuition for how
long it takes. Also, with your movement of the
mouse, you generate data for the histograms
below, which show the roundtrip duration:

Freg

200 &0
150 &0
Z i
2 100 g 40
§ 50 £ o
o 0 —— -

What happens here is that
movements of the mouse (or
your finger on your mobile
device) are captured. The
more reddish one is then
painted immediately, whereas
the bluish one is painted after
the event is sent to a server
somewhere in Germany, and
then back to wherever you
are.

8
6
Z
2 an
E1S
o ——

e

f\f‘- V‘Ll)J l‘l‘ E 700

Rousdrript/ms Roardtrip o/ms {within $3th percentile)

200 80
150 0

3 3
g 10 d 40
§ 50 £ W
o o

Freg

& B0 1J IU 1‘ Il‘Ll li I‘Ll 22 ILI

IUJ]l‘ 140
Rounderip t/ms {within 83ch percensile)

Frequencies

‘\ V‘U)J il‘. 00 1 bJ

Neswark time ¢/ms (within 99th percencile) Netwark time t/ms {within §3¢2 percentile}

Screenshot

Server processing time ¢/ms

13

WebSocket Latency Visualization Example 14

Check out the live demo here® it’ll give you some additional information about the
application. There was a previous version of this example, but with clojure.spec* released, it
was a good time to revisit this application and have it fully validated.

By the way, clojure.spec’® came at a crucial time for me. This kind of validation was missing
in the systems-toolbox (and more broadly in Clojure, too), and that made me question the whole
approach, especially after fighting with annoying bugs in my latest application, iWasWhere®
(which I'll introduce in a subsequent chapter). But now with clojure.spec, the entire class of
those annoying bugs is gone for good. In a matter of a little over a week, I upgraded all my
applications plus the systems-toolbox libraries to use clojure.spec, and I'm now more convinced
about the approach than ever. You can build applications this way, and stay sane at the same
time.

We’ll look into validation in this chapter, too. But let’s get started with the application itself.
Here, we have a couple of different components:

On the client:

o there’s the :client/mouse-cmp component that shows the position of the mouse, both
locally and for the message coming back from the server

o there’s the :client/store-cmp, which holds the client-side state

« there’s the :client/histogram-cmp Ul component for visualizing the round trip times
as histograms

« there’s :client/info-cmp Ul component that shows some information about the app

« also, there are components for visualizing message flow, and for showing some JVM stats:
:client/observer-cmp and :client/jvmstats-cmp

On the server:

« there’s the :server/ptr-cmp component, which keeps a counter of all messages passed
through since application startup, and returns each mouse position message to the client
where it originated, plus, upon request, a history of mouse positions from all connected
clients

« then, there’s also the :server/metrics-cmp component for gathering some stats about
the JVM, which get broadcast to all connected clients

On both sides, there are Sente” components for establishing bi-directional communication
between client and server. These ready-to-use components are provided by the systems-
toolbox-sente® library, and you can use them in your projects, too, with a simple import and no
more than a handful of lines of code.

The store component on the client, which holds the client-side state, is then observed by the
histogram, the mouse moves, and the info components; these three render something based on
what’s in the state that they observe.

*http://systems-toolbox.matthiasnehlsen.com/
“https://clojure.org/about/spec
*https://clojure.org/about/spec
®https://github.com/matthiasn/iWasWhere
"https://github.com/ptaoussanis/sente
®https://github.com/matthiasn/systems-toolbox-sente

http://systems-toolbox.matthiasnehlsen.com/
https://clojure.org/about/spec
https://clojure.org/about/spec
https://github.com/matthiasn/iWasWhere
https://github.com/ptaoussanis/sente
https://github.com/matthiasn/systems-toolbox-sente
https://github.com/matthiasn/systems-toolbox-sente
http://systems-toolbox.matthiasnehlsen.com/
https://clojure.org/about/spec
https://clojure.org/about/spec
https://github.com/matthiasn/iWasWhere
https://github.com/ptaoussanis/sente
https://github.com/matthiasn/systems-toolbox-sente

WebSocket Latency Visualization Example 15

The communication between these components is comparable to what was introduced in the
previous chapter. What’s new here is the sente-cmp. Let’s have a brief look what WebSockets’
are. They give us a way to establish a very low latency bi-directional connection between client
and server. It’s not HTTP but instead its own protocol. WebSockets are well supported from IE
10 on, and in all other recent browsers. Some critics say that they may be problematic because
firewalls and reverse proxies might have to be reconfigured. Well, that might indeed problematic
if (and only if) your OPS people are incompetent. But most likely they are not, so it’s only a matter
of communication (and some upfront planning) to get this potential hurdle out of the way.

Other than that potential issue with your firewall, there appears to be no downside to using
WebSockets, and plenty of upsides. You absolutely need to be able to send messages from server
to client at any time if you want to build a modern, responsive Ul. Sure, you could also use
Server-sent Events (SSE)'® for the server -> client direction, and send messages from client to
server the way you’d normally do: via REST calls, for each message. That may work; it may also
be too expensive if you want to send messages often. For the use case in this very example, with
the mouse positions, the user experience would likely be quite poor.

WebSockets are also nice because you get an ordering guarantee, which would be much
harder with REST calls. Another aspect not to underestimate is that with REST calls, you need
to think about authentication on every single request, where you do it once for a WebSockets
connection.

3.1 :client/mouse-cmp

Anyway, let’s look at some code, starting with where the messages originate in our example, the
:client/mouse-cmp component, and its respective namespace'":

(ns example.ui-mouse-moves
(:require [matthiasn.systems-toolbox-ui.reagent :as r]
[matthiasn.systems-toolbox-ui.helpers :refer [by-id]]))

;3 some SVG defaults
(def circle-defaults {:fill "rgba(255,0,0,0.1)
" :stroke "rgba(0,0,0,0.5)"
:stroke-width 2 :r 15})
(def text-default {:stroke "none" :fill "black" :style {:font-size 12}1})
(def text-bold (merge text-default {:style {:font-weight :bold :font-size 123}}))

(defn mouse-hist-view
"Render SVG group with filled circles from a vector of mouse positions in state."
[state state-key stroke fill]
(let [positions (map-indexed vector (state-key state))]
(when (seq positions)
[:g {:opacity 0.5}
(for [[idx pos] positions]
Mi:key (str "circle" state-key 1idx)}

*https://developer.mozilla.org/en-US/docs/Web/APIl/WebSockets_API
https://en.wikipedia.org/wiki/Server-sent_events

"https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse- pointer/src/cljs/example/ui_mouse_moves.cljs

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://en.wikipedia.org/wiki/Server-sent_events
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_mouse_moves.cljs
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://en.wikipedia.org/wiki/Server-sent_events
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_mouse_moves.cljs

WebSocket Latency Visualization Example 16

[:circle {:stroke stroke
:stroke-width 2
r 15
1cx (:x pos)
ey (:y pos)
:fill fi1131)1)))

(defn trailing-circles
"Displays two transparent circles. The position of the circles comes from
the most recent messages, one sent locally and the other with a roundtrip to

the server in between. This makes it easier to visually detect any delays."
[state]
(let [local-pos (:local state)
from-server (:from-server state)]
[:g
[:circle (merge circle-defaults {:cx (:x local-pos)
:cy (:y local-pos)})]

[:circle (merge circle-defaults {:cx (:x from-server)
(:y from-server)
1 "rgbha(0,0,255,0.1)"}1)11))

tcy

(defn mouse-view
"Renders SVG with both local mouse position and the last one returned from the
server, 1in an area that covers the entire visible page."
[{:keys [observed local]}]
(let [state-snapshot @observed
mouse-div (by-id "mouse'")
update-dim
#(do (swap! local assoc :width (- (.-offsetWidth mouse-div) 2))
(swap! local assoc :height (aget js/document "body" "scrollHeight")))]
(update-dim)
(aset js/window "onresize" update-dim)
[:div
[:svg {:width (:width @local)
theight (:height @local)}
(trailing-circles state-snapshot)
(when (-> state-snapshot :show-all :local)
[mouse-hist-view state-snapshot :local-hist
"rgha(0,0,0,0.06)" "rgba(0,255,0,0.05)"])
(when (-> state-snapshot :show-all :server)
[mouse-hist-view state-snapshot :server-hist
"rgba(0,0,0,0.06)" "rgba(0,0,128,0.05)"]1)11))

(defn 1init-fn
"Listen to onmousemove events for entire page, emit message when fired.
These events are then sent to the server for measuring the round-trip time,
and also recorded in the local application state for showing the local mouse
position."
[{:keys [put-fn]}]

WebSocket Latency Visualization Example 17

(aset js/window "onmousemove"
#(put-fn [:mouse/pos {:x (.-pageX %) :y (.-pageY %)1}1))
(aset js/window "ontouchmove"
(fn [ev]
(let [t (aget (.-targetTouches ev) 0)]
(put-fn [:mouse/pos {:x (.-pageX t) :y (.-pageY t)}])
#_(.preventDefault ev)))))

(defn cmp-map
"Configuration map for systems-toolbox-ui component."
[cmp-id]
(r/cmp-map {:cmp-id cmp-id
:view—-fn mouse-view
:dom-id "mouse"
:init-fn init-fn
:cfg {:msgs-on-firehose true}}))

Here, we have a Ul component that covers the entire page. This is facilitated by the following
CSS:

#mouse {
position: absolute;
top: 0;
width: 100%;
pointer-events: none;
z-index: 10;
margin-left: -12.5%;

Note that we want this transparent element on top, covering the rest of the page, which
is what the z-index does. Also, we want pointer-events to reach the elements below, for
example for clicking links or buttons, so we set them to none.

