
Download class materials from

university.xamarin.com

Building an Azure

Mobile App Client

AZR115

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Connect your mobile app to Azure

2. Access table data from Azure

3. Add support for offline synchronization

Objectives

Connect your mobile app to Azure

1. Add Azure support to your mobile

application

2. Connect to Azure

3. Configure the Azure client

Tasks

❖ Mobile apps built on Azure App Services provide access to data,

authentication and notifications using standard web protocols

Azure App Services: Mobile App

HTTP + JSON

D
a
ta

SQL MongoTables Blobs

Facebook Google ADA
u
th

Twitter MS

N
o

ti
fy

WNS & MPNS APNS GCM Hubs

❖ Since the Mobile App uses standard web protocols (HTTP + JSON), .NET

and Xamarin clients can use standard .NET classes such as HttpClient
to access the service

Interacting with an Azure App Service

const string AzureEndpoint = "...";

var client = new HttpClient();
client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json"));
...
string result = await client.GetStringAsync(AzureUrl);
... // Work with JSON string data

❖ Must pass value ZUMO-API-VERSION on every request to indicate that

the client is compatible with App Services vs. the older Mobile Services;

can pass value as header or on the query string

Required header value

var client = new HttpClient();
client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json"));
...
client.DefaultRequestHeaders.Add("ZUMO-API-VERSION", "2.0.0");

string result = await client.GetStringAsync(AzureUrl +
"?ZUMO-API-VERSION=2.0.0");

OR

❖ Data is communicated using JSON – can use standard parsers to

serialize and de-serialize information

Parsing the response (JSON)

string result = await client.GetStringAsync(DataEndpoint);
dynamic dataList = Newtonsoft.Json.JsonConvert

.DeserializeObject(result);
foreach (dynamic item in dataList) {

Console.WriteLine("{0}", item.id);
}

Can parse JSON data as dynamic runtime values, JSON object

must have an id value or this will throw a runtime exception

❖ Can utilize the pre-built Azure Client SDK from .NET or Xamarin to

manage the HTTP/REST communication and interact with a Mobile App

built with Azure App Services

Standardized access

D
a
ta

SQL MongoTables Blobs

Facebook Google ADA
u
th

Twitter MS

N
o

ti
fy

WNS & MPNS APNS GCM Hubs

Azure

Client

SDK

How to add the Azure client SDK

Add the required

NuGet packages to

your projects

1

Initialize the Azure

client SDK in your

platform projects

2

Access the mobile service

using a configured

MobileServiceClient
object

3

❖ .NET and Xamarin

applications can use pre-

built client access libraries

available from NuGet to

access various Azure services

❖ Azure SDKs are also

published as open source

https://github.com/Azure/

NuGet packages

https://github.com/Azure/

❖ To add client-side support for an Azure mobile site, add a NuGet

reference to the Microsoft.Azure.Mobile.Client package; this must be

added to all the head projects and to any PCL using Azure classes

Adding support for an Azure mobile app

This also adds

references to a few

other packages such

as Json.NET

❖ iOS and Android require some initialization for the Azure client SDK,

typically done as part of the app startup

Required initialization code [Android]

protected override void OnCreate (Bundle bundle)
{

base.OnCreate (bundle);
Microsoft.WindowsAzure.MobileServices.CurrentPlatform.Init();
...

}

Can place the Android initialization wherever it makes sense – commonly

done either in the global App, or as part of the main Activity creation

❖ iOS and Android require some initialization for the Azure client SDK,

typically done as part of the app startup

Required initialization code [iOS]

iOS initialization is commonly placed into the App Delegate

FinishedLaunching method

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)

{
Microsoft.WindowsAzure.MobileServices.CurrentPlatform.Init();
...
return true;

}

This code is not necessary for Windows or UWP applications

❖ MobileServiceClient class provides the core access to Azure

services; should create and cache this object off in your application

Connecting to Azure

const string AzureEndpoint = "https://<site>.azurewebsites.net";
MobileServiceClient mobileService;
...

