
@crichardson

Building and deploying microservices
with event sourcing, CQRS and Docker

Chris Richardson

Author of POJOs in Action
Founder of the original CloudFoundry.com

 @crichardson
chris@chrisrichardson.net
http://plainoldobjects.com

@crichardson

Presentation goal

Share my experiences with building and deploying an
application using Scala, functional domain models,
microservices, event sourcing, CQRS, and Docker

@crichardson

About Chris

@crichardson

About Chris

Founder of a buzzword compliant (stealthy, social, mobile, big data, machine
learning, ...) startup

Consultant helping organizations improve how they architect and deploy
applications using cloud, micro services, polyglot applications, NoSQL, ...

Creator of http://microservices.io

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

Building and deploying microservices

@crichardson

Let’s imagine that you are building a
banking app...

@crichardson

Domain model

Account

balance

open(initialBalance)
debit(amount)
credit(amount)

MoneyTransfer

fromAccountId
toAccountId
amount

@crichardson

Tomcat

Traditional application architecture

Browser/Client

WAR/EAR

RDBMS

Customers

Accounts

Transfers

Banking Banking UI

develop
test

deploy

Simple to

Load
balancer

scale

Spring MVC

Spring
Hibernate

...

HTML

REST/JSON

ACID

@crichardson

Problem #1: monolithic architecture

Intimidates developers

Obstacle to frequent deployments

Overloads your IDE and container

Obstacle to scaling development

Modules having conflicting scaling requirements

Requires long-term commitment to a technology stack

@crichardson

Solution #1: use a microservice architecture

Banking UI

Account Management Service MoneyTransfer Management
Service

Account
Database MoneyTransfer Database

Standalone
services

@crichardson

Problem #2: relational databases

Scalability

Distribution

Schema updates

O/R impedance mismatch

Handling semi-structured data

@crichardson

Solution #2: use NoSQL databases

Avoids the limitations of RDBMS

For example,

text search ⇒ Solr/Cloud Search

social (graph) data ⇒ Neo4J

highly distributed/available database ⇒ Cassandra

...

@crichardson

Different modules use different
databases

IEEE Software Sept/October 2010 - Debasish Ghosh / Twitter @debasishg

@crichardson

But now we have problems with data
consistency!

@crichardson

Problem #3: Microservices = distributed
data management

Each microservice has it’s own database

Business transactions must update data owned by multiple services,

e.g. Update MoneyTransfer and from/to Accounts

Some data is replicated and must be kept in sync

Tricky to implement reliably without 2PC

@crichardson

Problem #4: NoSQL =
ACID-free, denormalized databases

Limited transactions, i.e. no ACID transactions

Tricky to implement business transactions that update multiple rows,

e.g. Update MoneyTransfer and from/to Accounts

e.g. http://bit.ly/mongo2pc

Limited querying capabilities

Requires denormalized/materialized views that must be synchronized

Multiple datastores (e.g. DynamoDB + Cloud Search) that need to be kept in sync

@crichardson

Solution to #3/#4: Event-based
architecture to the rescue

Microservices publish events when state changes

Microservices subscribe to events

Maintains eventual consistency across multiple aggregates (in multiple
datastores)

Synchronize replicated data

@crichardson

MoneyTransferService
MoneyTransfer

fromAccountId = 101
toAccountId = 202
amount = 55
state = INITIAL

Eventually consistent money transfer

Message Bus

AccountService

transferMoney()

Publishes:
Subscribes to:

Subscribes to:

publishes:

MoneyTransferCreatedEvent

AccountDebitedEvent

DebitRecordedEvent

AccountCreditedEvent
MoneyTransferCreatedEvent
DebitRecordedEvent

AccountDebitedEvent
AccountCreditedEvent

Account
id = 101
balance = 250

Account
id = 202
balance = 125

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = DEBITED

Account
id = 101
balance = 195

Account
id = 202
balance = 180

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = COMPLETED

@crichardson

To maintain consistency a service must
atomically publish an event

whenever
a domain object changes

How to reliably generate events
whenever state changes?

Database triggers, Hibernate event
listener, ...