Then, in the init-fn, we set ontouchmove and ontouchmove event handlers, which get
called when these events are fired anywhere on the page. We could also more specifically handle
these events in the component’s div, but then the pointer-events would not be available for
elements below the mouse-view element, such as for clicking a button. Then, whenever an event
is fired, a messaged is sent with the mouse position. This message will be received by the client
side store directly, and also via the server side, where it’ll be enriched with some additional data.

Then, the rendering of the SVG'? covering the entire page is done in the mouse-view
function, which adapts the size of the element when onresize element fires. Here, the
trailing-circles function is called, which renders the two circles. This SVG rendering is
trivial to achieve with Reagent. You can see that we just create a group with two circles, each with
a distinct position based on the last known message. Fast movements will then reveal latency,
as you’ll see how the messages coming back from the server are lagging behind. Then, there
are two calls to the mouse-h+ist-view function, which renders either a local history or the last
moves of all clients, as you hopefully have seen when playing around with the live demo of the
application. If not, here’s what that looks like:

https://www.w3.org/Graphics/SVG/

https://www.w3.org/Graphics/SVG/
https://www.w3.org/Graphics/SVG/

WebSocket Latency Visualization Example

meantime. This gives you an intuition for
how long it takes. Also, with your movement
of the mouse, you generate data for the

histograms below, which show the roundtrip

3
200 150 .
150
100
100 e
g Y § 50
3 5
50 g
&‘/ &
o - — - 0 —— -
r T T T T T 1 — VAR AN Y
0 50 100 150 200 250 300 20 40 60 80 100 120 140 160 180 200
Roundtrip t/ms Roundirip t/ms (within 99th percentile)
200 100
B0
150
60
5 100 3
g g
E 3
50
E E 20
o —-— 0
r T T T T T 1 —r T T T T T T T
0 50 100 150 200 250 300 30 40 50 60 70 80 90 100 110 120
Network time t/ms (within 99th percentile) Network time t/ms (within 95th percentile)

Now, since we are already capturing the
movement of the mouse, you may think that
it could be interesting to see where the users'
mouses go, as a proxy for where they are
looking on a page. Surely not a accurate as
actual eye tracking, but probably much better

Screenshot

18

painted after the event is
sent to a server somewhere
in Germany, and then back
to wherever you are.

100

60

40

Frequencies

20

r T T T T T T T T 1
30 40 50 60 70 80 90 100 110 120

Roundtrip t/ms (within 95th peccentile)

500
400
300
g
g 200
3

F o0

[

Server processing time t/ms

In the screenshot above, you can see green circles for the mouse moves captured locally, and

charcoal ones for those from all clients.

Let’s go through the namespace®, function by function, starting from the bottom:

(defn cmp-map

"Configuration map for systems-toolbox-ui component."

[cmp-id]
(r/cmp-map {:cmp-id cmp-id
:view-fn mouse-view
:dom-id "mouse"
:init-fn dinit-fn
:cfg {:msgs-on-firehose true}}))

The cmp-map function creates the component map, which is like a blueprint that tells the
switchboard how to fire up the component. The UI part is done by calling r/cmp-map, which

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse- pointer/src/cljs/example/ui_mouse_moves.cljs

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_mouse_moves.cljs
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_mouse_moves.cljs

WebSocket Latency Visualization Example 19

is the main function in the systems-toolbox-ui library. Once the returned map is sent to the
switchboard, a component will be initialized that renders the mouse-view function into the
DOM element with the "mouse" ID.

Then, there’s the init-fn:

(defn init-fn
"Listen to onmousemove events for entire page, emit message when fired.
These events are then sent to the server for measuring the round-trip time,
and also recorded in the local application state for showing the local mouse
position."
[{:keys [put-fn]}]
(aset js/window "onmousemove"
#(put-fn [:mouse/pos {:x (.-pageX %) :y (.-pageY %)3}1))
(aset js/window "ontouchmove"
(fn [ev]
(let [t (aget (.-targetTouches ev) 0)]
(put-fn [:mouse/pos {:x (.-pageX t) :y (.-pageY t)}])
#_(.preventDefault ev)))))

This function takes care of registering handler functions for all mouse movements (and also
touch movement, for that matter) for the entire window. By doing that here, for the entire
window, we can get away with the mouse-view element not getting any mouse movement
events, which is required for still reacting to clicks in elements that are in fact covered by it,
since it spans the entire page. When such an event is encountered, a : mouse/pos message is sent,
which then happens to be received by both the :client/store-cmp and the :server/pos-
cmp. Not that this component needs to be concerned with that in any way, though - there’s
proper decoupling between them.

You can see how those messages are supposed to look like in the respective specs:

(s/def :ex/x pos-int?)
(s/def :ex/y pos-int?)

(s/def :mouse/pos
(s/keys :req-un [:ex/x :ex/y]))

If you still haven’t heard Rich Hickey talk about clojure.spec'* on the Cognicast', you
seriously need to do that now. clojure.spec has many useful properties. Among them is that
you’ll immediately know if you’ve broken your application with some recent change, as the
system would throw an error immediately, rather than drag that problem along and blow up
in your face somewhere else, where you’ll have a hard time figuring out where it originated.
What’s also very useful is that when you come back to some code you wrote some time ago and
wanted to know what a message is supposed to look like, you don’t have to print it out and infer
what the rules may be. No, instead you just look at the piece of code that’s run when validating
the message, it’ll tell you all nitty-gritty details of what the expectations are. Much nicer.

Next, let’s have a look at the mouse-view function, which is responsible for rendering the
UI component:

"http://clojure.org/about/spec
http://blog.cognitect.com/cognicast/103

http://clojure.org/about/spec
http://blog.cognitect.com/cognicast/103
http://clojure.org/about/spec
http://blog.cognitect.com/cognicast/103

WebSocket Latency Visualization Example 20

(defn mouse-view
"Renders SVG with both local mouse position and the last one returned from the
server, in an area that covers the entire visible page."
[{:keys [observed local]}]
(let [state-snapshot @observed
mouse-div (by-id "mouse™)
update-dim
#(do (swap! local assoc :width (- (.-offsetWidth mouse-div) 2))
(swap! local assoc :height (aget js/document "body" "scrollHeight")))]
(update-dim)
(aset js/window "onresize" update-dim)
[:div
[:svg {:width (:width @local)
theight (:height @local)}
(trailing-circles state-snapshot)
(when (-> state-snapshot :show-all :local)
[mouse-hist-view state-snapshot :local-hist
"rgba(0,0,0,0.06)" "rgba(0,255,0,0.05)"])
(when (-> state-snapshot :show-all :server)
[mouse-hist-view state-snapshot :server-hist
"rgha(0,0,0,0.06)" "rgba(0,0,128,0.05)"]1)11))

Note that this component gets passed a map with the observed and local keys. The
observed key is an atom which holds the state of the component it observes. Here, this is
always the latest snapshot of the store-cmp. The local atom contains some local state, such
as the width of the SVG for resizing. Note that we're detecting the width on every call to the
function, and also in the onresize callback of js/window. This ensures that the mouse div
fills the entire page, while working with the correct pixel coordinate system. One could instead
also use a viewBox, like this: { :width "100%" :viewBox "0 0 1000 1000"}. However, that
would not work correctly in this case as the mouse position would not be aligned with the circles
here.