mobileService = new MobileServiceClient(AzureEndpoint);

Constructor identifies the specific

Azure service to connect to

Add Azure support to our Xamarin application

Individual Exercise

1. Add Azure support to your mobile

application

2. Connect to Azure

3. Configure the Azure client

Summary

Access table data from Azure

1. Access an Azure DB table

2. Define the data transfer object

3. Add a record to the database

4. Query the database

Tasks

❖ Azure App mobile service exposes endpoints (/tables/{tablename})

to allow applications to perform DB queries and operations using HTTP

Accessing tables from a client

DELETE /tables/entries

JSON response Database

Async query

Data rows

Azure App Service

(Mobile App)

Mobile Client

GET /tables/entries

POST /tables/entries

PATCH /tables/entries

❖ MobileServiceClient exposes each server-side table as a

IMobileServiceTable which can be retrieved with GetTable

Accessing a table

service = new MobileServiceClient("https://{site}.azurewebsites.net");
...
IMobileServiceTable table = service.GetTable("{tablename}");

var dataList = await table.ReadAsync(string.Empty);
foreach (dynamic item in dataList) {

string id = item.id;
...

}

Same un-typed access available – under the covers this is a JObject from Json.NET

❖ Tables defined by a Mobile App always have 5 pre-defined columns

which are passed down from the service in JSON

Standard table data

{
"id":"5c6e6617-117a-4118-b574-487e55875324",
"createdAt":"2016-08-10T19:14:56.733Z",
"updatedAt":"2016-08-10T19:14:55.978Z",
"version":"AAAAAAAAB/4=",
"deleted":false

}

These fields are all system provided values which should not be changed by the client

unless the server code is specifically written to allow it

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
...

}

❖ Can use a parser to convert JSON table data into a strongly typed .NET

object, referred to as a data transfer object (DTO)

Using strongly typed data

public class MyDTO
{

public string Id { get; set; }
public DateTimeOffset CreatedAt { get; set; }
public DateTimeOffset UpdatedAt { get; set; }
public string Version { get; set; }
public bool Deleted { get; set; }
...

}

JSON parser

DTO must define public properties to hold the data represented in JSON

❖ MobileServiceClient supports DTOs through generic GetTable<T>
method which returns a IMobileServiceTable<T>

Using a DTO

IMobileServiceTable<DiaryEntry> table = service.GetTable<DiaryEntry>();

IEnumerable<DiaryEntry> entries = await table.ReadAsync();
foreach (DiaryEntry item in entries) {

string id = item.
...

}

Now we get Intellisense for the DTO

public class DiaryEntry
{

public string Id { get; set; }
...

}

❖ Id property is required and must be present; this is used as the primary

key for all DB operations and to manage offline synchronization

Required fields in your DTO

Should consider this a read-

only property, but still must

have a public setter in the

DTO for JSON parser to use

❖ Parser will use reflection match case-insensitive property names in the

DTO to the JSON data

Filling in property values

public class DiaryEntry
{

public string Id { get; set; }
public string Text { get; set; }
...

}

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
"text":"Hello, World"

}

❖ Can decorate DTO with JsonPropertyAttribute to customize the

JSON value the parser will use

Customizing the JSON shape

public class DiaryEntry
{

public string Id { get; set; }
[JsonProperty("text")]
public string Entry { get; set; }
...

}

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
"text":"Hello, Diary"

}

Can also use the DataMember attribute from the data contract serialization framework

❖ Framework includes attributes which apply the correct name for most of

the system-supplied values so you don't have to know the names

Working with system properties

public class DiaryEntry
{

public string Id { get; set; }
[Version]
public string AzureVersion { get; set; }
[CreatedAt]
public DateTimeOffset CreatedOn { get; set; }
[UpdatedAt]
public DateTimeOffset Updated { get; set; }

}

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
"text":"Hello, Diary"

}

❖ Tell parser to ignore DTO properties using the JsonIgnoreAttribute;

this is particularly important for serialization (DTO > JSON)

Ignoring DTO properties

public class DiaryEntry
{

public string Id { get; set; }
[JsonProperty("text")]
public string Entry { get; set; }
[JsonIgnore]
public string Title { ... }
...