Reliable BUT

Not with NoSQL

Disconnected from the business
level event

Limited applicability

Ad hoc event publishing code mixed
into business logic

Publishes business level events
BUT

Tangled code, poor separation of
concerns

Unreliable, e.g. too easy to forget to
publish an event

How to atomically update the datastore
and publish event(s)

Use 2PC

Guaranteed atomicity BUT

Need a distributed transaction manager

Database and message broker must support
2PC

Impacts reliability

Not fashionable

2PC is best avoided

Use datastore as a message queue

1. Update database: new entity state & event

2. Consume event & mark event as consumed

Eventually consistent mechanism

See BASE: An Acid Alternative, http://bit.ly/
ebaybase

• BUT Tangled business logic and event
publishing code

• Difficult to implement when using a NoSQL
database :-(

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

Building and deploying microservices

@crichardson

Event sourcing

For each aggregate:

Identify (state-changing) domain events

Define Event classes

For example,

Account: AccountOpenedEvent, AccountDebitedEvent, AccountCreditedEvent

ShoppingCart: ItemAddedEvent, ItemRemovedEvent, OrderPlacedEvent

@crichardson

Persists events
NOT current state

Account

balance

open(initial)
debit(amount)
credit(amount)

AccountOpened

Event table

AccountCredited

AccountDebited

101 450

Account tableX
101

101

101

901

902

903

500

250

300

@crichardson

Replay events to recreate state

Account

balance

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)
AccountCreditedEvent(amount)

Events

@crichardson

Before: update state + publish events

Two actions that must
be atomic

Single action that can
be done atomically

Now: persist (and publish) events

@crichardson

Aggregate traits

Map Command to Events

Apply event returning updated
Aggregate

@crichardson

Account - command processing

Prevent overdraft

@crichardson

Account - applying events
Immutable

@crichardson

Request handling in an event-sourced application

HTTP
Handler

Event
Store

pastEvents = findEvents(entityId)

Account

new()

applyEvents(pastEvents)

newEvents = processCmd(SomeCmd)

saveEvents(newEvents)

Microservice A

@crichardson

Event Store publishes events - consumed by other
services

Event
Store

Event
Subscriber

subscribe(EventTypes)

publish(event)

publish(event)

Aggregate

NoSQL
materialized

view

update()

update()

Microservice B

@crichardson

Persisting events

Ideally use a cross platform format

Use weak serialization:

enables event evolution, eg. add memo field to transfer

missing field ⇒ provide default value

unknown field ⇒ ignore

JSON is a good choice

@crichardson

Optimizing using snapshots

Most aggregates have relatively few events

BUT consider a 10-year old Account ⇒ many transactions

Therefore, use snapshots:

Periodically save snapshot of aggregate state

Typically serialize a memento of the aggregate

Load latest snapshot + subsequent events

@crichardson

Event Store API
trait EventStore {

 def save[T <: Aggregate[T]](entity: T, events: Seq[Event],
 assignedId : Option[EntityId] = None): Future[EntityWithIdAndVersion[T]]

 def update[T <: Aggregate[T]](entityIdAndVersion : EntityIdAndVersion,
 entity: T, events: Seq[Event]): Future[EntityWithIdAndVersion[T]]

 def find[T <: Aggregate[T] : ClassTag](entityId: EntityId) :
 Future[EntityWithIdAndVersion[T]]

 def findOptional[T <: Aggregate[T] : ClassTag](entityId: EntityId)
 Future[Option[EntityWithIdAndVersion[T]]]

 def subscribe(subscriptionId: SubscriptionId):
 Future[AcknowledgableEventStream]
}

@crichardson

Business benefits of event sourcing

Built-in, reliable audit log

Enables temporal queries

Publishes events needed by big data/predictive analytics etc.

Preserved history ⇒ More easily implement future requirements

@crichardson

Technical benefits of event sourcing

Solves data consistency issues in a Microservice/NoSQL-based architecture:

Atomically save and publish events

Event subscribers update other aggregates ensuring eventual consistency

Event subscribers update materialized views in SQL and NoSQL databases
(more on that later)

Eliminates O/R mapping problem

@crichardson

Drawbacks of event sourcing

Weird and unfamiliar

Events = a historical record of your bad design decisions

Handling duplicate events can be tricky

Application must handle eventually consistent data

Event store only directly supports PK-based lookup (more on that later)

@crichardson

Example of an eventual consistency
problem

Scenario:

1. Create the user

2. Create shopping cart

3. Update the user with the shopping cart’s id

The user temporarily does not have a shopping cart id!

Client might need to retry their request at a later point

Server should return status code 418??