Next, we have the trailing-circles function:

(defn trailing-circles
"Displays two transparent circles. The position of the circles comes from
the most recent messages, one sent locally and the other with a roundtrip to
the server 1in between. This makes it easier to visually detect any delays."
[state]
(let [local-pos (:local state)
from-server (:from-server state)]
[:g
[:circle (merge circle-defaults {:cx (:x local-pos)
tcy (:y local-pos)})]
[:circle (merge circle-defaults {:cx (:x from-server)
(:y from-server)
1 "rgba(0,0,255,0.1)"})11))

tcy

This one renders an SVG group with the two circles inside. Then, there are some defaults for
the different elements, which can be merged with more specific maps as desired:

WebSocket Latency Visualization Example 21

(def circle-defaults {:fill "rgba(255,0,0,0.1)" :stroke "black" :stroke-width 2 :r 15})
(def text-default {:stroke "none" :fill "black" :style {:font-size 123}})
(def text-bold (merge text-default {:style {:font-weight :bold :font-size 12}}))

Finally, there’s the mouse-hist-view function:

(defn mouse-hist-view
"Render SVG group with filled circles from a vector of mouse positions in state."
[state state-key stroke fill]
(let [positions (map-indexed vector (state-key state))]
(when (seq positions)
[:g {:opacity 0.5}
(for [[idx pos] positions]
Miikey (str "circle" state-key 1idx)}

[:circle {:stroke stroke
:stroke-width 2
Hg 15
1CX (:x pos)
icy (:y pos)
:fill fi1131)1)))

Here, the history of mouse movements is rendered, either for your local mouse movements,
or the last 1000 from all users. You’ve seen how that looks like in the screenshot above.

3.2 :server/ptr-cmp

That’s it for the rendering of the mouse element. The messages emitted there then get sent both
to the client-side and the server-side store components. Let’s discuss the server side first, before

looking into the wiring of the components. It’s really short; this is the entire example.pointer*®
namespace:

(ns example.pointer
"This component receives messages, keeps a counter, decorates them with the
state of the counter, and sends them back. Here, this provides a way to
measure roundtrip time from the UI, as timestamps are recorded as the message
flows through the system.

Also records a recent history of mouse positions for all clients, which the
component provides to clients upon request.")

(defn process-mouse-pos

"Handler function for received mouse positions, increments counter and returns
mouse position to sender."
[{:keys [current-state msg-meta msg-payload]}]
(let [new-state (-> current-state
(update-in [:count] 1inc)
(update-in [:mouse-moves]
#(vec (take-last 1000 (conj % msg-payload)))))]

®https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse- pointer/src/cljc/example/pointer.cljc

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljc/example/pointer.cljc
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljc/example/pointer.cljc

WebSocket Latency Visualization Example 22

{:new-state new-state
remit-msg (with-meta
[:mouse/pos (assoc msg-payload :count (:count new-state))]
msg-meta)}))

(defn get-mouse-hist
"Gets the recent mouse position history from server."
[{:keys [current-state msg-meta]}]
{:emit-msg (with-meta [:mouse/hist (:mouse-moves current-state)] msg-meta)})

(defn cmp-map

[cmp-id]
{:cmp-id cmp-id
:state-fn (fn [_] {:state (atom {:count O :mouse-moves []})})
:handler-map {:mouse/pos process-mouse-pos
:mouse/get-hist get-mouse-hist}
:opts {:msgs-on-firehose true

:snapshots-on-firehose truel})

At the bottom, you see the cmp-map, which again is the map specifying the component that
the switchboard will then instantiate. Inside, there’s the :state-fn, which does nothing but
create the initial state inside an atom. Then, there’s the :handler-map, which here handles the
two message types :cmd/mouse-pos and :mouse/get-hist.

The process-mouse-pos handler function then gets the current-state, the msg-payload,
and the msg-meta inside the map it gets passed as a single argument, and returns both the : new-
state and a message to emit, which is the same message it received, only now enriched by the
:count from this component’s state. Note that we are reusing the msg-meta from the original
message, as this metadata also contains the : sente-u1id of the client, which is required to route
the message back to where it originated. There’s more information on the metadata; we’ll get
to that later. Also, this function maintains the last 1001 positions from all connected client by
taking the last 1000 and conjoining the received position.

The get-mouse-hist handler function returns the history of mouse moves that’s main-
tained in the : server/ptr-cmp back to the client. Once again, the : sente-uid on the metadata
contains the requester’s ID, so we pass on the msg-meta in the response.

Next, the messages need to get from the UI component to the server, and back to the client.
Here’s how that looks like:

[message flow drawing]

3.3 example.core on client side

For establishing these connections, let’s have a look at the core namespaces on both server and
client, starting with the client'”:

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/core.cljs

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/core.cljs
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/core.cljs

WebSocket Latency Visualization Example 23

(ns example.core
(:require [example.spec]

[example.store :as store]
[example.ui-histograms :as hist]
[example.ui-mouse-moves :as mouse]
[example.ui-info :as info]
[example.metrics :as metrics]
[example.observer :as observer]
[matthiasn.systems-toolbox.switchboard :as sb]
[matthiasn.systems-toolbox-sente.client :as sente]))

(enable-console-print!)
(defonce switchboard (sb/component :client/switchboard))

; TODO: maybe firehose messages should +implicitly be relayed?
(defn init! []
(sb/send-mult-cmd
switchboard
[[:cmd/init-comp
#{(sente/cmp-map :client/ws-cmp
{:relay-types #{:mouse/pos
:mouse/get-hist
:firehose/cmp-put
: firehose/cmp-recv
: firehose/cmp-publish-state
:firehose/cmp-recv-state}
:msgs-on-firehose true})
(mouse/cmp-map :client/mouse-cmp)
(info/cmp-map :client/info-cmp)
(store/cmp-map :client/store-cmp)
(hist/cmp-map :client/histogram-cmp)3}]
[:cmd/route {:from :client/mouse-cmp
:to #{:client/store-cmp :client/ws-cmp}}]
[:cmd/route {:from :client/ws-cmp
:to :client/store-cmp}]
[:cmd/route {:from :client/info-cmp
:to #{:client/store-cmp :client/ws-cmp}}]
[:cmd/observe-state {:from :client/store-cmp
:to #{:client/mouse-cmp
:client/histogram-cmp
:client/info-cmp}}1])
(metrics/init! switchboard)
(observer/init! switchboard))

(init!)

First, as usual, we create a switchboard. Then, we send messages to the switchboard, with the
blueprints for the components we want the switchboard to initialize. For the core functionality

WebSocket Latency Visualization Example 24

discussed so far, only three of them are important: : client/ws-cmp, :client/mouse-cmp, and
:client/store-cmp. We'll look at the other components later.

Note that the switchboard is kept in a defonce, which means that it can’t be redefined later
on. This is necessary for working with Figwheel'®, as it allows the switchboard to shut down
existing components and fire them up again after reload, while retaining the previous component
state. Otherwise, without the defonce, the old state of each component would be lost as there
would be an entirely new switchboard.

Then, inside the component init block, the :client/ws-cmp is fired up first. This is the
WebSockets component provided by the systems-toolbox-sente'’ library. Here, we specify that
only messages of the types :mouse/pos and :mouse/get-hist should be relayed to the server.

Next, we wire the components together:

+ messages from : client/mouse-cmp are sent to both :client/store-cmpand :client/ws-

cmp

+ messages from : client/ws-cmp are sent to both : client/store-cmpand :client/jvmstats-

cmp

« messages from :client/info-cmp are sent to both :client/store-cmpand :client/ws-

cmp

« :client/mouse-cmp, :client/histogram-cmp and :client/info-cmp all observe
the state of the :client/store-cmp

« finally, the :client/observer-cmp is attached to the firehose, but more about that later
when we look at :client/observer-cmp.

At the bottom of the namespace, we also fire up the observer and metrics components. We’ll
look at that when covering the respective components.

3.4 example.core on server side

With the client-side wiring in place, let’s look at the server-side wiring in core.clj*:

(ns example.core
(:require [example.spec]

[matthiasn.systems-toolbox.switchboard :as sb]
[matthiasn.systems-toolbox-sente.server :as sente]
[example.metrics :as metrics]
[matthiasn.systems-toolbox-observer.probe :as probe]
[example.index :as 1index]
[clojure.tools.logging :as log]
[clj-pid.core :as pid]
[example.pointer :as ptr]))

(defonce switchboard (sb/component :server/switchboard))

(defn restart!