}

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
"text":"Hello, Diary"

}

❖ Table endpoint is identified using the DTO name supplied to GetTable<T>

Identifying the server side table

public class DiaryEntry
{

...
}

var table = service.GetTable<DiaryEntry>();

MobileServiceClient

GET /tables/DiaryEntry

What if the server endpoint is entries?

Result is a 404 (Not Found) error!

❖ Customize the endpoint with JsonObject or DataContract attribute

Identifying the server side table

[JsonObject(Title = "entries")]
public class DiaryEntry
{

...
}

var table = service.GetTable<DiaryEntry>();

MobileServiceClient

GET /tables/entries

❖ Can provide global custom serialization settings that apply to the JSON

serializer to simplify your data entity definition

Customizing the JSON serialization

mobileService = new MobileServiceClient(AzureEndpoint) {
SerializerSettings = new MobileServiceJsonSerializerSettings {

CamelCasePropertyNames = true,
DateFormatHandling = DateFormatHandling.IsoDateFormat,
MissingMemberHandling = MissingMemberHandling.Ignore

}
};

Customize the DTOs for the Survey service

Individual Exercise

❖ IMobileServiceTable performs standard HTTP verbs to implement

CRUD operations – Azure back-end then performs specific DB operation

REST operations

Method HTTP request SQL Operation

InsertAsync POST /tables/{table} INSERT

UpdateAsync PATCH /tables/{table} UPDATE

DeleteAsync DELETE /tables/{table} DELETE

ReadAsync GET /tables/{table} SELECT *

LookupAsync GET /tables/{table}/{id} SELECT {id}

❖ InsertAsync adds a new record to the table; it fills in the system fields in

your client-side object from the server-generated columns

Adding a new record

IMobileServiceTable<DiaryEntry> diaryTable = ...;

var entry = new DiaryEntry { Text = "Some Entry" };
try {

await diaryTable.InsertAsync(entry);
}
catch (Exception ex) {

... // Handle error
}

Async operation finishes when the REST API has added the record to the DB

❖ UpdateAsync and DeleteAsync are similar – they issue REST calls to

the service identifying an existing entity record and return once the

operation is complete on the server

Deleting and Updating data

IMobileServiceTable<DiaryEntry> diaryTable = ...;

try {
await diaryTable.DeleteAsync(someEntry);

}
catch (Exception ex) {

... // Handle error
}

❖ Mobile service table has a plethora of APIs to perform queries – the

simplest ones return all records or a single record based on the Id

Retrieving data

IEnumerable<DiaryEntry> allEntries = await diaryTable.ReadAsync();

Retrieve all records

DiaryEntry entry = await diaryTable.LookupAsync(recordId);

Retrieve a single record by the unique identifier (id)

❖ Remember this is a client/server model: pulling down all records and

filtering on the client is inefficient – that's what the DB is good for!

Filtering queries

Client ServerReadAsync() SELECT * FROM person SQL

Client ServerJSON response SQL1000 records

Client foreach (…) { … } Display 10 records

❖ Instead, we'd prefer to push the filtering up to the database and have it

return only the records we are interested in

Filtering queries

Client ServerRead 10 recs SELECT TOP(10) * FROM person SQL

Client ServerJSON response SQL10 records

Client Display 10 records
Much better performance

and usage of our resources!