@crichardson

Handling duplicate events

Idempotent operations

e.g. add item to shopping cart

Duplicate detection:

e.g. track most recently seen event and discard earlier ones

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

Building and deploying microservices

@crichardson

The anatomy of a microservice

Event Store

HTTP Request

HTTP Adapter

Aggregate

Event Adapter

Cmd

Cmd

Events
Events

Xyz Adapter

Xyz Request

microservice

@crichardson

Asynchronous Spring MVC controller

@crichardson

MoneyTransferService

DSL concisely specifies:
1.Creates MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

MoneyTransfer Aggregate

@crichardson

Handling events published by
Accounts

1.Load MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

Building and deploying microservices

@crichardson

Let’s imagine that you want to display
an account and it’s recent transactions...

@crichardson

Displaying balance + recent credits and
debits

We need to do a “join: between the Account and the corresponding MoneyTransfers

(Assuming Debit/Credit events don’t include other account, ...)

BUT
Event Store = primary key lookup of individual aggregates, ...

⇒
Use Command Query Responsibility Separation

@crichardson

Command Query Responsibility
Separation (CQRS)

Command-side

Commands

Aggregate

Event Store

Events

Query-side

Queries

(Denormalized)
View

Events

@crichardson

Query-side microservices

Event Store

Updater - microservice

View Updater
Service

Events
Reader - microservice

HTTP GET Request

View Query Service

View
Store

e.g.
MongoDB

Neo4J
CloudSearch

update query

@crichardson

Persisting account balance and recent
transactions in MongoDB

{
 id: "298993498",
 balance: 100000,
 transfers : [

{"transferId" : "4552840948484",
 "fromAccountId" : 298993498,
 "toAccountId" : 3483948934,
 "amount" : 5000}, ...

],
 changes: [
 {"changeId" : "93843948934",
 "transferId" : "4552840948484",
 "transactionType" : "AccountDebited",
 "amount" : 5000}, ...
]
}

Denormalized = efficient lookup

Transfers that update the
account

The sequence of debits and
credits

Current balance

Other kinds of views
AWS Cloud Search

Text search as-a-Service

View updater batches aggregates
to index

View query service does text search

AWS DynamoDB

NoSQL as-a-Service

On-demand scalable - specify
desired read/write capacity

Document and key-value data
models

Useful for denormalized, UI oriented
views

Benefits and drawbacks of CQRS
Benefits

Necessary in an event-sourced
architecture

Separation of concerns = simpler
command and query models

Supports multiple denormalized views

Improved scalability and performance

Drawbacks

Complexity

Potential code duplication

Replication lag/eventually consistent
views

Dealing with eventually consistent views
Scenario:

Client creates/updates aggregate

Client requests view of aggregate

Problem:

The view might not yet have been
updated

Solution:

Create/Update response contains
aggregate version

Query request contains desired version

Out of date view ⇒ wait or return “out
of date view” error code

Alternatively:

“Fake it” in the UI until the view is
updated

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

Building and deploying microservices

@crichardson

My application architecture

API gateway Event
Store

Service 1

Service 2

Service ...

Event Archiver

Indexer AWS Cloud
Search

S3

NodeJS Scala/Spring Boot

@crichardson

Jenkins-based deployment pipeline

Build & Test
microservice

Build & Test
Docker
image

Deploy Docker
image

to registry

One pipeline per microservice

@crichardson

Building Docker images

cp ../build/libs/service.${1}.jar build/service.jar

docker build -t service-${VERSION} .

docker/build.sh

@crichardson

Smoke testing docker images

Smoke test

Docker daemon

Service
container

GET /health

POST /containers/create

creates

POST /containers/{id}/start

Docker daemon must listen on TCP port

@crichardson

Publishing Docker images

docker tag service-${VERSION}:latest \
 ${REGISTRY_HOST_AND_PORT}/service-${VERSION}

docker push ${REGISTRY_HOST_AND_PORT}/service-${VERSION}

docker/publish.sh

@crichardson

CI environment runs on Docker

EC2 Instance

Jenkins
Container

Artifactory
container

EBS volume

/jenkins-home

/gradle-home

/artifactory-home

@crichardson

Updating production environment
Large EC2 instance running Docker

Deployment tool:

1. Compares running containers with what’s been built by Jenkins

2. Pulls latest images from Docker registry

3. Stops old versions

4. Launches new versions

One day: use Docker clustering solution and a service discovery mechanism,

Mesos and Marathon + Zookeeper, Kubernetes or ???

@crichardson

Summary

Event sourcing solves key data consistency issues with:

Microservices

Partitioned SQL/NoSQL databases

Use CQRS to implement materialized views for queries

Docker is a great way to package microservices

@crichardson

 Questions? Let’s talk at the Open Space

@crichardson chris@chrisrichardson.net

http://plainoldobjects.com http://microservices.io