®https://github.com/bhauman/lein-figwheel
Phttps://github.com/matthiasn/systems-toolbox-sente
Ohttps://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse-pointer/src/clj/example/core.clj

https://github.com/bhauman/lein-figwheel
https://github.com/matthiasn/systems-toolbox-sente
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/clj/example/core.clj
https://github.com/bhauman/lein-figwheel
https://github.com/matthiasn/systems-toolbox-sente
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/clj/example/core.clj

WebSocket Latency Visualization Example 25

"Starts or restarts system by asking switchboard to fire up the provided
ws-cmp and the ptr component, which handles and counts messages about mouse
moves."

[]

(sb/send-mult-cmd

switchboard
[[:cmd/init-comp #{(sente/cmp-map :server/ws-cmp index/sente-map)
(ptr/cmp-map :server/ptr-cmp)}]
[:cmd/route {:from :server/ptr-cmp :to :server/ws-cmp}]
[:cmd/route {:from :server/ws-cmp :to :server/ptr-cmpl}]])
(metrics/start! switchboard)
#

(probe/start! switchboard))

(defn -main
"Starts the application from command line, saves and logs process ID. The
system that is fired up when restart! is called proceeds in core.async's
thread pool. Since we don't want the application to exit when just because
the current thread 1is out of work, we just put it to sleep."
[& args]
(pid/save "example.pid")
(pid/delete-on-shutdown! "example.pid")
(log/info "Application started, PID" (pid/current))
(restart!)
(Thread/sleep Long/MAX_VALUE))

Here, just like on the client side, a switchboard is kept in a defonce. Then, we ask the
switchboard to instantiate two components for us, the : server /ws-cmp and the : server/ptr-
cmp, and then wire a simple message flow together.

We've already discussed the :server/ptr-cmp above. The :server/ws-cmp is the server
side of the Sente-WebSockets component, and it takes a configuration map, which you can find
in the example.index”' namespace:

(def sente-map
"Configuration map for sente-cmp."
{:index-page-fn index-page
:relay-types #{:mouse/pos :stats/jvm :mouse/hist}})

In this configuration map, we tell the component to relay three message types, :mouse/pos,
:stats/jvm, and :mouse/hist. Also, we provide a function that renders the static HTML
that is served to the clients. Have a look at the namespace to learn more. In particular, watch
out for elements with an ID, such as [:div#mouse], [:figure#histograms.fullwidth],
[:div#info], or [:div#observer]. The client-side application will render dynamic content
into these DOM elements.

Then, also in the server-side example.core namespace, there is the -main function, which
is the entry point into the application. Here, we save a PID file, which will contain the process

*Thttps://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/clj/example/index.clj

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/clj/example/index.clj
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/clj/example/index.clj

WebSocket Latency Visualization Example 26

ID, also log the PID, and start! the application. We also start the server-side portion of the
metrics gathering and display, but more about that later.

Finally, we let the main thread sleep until roughly the end of time, or until the application
gets killed, whatever happens first. Well, Long/MAX_VALUE in milliseconds is only until roughly
292 million years from now, but hey, that should be enough.

3.5 Application Reload from the REPL

Oh, before I forget, you can also reload the server side on the JVM from the REPL*, without
long startup times, and while retaining application state. Try this:

$ lein repl

example.core=> (restart!)

This starts the server side application. Now change something, let’s say in the exam-
ple.pointer namespace, for example to print the message payload in process-mouse-pos:

(defn process-mouse-pos
"Handler function for received mouse positions, increments counter and returns
mouse position to sender."
[{:keys [current-state msg-meta msg-payload]}]
(let [new-state (-> current-state
(update-in [:count] 1inc)
(update-in [:mouse-moves]
#(vec (take-last 1000 (conj % msg-payload)))))]
{:new-state new-state
remit-msg (with-meta
[:mouse/pos (assoc msg-payload :count (:count new-state))]
msg-meta)l}))

With this change, all you need to do now is reload the modified namespace, and then call
restart! again:

example.core=> (require '[example.pointer :as ptr] :reload)
example.core=> (restart!)

You will see that the application keeps functioning, while maintaining component state,
with the only difference that now the message payloads get printed. Magic. Almost as cool as
Figwheel, and much better than having to wait ten seconds for the JVM to start up after every
change. Note that the sente components don’t get reloaded by default because of the : reload-
cmp false in their config. You can do the same in any of your components where required.

3.6 :client/store-cmp

Okay, now we have the message flow from capturing the mouse events to the server and back.
Next, let’s look at what happens to those events when they are back at the client. Processing of
the returned data happens in the example.store namespace®’:

**http://clojure.org/reference/repl_and_main
Zhttps://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse- pointer/src/cljs/example/store.cljs

http://clojure.org/reference/repl_and_main
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/store.cljs
http://clojure.org/reference/repl_and_main
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/store.cljs

WebSocket Latency Visualization Example 27

(ns example.store)

(defn mouse-pos-handler
"Handler function for mouse position messages. When message from server:

- determine the round trip time (RTT) by subtracting the message creation
timestamp from the timestamp when the message is finally received by the
store component.

- determine server side processing time is determined. For this, we can use
the timestamps from when the ws-cmp on the server side emits a message
coming from the client and when the processed message is received back for
delivery to the client.

- update component state with the new mouse location under :from-server.

When message received locally, only update position in :local."
[{:keys [current-state msg-payload msg-meta]}]
(let [new-state
(if (:count msg-payload)
(let [mouse-out-ts (:out-ts (:client/mouse-cmp msg-meta))
store-in-ts (:in-ts (:client/store-cmp msg-meta))
rt-time (- store-in-ts mouse-out-ts)
srv-ws-meta (:server/ws-cmp msg-meta)
srv-proc-time (- (:in-ts srv-ws-meta) (:out-ts srv-ws-meta))]
(=> current-state
(assoc-in [:from-server] (assoc msg-payload :rt-time rt-time))
(update-in [:count] 1inc)
(update-in [:rtt-times] conj rt-time)
(update-in [:server-proc-times] conj srv-proc-time)
(update-in [:network-times] conj (- rt-time srv-proc-time))))
(-> current-state
(assoc-in [:local] msg-payload)
(update-in [:local-hist] conj msg-payload)))]
{:new-state new-state}))

(defn show-all-handler

"Toggles boolean value in component state for provided key."
[{:keys [current-state msg-payload]}]
{:new-state (update-in current-state [:show-all msg-payload] not)})

(defn mouse-hist-handler

"Saves the received vector with mouse positions in component state."
[{:keys [current-state msg-payload]}]
{:new-state (assoc-in current-state [:server-hist] msg-payload)})

(defn state-fn

"Return clean initial component state atom."

[_put-fn]

{:state (atom {:count 0
irtt-times [
:network-times [1]

:server-proc-times []

WebSocket Latency Visualization Example 28

:local {:x 0 :y 0}
:show-all {:local false
:remote false}l})})

(defn cmp-map
"Configuration map that specifies how to instantiate component."

[cmp-id]
{:cmp-id cmp-id
:state-fn state-fn
thandler-map {:mouse/pos mouse-pos—handler
:cmd/show-all show-all-handler
:mouse/hist mouse-hist-handler}
:opts {:msgs-on-firehose true

:snapshots-on-firehose true}})

The cmp-map function once again generates the blueprint for how to instantiate this
component. We specify that the initial component state is generated by calling the state-
fn, which is a map with some keys as you can see above. Then, there are handler functions
for three message types :mouse/pos, :cmd/show-all, and :mouse/hist, which we’ll look
at in detail. Finally, there is some configuration in :opts, which specifies that both messages
and state snapshots should go on the firehose. We'll discuss the firehose when looking into the
:client/observer component.