❖ Service supports basic filtering to be performed server-side; this is

modeled on the client side as a fluent LINQ API exposed by the

IMobileServiceTableQuery interface

Performing queries

IMobileServiceTableQuery<U> CreateQuery(...);
IMobileServiceTableQuery<U> Select<U>(...);
IMobileServiceTableQuery<T> Where(...);
IMobileServiceTableQuery<T> OrderBy<TKey>(...);
IMobileServiceTableQuery<T> OrderByDescending<TKey>(...);
IMobileServiceTableQuery<T> ThenBy<TKey>(...);
IMobileServiceTableQuery<T> ThenByDescending<TKey>(...);
IMobileServiceTableQuery<T> Skip(int count);
IMobileServiceTableQuery<T> Take(int count);

❖ IMobileServiceTableQuery does not send request to server until

you execute the query through a collection method

Make sure to execute query

Method What it does

ToEnumerableAsync Returns an IEnumerable<T> (same as ReadAsync)

ToListAsync Returns a List<T> with all retrieved data

ToCollectionAsync Returns a collection with the data, supports an optional

"page size" to retrieve data in chunks

ToIncremental
LoadingCollection

Returns a collection that pulls down data as it is

accessed. Windows only

❖ Can use the Where method to add a filter clause to your query – this is

evaluated on the server-side and reduces the amount of data

transmitted back to the client

Filtering your queries

GET /tables/diary_data?$filter=substringof('secret',tolower(Text))

var onlySecretEntries = await diaryTable
.Where(e => e.Text.ToLower().Contains("secret"))
.ToEnumerableAsync();

Remember to call one of the collection methods to execute the request

on the server – until you do this, it's just a query

❖ Can use Select to create projections of the query, the returned data

will be restricted to the specified elements; any specified transformations

are then performed on the retrieved data by the client

Projecting your queries

GET /tables/diary_data?$filter=(length(Text)%20gt%200)&$select=Text

var JustTheFactsMaam = await diaryTable
.Where(e => e.Text.Length > 0)
.Select(e => e.Text.ToUpper())
.ToListAsync();

Notice that the upper case request is not expressed in the OData request –

that action isn't supported by the query language and is done on the client

❖ API is fluent and allows you to string different expression options

together to form a single query which can then be passed to the server

Stringing along queries

var all = diaryTable.CreateQuery();
var skip5 = all.Where(e => e.Text.Length > 0)

.Skip(5)

.OrderBy(e => e.UpdatedAt)

.ThenBy(e => e.Text)
var firstTwo = skip5.Take(2);
var data = await firstTwo.ToCollectionAsync();

GET /tables/diary_data?$filter=(length(Text)%20gt%200)&
$orderby=updatedAt,Text&$skip=5&$top=2

❖ Can use language integrated query (LINQ) to construct queries –

compiler will then call all the methods

LINQ

var JustTheFactsMaam = await diaryTable
.Where(e => e.Text.Length > 0)
.Select(e => e.Text.ToUpper())
.ToListAsync();

var JustTheFactsMaam = await
(from e in diaryTable
where e.Text.Length > 0
select e.Text.ToUpper()).ToListAsync();

Fill in the logic to query and update our survey records

Individual Exercise

❖ DELETE is a destructive operation which must be propagated to every

client; tables can be configured to use a soft delete model where a column

in the database is used to indicate that the record has been deleted

Dealing with DELETE

{
"id":"5c6e6617-117a-4118-b574-487e55875324",
"createdAt":"2016-08-10T19:14:56.733Z",
"updatedAt":"2016-08-10T19:14:55.978Z",
"version":"AAAAAAAAB/4=",
"deleted":false

}

❖ Can retrieve deleted records by using the IncludeDeleted fluent

method – this can be added to any query

Reading deleted records

public Task<IEnumerable<DiaryEntry>> GetAll(bool includeDeleted = false)
{

return (includeDeleted)
? diaryTable.IncludeDeleted().ToEnumerableAsync()
: diaryTable.ToEnumerableAsync();

}

❖ Can undelete a record when soft deletes are enabled; this will change

the deleted flag to false on the record

Undeleting records

public async Task RestoreAllRecordsAsync()
{

var allItems = await diaryTable.IncludeDeleted()
.ToListAsync();

foreach (var item in allItems) {
await diaryTable.UndeleteAsync(item);

}
}

Can call this method on non-deleted records, add the deleted flag into your entity, or

compare the IncludeDeleted list against the data returned without this flag

❖ Can pass optional URI parameters to any of the operations when using a

custom web service endpoint or to invoke other OData filters

Adding optional parameters

var entry = new DiaryEntry { Text = "Some Entry" };
var uri_params = new Dictionary<string,string> {

{ "require_audit", "true" },
};

try {
await diaryTable.InsertAsync(entry, uri_params);

}
...

POST /tables/diary_entry?require_audit=true

1. Accessing an Azure DB table

2. Define the data transfer object

3. Adding a new record to the DB

4. Performing queries

Summary

Add support for offline

synchronization

1. Include support for SQLite

2. Setup the local cache

3. Synchronize to the online database

Tasks

❖ Mobile devices often find themselves

without network access

❖ Apps can choose to either stop

working or provide an offline cache

which is synchronized when

connectivity is restored

Online vs. Offline access

❖ Azure supports offline data synchronization with just a few lines of code;

this provides several tangible benefits

Offline synchronization

Improves app

responsiveness

R/W access to data

even when network

is unavailable

Automatic

synchronization

with local cache

Control when sync

occurs for roaming

❖ Adding support for offline synch isn't

always necessary – it has security,

storage and potential network

ramifications

❖ Can store rarely-updated or read-only

tables on your own vs. using the

Azure offline capability to minimize

the overhead or take more control

over the cache

Do I need offline support?

❖ Add a NuGet reference to the Azure SQLiteStore package to support

offline synchronization; this will also include SQLite support in your app

Add support for offline sync

❖ To support offline data caching, Azure client utilizes a local database

which is a local copy of the cloud database

Storing data locally

SQL

Azure App

REST API

SQL

API takes care of synchronization and

managing conflicts when multiple

devices update the same record

SQL

SQL

By default, .NET/Xamarin apps use SQLite as the local database store, but this is a

configurable feature of the Azure client SDK

❖ Several participants when dealing with offline synchronization

Synchronization actors

Local

DB

MobileServiceClient

Synchronized

table(s)

MobileServiceSyncContext

Remote

DB

SQLite

(default)
Core logic is contained in the SyncContext which is owned

by the mobile service client; this manages the

synchronization and conflict resolution between the DBs

❖ Add support for offline synchronization to your app in four steps:

Implement offline sync

Initialize local cache

database
1

Associate the local

cache with the

mobile service client

2

Request a

synchronization with

Azure

4

Retrieve a

synchronized table

object

3

❖ Need a MobileServiceSQLiteStore to manage the local cache –

this identifies the local file which will be used to store a cached copy of

the data for offline access

Initialize the SQLite local cache

mobileService = new MobileServiceClient(AzureEndpoint);
...
var store = new MobileServiceSQLiteStore("localstore.db");

Must pass in a filename which will be created on

the device's file system

❖ Next, define the table structure based on your entity object; this must be

done once per app-launch for each entity to ensure the SQLite store

knows how to map columns to entity properties

Initialize the SQLite local cache

mobileService = new MobileServiceClient(AzureEndpoint);
...
var store = new MobileServiceSQLiteStore("localstore.db");
store.DefineTable<DiaryEntry>();

this will use reflection and generate an internal SQL table mapping definition

for the type referenced

❖ Must associate the SQLite store with the MobileServiceClient
through the public SyncContext property

Associate the local cache

mobileService = new MobileServiceClient(AzureEndpoint);
...
var store = new MobileServiceSQLiteStore("localstore.db");
store.DefineTable<DiaryEntry>();
await mobileService.SyncContext.InitializeAsync(store,

new MobileServiceSyncHandler());

SyncContext property is used to perform synchronization requests, note that

this method is async – it will initialize the DB store and potentially create

❖ Must associate the SQLite store with the MobileServiceClient
through the public SyncContext property