The most important handler function in this application is the mouse-pos-handler func-
tion. This function receives all :mouse/pos messages, which in this application can come
either directly from the :client/mouse-cmp or from the :server/ptr-cmp. Where an
individual message comes from is determined by the predicate (:count msg-payload) in the
if statement. If that key exists, the message comes from the server, otherwise it’s directly from
:client/mouse-cmp

In case the message is local, we do return new-state altered like this:

(-=> current-state
(assoc-in [:local] msg-payload)
(update-in [:local-hist] conj msg-payload))

First, we set the : local key to contain the latest mouse position; then we add it to the local
history:.
The branch when the message comes from the server is slightly more involved:

(let [mouse-out-ts (:out-ts (:client/mouse-cmp msg-meta))
store-in-ts (:in-ts (:client/store-cmp msg-meta))
rt-time (- store-in-ts mouse-out-ts)
srv-ws-meta (:server/ws-cmp msg-meta)
srv-proc-time (- (:in-ts srv-ws-meta) (:out-ts srv-ws-meta))]

(=> current-state

(assoc-in [:from-server] (assoc msg-payload :rt-time rt-time))
(update-in [:count] 1inc)
(update-in [:rtt-times] conj rt-time)
(update-in [:server-proc-times] conj srv-proc-time)
(update-in [:network-times] conj (- rt-time srv-proc-time))))

WebSocket Latency Visualization Example 29

Here, we calculate a few durations, the rt-time, which is the entire roundtrip time, and the
srv-proc-time, which the duration between the :server/ws-cmp passing the message from
the client on, and the same component encountering the response. For fully understanding this,
you need to know that the systems-toolbox automatically timestamps messages when they are
received or sent by any component, and saves that on the message metadata.

Here’s how the metadata looks like when the :client/store-cmp receives a :mouse/pos
message from the server:

{:server/ws-cmp {:out-ts 1467046063466
tin-ts 1467046063467}
:sente-uid "25450474-0887-4612-b5ad-07d1calf4885"
:server/ptr-cmp {:in-ts 1467046063467
:out-ts 1467046063467}
:cmp-seq [:client/mouse-cmp
:client/ws-cmp
:server/ptr-cmp
:server/ws-cmp
:client/store-cmp]
:client/mouse-cmp {:out-ts 1467046063454}
:client/store-cmp {:in-ts 1467046063506}
:client/ws-cmp {:in-ts 1467046063465
:out-ts 1467046063488}
ctag "61f2f357-3d12-40ff-9827-8a481cf36f75"
:corr-id "a31f12e7-33fb-48a8-833b-3d764c2cl4bc"}

In contrast, this is how it looks like when the message comes directly from : client/mouse-
cmp:

{:cmp-seq [:client/mouse-cmp :client/store-cmp]
:client/mouse-cmp {:out-ts 1467046063476}
:corr-1id "2d32de55-cfle-4646-8709-0c02c66d260f"
ttag "a7ebdacO-ce78-4e47-adbc-0b955efef5b4"

:client/store-cmp {:in-ts 1467046063478}}

Of course, we could have also looked for the existence of the :server/ptr-cmp key on the
metadata, rather than looking for the :count key on the payload in the branching logic when
determining if a message comes from the server, it does not matter.

Okay, back to the :client/store-cmp. We do a little bit more there:

(update-in [:network-times] conj (- rt-time srv-proc-time)

Here, the RTT times are collected in a sequence so we can use the individual values as input
to the histograms.
Next, there’s the show-all-handler function to look at:

WebSocket Latency Visualization Example 30

(defn show-all-handler
"Toggles boolean value in component state for provided key."
[{:keys [current-state msg-payload]}]
{:new-state (update-in current-state [:show-all msg-payload] not)})

This handler toggles the value in the view configuration for showing either : local or the
:remote history of mouse positions. These are then used as switches in the :client/mouse-
cmp, as we've seen above. Finally, there’s the mouse-hist-handler function:

(defn mouse-hist-handler
"Saves the received vector with mouse positions in component state."
[{:keys [current-state msg-payload]}]
{:new-state (assoc-in current-state [:server-hist] msg-payload)})

This handler takes care of a sequence of mouse positions received from the server and stores
them in the component state, which is returned under the : new-state key in the returned map.
If these are shown is then dependent on the :remote key in the :show-all map inside the
component state. Typically, when the :mouse/hist is received, this switch will be set to true, as
the request for these values and switching this key on will have been sent by the : client/info-
cmp at the same time. The beauty of the UI component watching the state of another component
which holds the application state is that we don’t have to do anything else. Once the data is
back from the server, the mouse component will just know that it needs to re-render itself, now
with the new data available. This was all to the :client/store-cmp, so let’s look into the next
component, where the histograms are rendered. But actually, now might be a good time to take
a break and go for a walk.

3.7 :client/histogram-cmp

Okay, ready? Let’s move on. We’ve got some ground to cover. The :client/histogram-cmp in
the example.ui-histograms namespace® makes use of the data we just collected:

(ns example.ui-histograms
(:require [matthiasn.systems-toolbox-ui.reagent :as r]
[matthiasn.systems-toolbox-ui.charts.histogram :as h]
[matthiasn.systems-toolbox-ui.charts.math :as m]))

(defn histograms-view
"Renders histograms with different data sets, labels and colors."
[{:keys [observed]}]
(let [state @observed
rtt-times (:rtt-times state)
server-proc-times (:server-proc-times state)
network-times (:network-times state)]
[:div
[:div
[h/histogram-view rtt-times "Roundtrip t/ms" "#D94B61"]

**https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_histograms.cljs

https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_histograms.cljs
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/src/cljs/example/ui_histograms.cljs

WebSocket Latency Visualization Example 31

[h/histogram-view (m/percentile-range rtt-times 99)

"Roundtrip t/ms (within 99th percentile)" "#D94B61"]
[h/histogram-view (m/percentile-range rtt-times 95)

"Roundtrip t/ms (within 95th percentile)" "#D94B61"]]
[:div

[h/histogram-view network-times

"Network time t/ms (within 99th percentile)" "#66A9A5"]
[h/histogram-view

(m/percentile-range network-times 95)

"Network time t/ms (within 95th percentile)" "#66A9A5"]
[h/histogram-view server-proc-times

"Server processing time t/ms" "#F1684D"]]]))

(defn cmp-map
[cmp-id]
(r/cmp-map {:cmp-id cmp-id
:view-fn histograms-view
:dom-id "histograms"
:cfg {:throttle-ms 100
:msgs-on-firehose true
:snapshots-on-firehose truel}))

The most exciting stuff here happens in the histogram namespace of the systems-toolbox-
ui library, but we’ll get there. There are some things of interest here anyway. Did you notice
the :throttle-ms key in the :cfg of the cmp-map? This tells the systems-toolbox to deliver
new state snapshots only every 100 milliseconds. This throttling is done because it is expensive
enough to calculate the histograms for us not to want to do it on every frame. Ten times a second
appears to be a good compromise between feeling alive and saving some CPU cycles.

The rest of this namespace is probably not terribly surprising by now. The histograms-
view function, which is the :view-fn of this systems-toolbox-ui component, renders a :div
with six different histogram-views, which each renders into an SVG with the chart itself. In
some cases, we do some data manipulation first, such as the hist/percentile-range from the
library namespace. Notice that there are two :divs inside the parent, each with three elements
inside? That’s for the Flexible Box* layout, also known as flexbox. The rest of the layout is
then done in CSS?*:

#histograms {
margin-bottom: lem;

#histograms div div{
display: flex;
flex-flow: row;

So what happens here is that we have two flex elements, each with flex-flow: row; so
that each triplet will cover a row inside the available space.

“https://www.w3.0rg/TR/2016/CR-css-flexbox- 1-20160526/

%https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing- mouse- pointer/resources/public/css/example.css

https://www.w3.org/TR/2016/CR-css-flexbox-1-20160526/
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/resources/public/css/example.css
https://www.w3.org/TR/2016/CR-css-flexbox-1-20160526/
https://github.com/matthiasn/systems-toolbox/blob/master/examples/trailing-mouse-pointer/resources/public/css/example.css

WebSocket Latency Visualization Example 32

Okay, that’s it in this namespace.

3.8 matthiasn.systems-toolbox-ui.charts.histogram

The most interesting stuff for rendering the histograms happens in the matthiasn.systems-
toolbox-ui.charts.histogram® namespace. Feel free to skip it if you don’t particularly care about
constructing Scalable Vector Graphics®. Also, this is not an introduction to SVG, as that’s not
the focus of this book, so I will only describe the construction of SVGs with Reagent, not what
an SVG is. If you’ve never worked with Scalable Vector Graphics, maybe this tutorial* will give
you a gentler introduction.