Associate the local cache

mobileService = new MobileServiceClient(AzureEndpoint);
...
var store = new MobileServiceSQLiteStore("localstore.db");
store.DefineTable<DiaryEntry>();
await mobileService.SyncContext.InitializeAsync(store,

new MobileServiceSyncHandler());

IMobileServiceSyncHandler is an extension point to process each table

operation as it's pushed to the remote DB and capture the result when it completes

❖ Store is actually an IMobileServiceLocalStore interface – can

define your own implementation to use something other than SQLite

What if I don't want to use SQLite?

mobileService = new MobileServiceClient(AzureEndpoint);
...
var store = new MyCustomXMLStore("localstore.xml");
...
await mobileService.SyncContext.InitializeAsync(store,

new MobileServiceSyncHandler());

class MyCustomXMLStore : IMobileServiceLocalStore

❖ Offline support is implemented by a new

IMobileServiceSyncTable<T> interface; this is retrieved through the

GetSyncTable<T> method

Retrieve a sync table

IMobileServiceSyncTable<DiaryEntry> diaryTable;
...
mobileService = new MobileServiceClient(AzureEndpoint);
...
diaryTable = mobileService.GetSyncTable<DiaryEntry>();
...

❖ All the same basic query operations are supported by

IMobileServiceSyncTable

Query operators

IMobileServiceSyncTable<DiaryEntry> diaryTable = ...;

var entry = new DiaryEntry { Text = "Some Entry" };
try {

await diaryTable.InsertAsync(entry);
}
catch (Exception ex) {

... // Handle error
}

This works even if we aren't connected to the network!

Add support to our app for offline data caching

Individual Exercise

❖ When a synchronization context is initialized with a local data store, all

your queries and updates are always performed locally and then

queued up for synchronization to Azure

Synchronize changes

IMobileServiceSyncTable

Local DB

MobileServiceSyncContext

MobileServiceSQLiteStore

DB holds local

cache and pending

operation queue

❖ To synchronize to the Azure remote database, your code must perform

two operations; first we push all pending changes up to the remote DB

Synchronize changes

MobileServiceSyncContext.
PushAsync

Local DB

MobileServiceSQLiteStore

Get pending changes

Changes are sent one at a time in the order

we did them; multiple updates to the same

row are collapsed together

Remote DB

Azure

POST /tables/entries

PATCH /tables/entries

DELETE /tables/entries

❖ Next, we pull new and updated records from the remote DB back to our

local copy on a table-by-table basis using the
IMobileServiceSyncTable

Synchronize changes

Local DBMobileServiceSQLiteStore

Write updates
Remote DB

Azure
GET /tables/entries

IMobileServiceSyncTable
PullAsync

MobileServiceSyncContext

❖ Can direct the pull operation to use an incremental sync which utilizes

the updatedAt column to only return the records after that timestamp

Optimizing the network traffic

IMobileServiceSyncTable
PullAsync ("queryId") This feature is activated by passing a

query id to PullAsync

GET /tables/diary_entry?$filter=updatedAt%20ge%20valueGET /tables/diary_entry?$filter=updatedAt%20ge%20value$skip=0&$take=50
GET /tables/diary_entry?$filter=updatedAt%20ge%20value$skip=50&$take=50
GET /tables/diary_entry?$filter=updatedAt%20ge%20value$skip=100&$take=50

❖ Should perform a synchronization on startup to sync up the local DB

and then each time you make a change to the database

Example: synchronizing a DB

public async Task<DiaryEntry> UpdateAsync(DiaryEntry entry)
{

// Update local DB
await diaryTable.UpdateAsync(entry);

// Our method to push changes to the remote DB
await SynchronizeAsync();

return entry;
}

Synchronize the DB
private async Task SynchronizeAsync()
{

if (!CrossConnectivity.Current.IsConnected)
return;

try
{

await MobileService.SyncContext.PushAsync();
await diaryTable.PullAsync(null, diaryTable.CreateQuery());

}
catch (Exception ex)
{

// TODO: handle error
}

}

Synchronize the DB
private async Task SynchronizeAsync()
{

if (!CrossConnectivity.Current.IsConnected)
return;

try
{

await MobileService.SyncContext.PushAsync();
await diaryTable.PullAsync(null, diaryTable.CreateQuery());

}
catch (Exception ex)
{

// TODO: handle error
}

}

Can use Connectivity NuGet plug-in to

check for network availability; don’t

attempt synchronization if we don't

have a network connection

Synchronize the DB
private async Task SynchronizeAsync()
{

if (!CrossConnectivity.Current.IsConnected)
return;

try
{

await MobileService.SyncContext.PushAsync();
await diaryTable.PullAsync(null, diaryTable.CreateQuery());

}
catch (Exception ex)
{

// TODO: handle error
}

}

Always push local changes first

– this can fail if something else

updated one or more of our

locally changed records

Synchronize the DB
private async Task SynchronizeAsync()
{

if (!CrossConnectivity.Current.IsConnected)
return;

try
{

await MobileService.SyncContext.PushAsync();
await diaryTable.PullAsync(null, diaryTable.CreateQuery());

}
catch (Exception ex)
{

// TODO: handle error
}

}

Then pull remote changes for each

table, must pass text identifier and

query to execute remotely

Synchronize the DB
private async Task SynchronizeAsync()
{

if (!CrossConnectivity.Current.IsConnected)
return;

try
{

await MobileService.SyncContext.PushAsync();
await diaryTable.PullAsync(null, diaryTable.CreateQuery());

}
catch (Exception ex)
{

// TODO: handle error
}

}

Can omit call to PushAsync if you

are going to pull changes back –

system will automatically do an

implicit push if you don't

❖Must pass a query to define the records to pull from the

remote database

Pull data from the server

await diaryTable.PullAsync(null,
diaryTable.Where(d => d.IsPrivate);

Can provide filtered query to pull down a subset of

the records you want to refresh in your local copy

await diaryTable.PullAsync(null,
diaryTable.CreateQuery());

❖ Enable incremental sync by providing a client-side query id,

or pass null to turn it off

Pull data from the server

await diaryTable.PullAsync("allEntries",
diaryTable.CreateQuery());

await diaryTable.PullAsync("privateEntries",
diaryTable.Where(d => d.IsPrivate);

query id must be unique per-query; try to have one query per table to minimize

storage and memory overhead in the client

OR

❖ Can force the client to throw away local cache and refresh completely

from the server if it has stale data by calling PurgeAsync

Force a full sync

await diaryTable.PurgeAsync("purgeAllPrivate",
diaryTable.Where(d => d.IsPrivate);

Or can specify a query to purge specific records

await diaryTable.PurgeAsync();

Can purge all records for a table

This is particularly important if soft deletes are not enabled on the server as

deleted records will not be removed from the local cache

Synchronizing to the remote database

Individual Exercise

❖ Changing data while offline has some risk – Azure optimistically just

assumes it will all work .. but what if …

Updating things while offline

While online, the client makes a change to a

row that causes a constraint failure in the

remote database so the remote DB cannot

apply the change

❖ Changing data while offline has some risk – Azure optimistically just

assumes it will all work .. But what if …

Updating things while offline

While online, the client makes a change to a

row that causes a constraint failure in the

remote database so the remote DB cannot

apply the change

❖ Azure supports automatic conflict resolution in cases where the same

record is modified by two clients through the version column; however

to turn this feature on you have to map it in your DTO shape

Automatic conflict resolution

public class DiaryEntry
{

...
[Version]
public string AzureVersion { get; set; }

}

{
"id":"5c6e6617-117a-...",
"createdAt":"...",
"updatedAt":"...",
"version":"AAAAAAAAB/4=",
"deleted":false,
"text":"Hello, Diary"

}

Adding the property ensures we send it back to the server,

otherwise our record will always just replace the server record

❖ If Azure detects a conflict (using version), it will respond with an HTTP

error which is translated to an exception

Dealing with failure

try
{

await MobileService.SyncContext.PushAsync();
...