Okay, with that being said, let’s dive into the code:

(ns matthiasn.systems-toolbox-ui.charts.histogram
"Functions for building a histogram, rendered as SVG using Reagent and React."
(:require [matthiasn.systems-toolbox-ui.charts.math :as m]))

(def text-default {:stroke "none" :fill "black" :style {:font-size 12}1})

(def text-bold (merge text-default {:style {:font-weight :bold :font-size 12}}))
(def x-axis-label (merge text-default {:text-anchor :middle}))

(def y-axis-label (merge text-default {:text-anchor :end}))

(defn path
"Renders path with the given path description attribute."
[d]
[:path {:fill :black
:stroke :black
:stroke-width 1
:d d}:1)

(defn histogram-y-axis
"Draws y-axis for histogram."
[x y h mx y-Tlabel]
(let [incr (m/default-increment-fn mx)
rng (range 0 (inc (m/round-up mx incr)) idincr)
scale (/ h (dec (count rng)))]
[:g
[path (str "M" x " "y "L O " (x h -1) " z")]
(for [n rng]
Mikey (str "yt" n)}
[path (str "M" x " " (- vy (x (/ n dincr) scale)) "L -" 6 " 0")])
(for [n rng]
Mikey (str "yl" n)}
[:text (merge y-axis-label {:x (- x 10)
iy (= y (*x (/ nincr) scale) -4)}) nl)
[:text (let [x-coord (- x 45)

*"https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljs/matthiasn/systems_toolbox_ui/charts/histogram.cljs
*8https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
*https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Introduction

https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljs/matthiasn/systems_toolbox_ui/charts/histogram.cljs
https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljs/matthiasn/systems_toolbox_ui/charts/histogram.cljs
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Introduction
https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljs/matthiasn/systems_toolbox_ui/charts/histogram.cljs
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Introduction

WebSocket Latency Visualization Example 33

y-coord (- y (/ h 3))

rotate (str "rotate(270 " x-coord " " y-coord ")")]
(merge x-axis-label text-bold {:x x-coord
1Y y-coord

:transform rotate})) y-label]l]))

(defn histogram-x-axis
"Draws x-axis for histogram."
[x y mm mx w scale increment x-label]
(let [rng (range mn (inc mx) increment)]
[:g
[path (str "M" x "™ "y """ w "™ 0 z")]
(for [n rng]
Mikey (str "xt" n)}
[path (str "M" (+ x (* (= nmn) scale)) " "y "L O " 6)])
(for [n rng]
Mikey (str "x1" n)}
[:text (merge x-axis-label {:x (+ x (* (- n mn) scale))
iy (+y 20)}) nl)
[:text (merge x-axis-label text-bold {:x (+ x (/ w 2))
iy (+ y 48)}) x-labelll))

(defn 1dinsufficient-data
"Renders warning when data insufficient."
[x y w text]

[:text {:x (+ x (/ w2))
y (- y 50)
:stroke "none"
:fill "#DDD"
:text-anchor :middle
:style {:font-weight :bold :font-size 24}} text])

(defn histogram-view-fn
"Renders a histogram. Only takes care of the presentational aspects, the
calculations are done in the histogram-calc function in
matthiasn.systems-toolbox-ui.charts.math."
[{:keys [x y w h x-label y-label color min-bins warning] :as args}]
(let [{:keys [mn mn2 mx2 rng increment bins binned-freq binned-freq-mx]}
(m/histogram-calc args)
x-scale (/ w (- mx2 mn2))
y-scale (/ (- h 20) binned-freq-mx)
bar-width (/ (* rng x-scale) bins)]
[:g
(if (>= bins min-bins)
(for [[v f] binned-freq]

/\{:key (str llbfll X n_mn y nm_mn vV m_mn f)}
[:rect {:x (+ x (x (- mn mn2) x-scale) (x v bar-width))
1Y (- y (x f y-scale))

fill color :stroke "black"

WebSocket Latency Visualization Example 34

:width bar-width
theight (x f y-scale)l}])
[insufficient-data x y w warning])
[histogram-x-axis x (+ y 7) mn2 mx2 w x-scale increment x-label]
[histogram-y-axis (- x 7) y h (or binned-freq-mx 5) y-label]]))

(defn histogram-view
"Renders an 1individual histogram for the given data, dimension, label and
color, with a reasonable size inside a viewBox, which will then scale
smoothly into any div you put it 1in."
[data label color]
[:svg {:width "100%"
:viewBox "0 0 400 250"}

(histogram-view-fn {:data data
tX 80
ty 180
‘w 300
th 160

:x-label Tlabel

:y-label "Frequencies"
:warning "dinsufficient data"
:color color

tbin-cf 0.8

:min-bins 5

:max-bins 253})])

Okay, that was a bit involved. But hey, to use a histogram in your project, all you need is to
import this namespace, and then use a one-liner to plot your histogram (and more chart types
to come - feel free to contribute).

After skim reading the namespace, are you still interested in constructing charts? Good, then
let’s go through function by function:

(defn histogram-view
"Renders an individual histogram for the given data, dimension, label and
color, with a reasonable size inside a viewBox, which will then scale
smoothly into any div you put it in."
[data label color]
[:svg {:width "100%"
:viewBox "0 © 400 250"}

(histogram-view-fn {:data data
' X 80
Yy 180
tw 300
:h 160

:x-label Tlabel

:y-label "Frequencies"
:warning "insufficient data"
:color color

tbin-cf 0.8

WebSocket Latency Visualization Example 35

:min-bins 5
:max-bins 253})])

The histogram-view function simply creates a container : svg element, which scales into its
parent element through the :width "100%" setting. Also note the :viewBox "0 0 400 250",
which allows us to work with a useful coordinate system that’s independent of the size of the
rendered element. Finally, we pass some data to the histogram-view-fn, which we’ll look into
next.

(defn histogram-view-fn
"Renders a histogram. Only takes care of the presentational aspects, the
calculations are done in the histogram-calc function 1in
matthiasn.systems-toolbox-ui.charts.math."
[{:keys [x y w h x-label y-label color min-bins warning] :as args}]
(let [{:keys [mn mn2 mx2 rng increment bins binned-freq binned-freq-mx]}
(m/histogram-calc args)
x-scale (/ w (= mx2 mn2))
y-scale (/ (- h 20) binned-freq-mx)
bar-width (/ (* rng x-scale) bins)]
[:g
(if (>= bins min-bins)
(for [[v f] binned-freq]

/\{:key (Stl’ llbfll X n_mn y nmn_mn vV mnm_mn f)}
[:rect {:x (+ x (x (= mn mn2) x-scale) (* v bar-width))
Yy (- y (x f y-scale))

:fill color :stroke "black"
:width bar-width
theight (x f y-scale)l}])
[insufficient-data x y w warning])
[histogram-x-axis x (+ y 7) mn2 mx2 w x-scale increment x-label]
[histogram-y-axis (- x 7) y h (or binned-freq-mx 5) y-label]]))

Above, we render an SVG g element®, which contains the histogram. Before we can render
the bars of the histogram, we need to calculate a few things from the provided data, which
happens in the first line in the let binding:
{:keys [mn mn2 mx2 rng increment bins binned-freq binned-freq-mx]} (m/histogram-
calc args)
We will look into the calculations in the next section. For the dicussion here, we only need
to know what each one does. mn is the minimum value in the data. m2 is the minimum rounded
down to the next increment, as it’s not always useful to start the x-axis from zero. Let me show

you an example:

*https://developer.mozilla.org/en/docs/Web/SVG/Element/g

https://developer.mozilla.org/en/docs/Web/SVG/Element/g
https://developer.mozilla.org/en/docs/Web/SVG/Element/g

WebSocket Latency Visualization Example 36

509 504 60
40
30

20 -

Frequencies
=
Frequencies
=

I
Frequencies

[0 = 0

r T T T T J r T T T T 1 r T T T T T 1
1000 1010 1020 1030 1040 1050 1000 1010 1020 1030 1040 1050 1005 1010 1015 1020 1025 1030 1035

Roundtrip t/ms Roundtrip t/ms (within 99th percentile) Roundtrip t/ms (within 95th percentile)

70+ 70 100
60 < O 60+

50 50 iy
404

30 30
20 20

od 0d D.j
v . .

40

Frequencies
Frequencics
Frequencies

10 10+

T T T T T T T T T J r T T T T T 1
0 10 20 30 40 50 o 5 10 15 20 25 30 1000 1001 1002 1003 1004 1005 1006

Network time t/ms (within 99th percentile) Network time /ms (within 95th percentile) Server processing time t/ms

1000 ms delay

Here, all our values are between 1000 and 1050 milliseconds. The histogram would be fairly
useless if the x-axis started at zero because the bars would be so thin that we probably couldn’t
even see them, let alone tell apart.

We will look at creating the delay of 1000ms for each message in a subsequent chapter
when discussing the systems-toolbox messaging model.