}
catch (MobileServicePushFailedException ex)
{

// TODO: handle error
}

❖ MobileServicePushFailedException includes a PushResult
property which includes a status and a collection of table errors which

occurred as a result of the push request

Getting the result of the push

public class MobileServicePushCompletionResult
{

public MobileServicePushStatus Status { get; }
public List<MobileServiceTableOperationError> Errors { get; }

}

Each conflict is described by a table error – this contains the passed client value,

the server value and details about the operation so we can decide what to do

❖ Conflict handler code must walk through the set of returned errors and

decide what to do for each record based on the application and data

requirements

Handling conflicts

catch (MobileServicePushFailedException ex)
{

if (ex.PushResult != null)
{

foreach (MobileServiceTableOperationError error
in exception.PushResult.Errors) {

await ResolveConflictAsync(error);
}

}
}

❖ There are several valid options you can take when a conflict is reported

from Azure

How do you handle conflict?

Last Man (update)

Wins!

Allow the user to

select the one

they want

Merge the client

and server

records

Cancel the

update and use

the server version

❖ Table error includes methods to resolve conflict; app must decide what

to do based on the data and business requirements

Conflict resolution possibilities

I want to Use this method

Throw away my local changes and

revert back to my initial version

CancelAndDiscardItemAsync

Throw away my local changes and

updates to the server version

CancelAndUpdateItemAsync

Update my local item with a new

version and re-sync to the server

UpdateOperationAsync

❖ One possibility is to always assume the client copy is the one we want

Example: Take the client version

async Task ResolveConflictAsync(MobileServiceTableOperationError error)
{

var serverItem = error.Result.ToObject<DiaryEntry>();
var localItem = error.Item.ToObject<DiaryEntry>();
if (serverItem.Text == localItem.Text) {

// Items are the same, so ignore the conflict
await error.CancelAndDiscardItemAsync();

}
else {

// Always take the client; update the Version# and resubmit
localItem.AzureVersion = serverItem.AzureVersion;
await error.UpdateOperationAsync(JObject.FromObject(localItem));

}
}

❖ One possibility is to always assume the client copy is the one we want

Example: Take the client version

async Task ResolveConflictAsync(MobileServiceTableOperationError error)
{

var serverItem = error.Result.ToObject<DiaryEntry>();
var localItem = error.Item.ToObject<DiaryEntry>();
if (serverItem.Text == localItem.Text) {

// Items are the same, so ignore the conflict
await error.CancelAndDiscardItemAsync();

}
else {

// Always take the client; update the Version# and resubmit
localItem.AzureVersion = serverItem.AzureVersion;
await error.UpdateOperationAsync(JObject.FromObject(localItem));

}
}

If the server and local row is

the same then discard our

change and ignore the conflict

❖ One possibility is to always assume the client copy is the one we want

Example: Take the client version

async Task ResolveConflictAsync(MobileServiceTableOperationError error)
{

var serverItem = error.Result.ToObject<DiaryEntry>();
var localItem = error.Item.ToObject<DiaryEntry>();
if (serverItem.Text == localItem.Text) {

// Items are the same, so ignore the conflict
await error.CancelAndDiscardItemAsync();

}
else {

// Always take the client; update the Version# and resubmit
localItem.AzureVersion = serverItem.AzureVersion;
await error.UpdateOperationAsync(JObject.FromObject(localItem));

}
}

Otherwise, always assume our

copy is the best one – copy the

version over and re-submit to

Azure

Add error recovery code to support conflicts

Homework Exercise

1. Include support for SQLite

2. Setup the local cache

3. Synchronize to the online database

Summary

❖ We've covered the basics of

building a mobile app with

Azure support

❖ Next we’ll add to this

knowledge by supporting

authentication

Next Steps

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