Next, we have rng, which is the distance between the minimum and the maximum value.
Then, there’s the increment. This is the distance between the ticks on the x-axis, such as 10,
25, or also 500, depending on the range of the provided data. bins is the number of bins in the
histogram, each of which will be represented as a bar. binned-freq is contains the frequencies
per bin. Finally, binned-freq-mx is the maximum frequency in any of the bins, which is used
to determine the scale on the y-axis.

With those values, we can calculate the x-scale and y-scale, which will be used to
translate positions into the given coordinate system. Finally, we can determine the width of
each bar, by dividing the product of rng and x-scale through the number of bins.

With those calculations completed, we can render the histogram into a : g element. Here, the
bars are only displayed if there are enough bins. Otherwise, we display "insufficient data".
The number of bins is configured in the :min-bins key of the argument map. When called from
the histogram-view, I've chosen a minimum of five bins. This value is entirely arbitrary but
seems to work fairly well. Less than five bins look stupid and don’t provide much meaningful
information either.

If the data is deemed sufficient, we render a vertical bar as a :rect for each bin. This
rendering happens in a for-comprehension®’, as you’ve already seen in the previous chapter. Of
importance here is the : key on each elements’ metadata. While we would get by without, React
needs this key to work more efficiently by reusing elements in the next render cycle. Without
assigning the keys, the browser needs to do more work and React prints long and ugly warnings
in the browser’s console.

Then, we render the x-axis by calling histogram-x-axis, and the y-axis in histogram-
y-axis.

*'https://clojuredocs.org/clojure.core/for

https://clojuredocs.org/clojure.core/for
https://clojuredocs.org/clojure.core/for

WebSocket Latency Visualization Example 37

The functions for rendering the axes are fairly straightforward. Here’s the histogram-x-
axis function:

(defn histogram-x-axis
"Draws x-axis for histogram."
[x y mm mx w scale increment x-label]
(let [rng (range mn (inc mx) increment)]
[:g
[path (str "M" x " "y """ w " 0 z")]
(for [n rng]
Mikey (str "xt" n)}
[path (str "M" (+ x (* (= nmn) scale)) " "y "L O " 6)])
(for [n rng]
Mikey (str "x1" n)}
[:text (merge x-axis-label {:x (+ x (* (- n mn) scale))
ty (¢ y 20)}) nl)
[:text (merge x-axis-label text-bold {:x (+ x (/ w 2))
iy (+ y 48)}) x-labelll))

The mechanism here will probably look fairly familiar by now:

« there’s a group inside the : g element

« next, there’s the axis itself, rendered by the path function

« there’s a for-comprehension for the ticks on the axis, which also use the path function
« there’s another for-comprehension for the axis labels (the numbers associated with a tick)

« finally, there’s a label, which in our example application here would, for example, be
"Roundtrip t/ms"

Both for-comprehensions make use of the range rng, which is a sequence from mn to one
larger than mx, with the step size increment. All these values depend on the data and are
computed individually, as we will see in the next section.

Here’s the aforementioned path function, which is only a thin wrapper over :path, with a
few defaults, so we save some typing later on:

(defn path
"Renders path with the given path description attribute."
[d]
[:path {:fill :black
:stroke :black
:stroke-width 1
:d di1)

The histogram-y-axis is somewhat similar, only that here we can calculate more in the
function, as we don’t need sca'le or rng in the calculation of the bins:

WebSocket Latency Visualization Example 38

(defn histogram-y-axis
"Draws y-axis for histogram."
[x y h mx y-label]
(let [incr (m/default-increment-fn mx)
rng (range 0 (inc (m/round-up mx incr)) {ncr)
scale (/ h (dec (count rng)))]
[:g
[path (str "M" x " "y "L 0 " (x h -1) " z")]
(for [n rng]
Mikey (str "yt" n)}
[path (str "M" x " " (- y (* (/ n incr) scale)) "L -" 6 " 0")])
(for [n rng]
MNMikey (str "yl" n)}
[:text (merge y-axis-label {:x (- x 10)
'y (= y (* (/ nincr) scale) -4)}) nl])
[:text (let [x-coord (- x 45)
y-coord (- vy (/ h 3))

rotate (str "rotate(270 " x-coord " " y-coord ")")]
(merge x-axis-label text-bold {:x x—-coord
Y y-coord

:transform rotate})) y-label]l]))

Other than calculating the rng and scale locally inside the let-binding, the function is
pretty much the same as the histogram-y-axis function, with the other difference that the
paths and labels are rotated, as obviously, the y-axis is vertical. If you want to learn more about
SVG paths, I'd recommend either one of the tutorials out there, or to just modify the values and
see how that affects the histogram. For that, I would copy the code over into the sample app and
use Figwheel for immediate feedback. Otherwise, you’d have to publish the library locally after
each change, and then recompile the sample application, which takes away all the fun. Tight
feedback loops are important.

This is all for the rendering of the histogram. In the next chapter, I'll guide you through the
math behind the calculations used here.

If you want to use a histogram in your application and are happy with the defaults, you can
simply call the histogram-view function. Or, if you want more fine-grained control, you can
copy this function and use the values you desire. Or, you can, of course, use this whole thing as
an inspiration and come up with your own chart. In that case, please consider submitting a PR,
others might benefit from that, too.

Questions? Send me an email; I'm happy to help. matthias.nehlsen@gmail.com

3.9 matthiasn.systems-toolbox-ui.charts.math

In the matthiasn.systems-toolbox-ui.charts.histogram namespace, we used a handful
of mathematical helper functions. These live in the matthiasn.systems-toolbox-ui.charts.math*
namespace. This is actually a cljc* file, which allows us to target both Clojure and Clojure-

*?https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljc/matthiasn/systems_toolbox_ui/charts/math.cljc
*https://github.com/clojure/clojurescript/wiki/Using-cljc

mailto:matthias.nehlsen@gmail.com
https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljc/matthiasn/systems_toolbox_ui/charts/math.cljc
https://github.com/clojure/clojurescript/wiki/Using-cljc
https://github.com/matthiasn/systems-toolbox-ui/blob/master/src/cljc/matthiasn/systems_toolbox_ui/charts/math.cljc
https://github.com/clojure/clojurescript/wiki/Using-cljc

WebSocket Latency Visualization Example 39

Script. This is very useful for testing the functions on the JVM, which I much prefer over testing
in the browser. Here’s the entire namespace:

(ns matthiasn.systems-toolbox-ui.charts.math)

(defn mean
"From: https://github.com/clojure-cookbook/"
[coll]
(let [sum (apply + coll)
count (count coll)]
(if (pos? count)
(/ sum count)

0)))

(defn median

"Modified from: https://github.com/clojure-cookbook/
Adapted to return nil when collection empty."
[coll]

(let [sorted (sort coll)
cnt (count sorted)
halfway (quot cnt 2)]

(if (empty? coll)
nil
(if (odd? cnt)

(nth sorted halfway)

(let [bottom (dec halfway)
bottom-val (nth sorted bottom)
top-val (nth sorted halfway)]

(mean [bottom-val top-vall))))))

(defn dinterquartile-range

"Determines the interquartile range of values in a sequence of numbers.

Returns nil when sequence empty or only contains a single entry."
[sample]

(let [sorted (sort sample)
cnt (count sorted)
half-cnt (quot cnt 2)
gl (median (take half-cnt sorted))
g3 (median (take-last half-cnt sorted))]
(when (and g3 ql1) (- g3 q1))))

(defn percentile-range
"Returns only the values within the given percentile range."
[sample percentile]
(let [sorted (sort sample)
cnt (count sorted)

keep-n (Math/ceil (* cnt (/ percentile 100)))]
(take keep-n sorted)))

WebSocket Latency Visualization Example 40

(defn freedman-diaconis-rule

"Implements approximation of the Freedman-Diaconis rule for determing bin size
in histograms: bin size = 2 IQR(x) n”-1/3 where IQR(x) is the interquartile
range of the data and n is the number of observations in sample x. Argument
is expected to be a sequence of numbers."

[sample]

(let [n (count sample)]

(when (pos? n)
(* 2 (interquartile-range sample) (Math/pow n (/ -1 3))))))

(defn round-up [n increment] (* (Math/ceil (/ n dincrement)) tincrement))
(defn round-down [n increment] (x (Math/floor (/ n increment)) -+increment))

(defn best-increment-fn
"Takes a seq of increments, a desired number of intervals 1in histogram axis,
and the range of the values in the histogram. Sorts the values in increments
by dividing the range by each to determine number of intervals with this
value, subtracting the desired number of dintervals, and then returning the
increment with the smallest delta."
[increments desired-n rng]
(first (sort-by #(Math/abs (- (/ rng %) desired-n)) increments)))

(defn default-increment-fn
"Determines the increment between intervals in histogram axis.
Defaults to increments in a range between 1 and 5,000,000."
[rngl
(if rng
(let [multipliers (map #(Math/pow 10 %) (range 0 6))
increments (flatten (map (fn [i] (map #(* i %) multipliers))
[1 2.5 5]))
best-increment (best-increment-fn increments 5 rng)]
(if (zero? (mod best-increment 1))
(int best-increment)
best-increment))

1))

(defn histogram-calc

"Calculations for histogram."

[{:keys [data bin-cf max-bins increment-fn]}]

(let [mx (apply max data)
mn (apply min data)
rng (- mx mn)
increment-fn (or increment-fn default-increment-fn)
increment (increment-fn rng)
bin-size (max (/ rng max-bins) (x (freedman-diaconis-rule data) bin-cf))
binned-freq (frequencies (map (fn [n] (Math/floor (/ (- n mn) bin-size)))

data))]
{:mn mn
:mn2 (round-down (or mn 0) dincrement)

WebSocket Latency Visualization Example 41

tmx2 (round-up (or mx 10) 1dncrement)
irng rng
:increment increment

:binned-freq binned-freq
:binned-freq-mx (apply max (map (fn [[_ f]] f) binned-freq))
:bins (inc (apply max (map (fn [[v _]] v) binned-freq)))}))

The first two functions here, mean and med- an, are borrowed from the Clojure Cookbook**.
I’ve adapted median to return nil when the collection is empty, as that’s useful further on. I've
taken those two functions because they are useful in my implementation of the interquartile
range’:

(defn interquartile-range
"Determines the 1interquartile range of values in a sequence of numbers.
Returns nil when sequence empty or only contains a single entry."
[sample]
(let [sorted (sort sample)
cnt (count sorted)
half-cnt (quot cnt 2)
gl (median (take half-cnt sorted))
g3 (median (take-last half-cnt sorted))]
(when (and g3 ql1) (- g3 ql))))

The interquartile-range function takes a sample, which is a sequence of numbers. If this
sequence is empty, nil is returned. Otherwise, we sort the sequence, count it, and then take
the half-cnt, which is the floor of dividing the cnt by two. This is the number of items in
half the data, minus the halfway point if there is one (when cnt is odd). Then the values q1
and g3 are defined as the median of the first or last half of the values, respectively. Finally, the
IQR is returned, which is the difference between q1 and g3, and thus the range of half the data.
The interquartile range is something we need to determine when computing the bin size via the
Freedman-Diaconis Rule*:

(defn freedman-diaconis-rule
"Implements approximation of the Freedman-Diaconis rule for determing bin size
in histograms: bin size = 2 IQR(x) n”-1/3 where IQR(x) is the interquartile
range of the data and n is the number of observations in sample x. Argument
is expected to be a sequence of numbers."
[sample]
(let [n (count sample)]
(when (pos? n)
(* 2 (interquartile-range sample) (Math/pow n (/ -1 3))))))

The Freedman-Diaconis rule® is fairly simply, once we have implemented the IQR:

« determine the IQR

**https://github.com/clojure-cookbook/”
*3https://en.wikipedia.org/wiki/Interquartile_range
*Shttps://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
*"https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule

https://github.com/clojure-cookbook/"
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://github.com/clojure-cookbook/"
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule

WebSocket Latency Visualization Example 42

« multiply it by 2
« multiply it by the cube root of n, the count of items

Following these steps gives us a suggested size of the bins in a histogram, which can then be
used to determine the number of bins and thus the number of bars to display in our histogram.
Then, there’s also the percentile-range function:

(defn percentile-range
"Returns only the values within the given percentile range."
[sample percentile]
(let [sorted (sort sample)
cnt (count sorted)
keep-n (Math/ceil (* cnt (/ percentile 100)))]
(take keep-n sorted)))

This function helps when trying to get rid of outliers, which may or may not be helpful in
your data. Here, it sometimes helps, for example when all values are in the low hundreds, and
there’s a single outlier in the thousands, as that outlier would otherwise lead to bins that are too
large, with many empty bins. As with all visualization, it depends on the data and requires some
experimentation.

Next, there are helpers for determining the intervals at which to put the ticks in the histogram
axes:

(defn best-increment-fn
"Takes a seq of increments, a desired number of intervals in histogram axis,
and the range of the values in the histogram. Sorts the values in increments
by dividing the range by each to determine number of intervals with this
value, subtracting the desired number of intervals, and then returning the
increment with the smallest delta."
[increments desired-n rng]
(first (sort-by #(Math/abs (- (/ rng %) desired-n)) 1dincrements)))

(defn default-increment-fn
"Determines the increment between 1intervals in histogram axis.
Defaults to increments in a range between 1 and 5,000,000."
[rng]
(if rng
(let [multipliers (map #(Math/pow 10 %) (range 0 6))
increments (flatten (map (fn [i] (map #(* i %) multipliers))
[1 2.5 5]))
best-increment (best-increment-fn increments 5 rng)]
(if (zero? (mod best-increment 1))
(int best-increment)
best-increment))

1))

This is an interesting problem. Of course, we could hardwire the increments between the
ticks, but then the histogram would hardly be reusable. My initial approach was something this:

WebSocket Latency Visualization Example 43

(defn default-increment-fn

[rngl

(cond (>
(>
(>
(>
(>
(>
(>
(>

rng
rng
rng
rng
rng
rng
rng
rng

20000) 5000
8000) 2000
3000) 1000
1500) 500
900) 200
400) 100
200) 50

90) 20

:else 10))

Depending on the range rng, I would select different spacing between the ticks on an axis.
But that’s not general enough. So what I came up with instead is this:

« generate some multipliers, such as (1.0 10.0 100.0 1000.0 10000.0 100000.0)
« multiply each with 1, 2.5 and 5, then flatten those result vectors

» then, with this sequence of possible increments, and a target value of five ticks (which look
good in a histogram IMHO), call the best-increment function

there, the candidate increments are sorted by the delta between the desired number of

ticks and the number of ticks we’d get with the respective increment

the first of these sorted values is returned, which is the one with the smallest delta

This approach is much more generic and seems to work well.

®)

I’'m always amazed that we can do all these calculations whenever there’s a change in
the data. The browser has become a powerful environment these days indeed.

Finally in this namespace, there’s the histogram-calc function:

(defn histogram-calc

"Calculations for histogram."
[{:keys [data bin-cf max-bins increment-fn]}]
(let [mx (apply max data)

mn (apply min data)

rng (- mx mn)

increment-fn (or increment-fn default-increment-fn)

increment (increment-fn rng)

bin-size (max (/ rng max-bins) (x (freedman-diaconis-rule data) bin-cf))
binned-freq (frequencies (map (fn [n] (Math/floor (/ (- n mn) bin-size)))

{:mn
tmn2
tmx2
irng

:increment

data))]
mn
(round-down (or mn 0) dincrement)
(round-up (or mx 10) tdncrement)
rng
increment

:binned-freq binned-freq
:binned-freq-mx (apply max (map (fn [[_ f]] f) binned-freq))

:bins

(inc (apply max (map (fn [[v _]1] v) binned-freq)))}))

WebSocket Latency Visualization Example 44

This function does all the required calculations to get the data into the shape that’s required
for the actual rendering of the histogram:

find min value mn, max value mx, and range of the data rng

calculate increment between ticks on the x-axis (note that you can specify your own
function for finding the increments here)

determine size of the bins bin-size

put values into bins in binned-freq

find max frequency in bins (for scaling)

find number of bins (including empty ones)

i

Okay, that’s all in this namespace. While the material convered here is not strictly
related to the rest of the book, I hope you found it interesting nonetheless. Also, we
will use the histograms later in the book when looking into observability of systems,
and it never hurts to understand your tools a little better.

	Table of Contents
	Introduction
	Example application: Counter
	WebSocket Latency Visualization Example
	:client/mouse-cmp
	:server/ptr-cmp
	example.core on client side
	example.core on server side
	Application Reload from the REPL
	:client/store-cmp
	:client/histogram-cmp
	matthiasn.systems-toolbox-ui.charts.histogram
	matthiasn.systems-toolbox-ui.charts.math

