
Building AppSec Automation with
python

Abhay Bhargav - CTO, we45

A Gentle Introduction to DevOps

• What is DevOps?

• Where does Security !t in?

What is DevOps?

• Key Objective - Harmonize IT Operations by
working with Developers and Ops
seamlessly

• Rely on processes and automation to
achieve higher throughput - Continuous
Delivery

Without DevOps

Requirements Design Develop Test Deploy

With DevOps (hopefully…)

Requirements Design Develop Test Deploy

Example pipeline
Developer Orchestration engine

Coding -
Modify and commit

Git:
Checkout for build

Jenkins:
Continuous
Integration

Docker:
Publish to

repo
success

Docker:
Deploy to

QA

Selenium:
Run tests

QA

success

Docker:
Deploy to

Prod

But….

Requirements Design Develop Test Deploy

Let’s do a security test
just before we go live….

The line that has ruined
Application Security for all of us.

In Short….

CI/CD Pipeline

Trigger ARA

Trigger manual code review

Email notifications

Configuration review

Trigger threat modelling

Run SAST tools

Automatic security testing

Gather metrics

Break the build

Compile and build code

SCA

Risk based security testing

Gather metrics

Break the build

Comprehensive SAST

Pre-commit checks

Commit-time checks

Build-time checks

CI/CD Pipeline

DAST/AST

Malicious code detection

Gather metrics

Break the build

Broader SAST

Pre-deployment checks

Post-deployment checks

Test-time checks

Commit-time checks

Continuous management

Provisioning runtime environment

Security scanning

Vulnerability scanning

Bug bounty program

Threat intelligence

The Need of the Hour….

• Continuous Application Security Practices to
keep pace with Continuous Delivery

• Dynamic Application Security Testing in
the Pipeline

• Static Application Security Testing in the
Pipeline

Security in DevOps

Plan

Code

Build

Test

Release

Deploy

Operate

Monitor

Threat
modeling

SAST
Security - Composition

DAST
IAST

Security in
IaC

Security monitoring
& attack detection

The Application Security Engineer’s Story

• How?

• Run DAST in the Pipeline?

• Correlate Results from DAST

• Compare Results from scans in time?

The Need of the Hour….

• Continuous Application Security Practices to
keep pace with Continuous Delivery

• Dynamic Application Security Testing in
the Pipeline

• Static Application Security Testing in the
Pipeline

Our Approach Today
• A View of DAST in the Pipeline

• Tool of Choice: OWASP ZAP

• with:

• Jenkins

• Customized Python Scripts

• ElasticSearch/Redis

• Objective: Explore Automated DAST Testing
Approaches with OWASP ZAP and its Python
API

Why OWASP ZAP?
• Free and Open Source Web Application

Vulnerability Scanner

• Feature-Rich, well supported, with several
contributors

• Community Support - Plugins, Add-ons, etc.

• Documentation - Better than most scanners
out there

• Great API and Scriptable Scanner

Security in DevOps

Plan

Code

Build

Test

Release

Deploy

Operate

Monitor

Threat
modeling

SAST
Security - Composition

DAST
IAST

Security in
IaC

Security monitoring
& attack detection

Stories for today….

• The Application Security Engineer/
DevSecOps Engineering Perspective

• The Automation-focused Pentester
Perspective

Key Questions - AppSec Engineering/DevSecOps

• How do we roll out Automated Security
Testing in the pipeline?

• Authenticated Scanning in the Pipeline -
for Apps/API, etc

• Account for changes in Attack Surface

Introduction to the OWASP ZAP API

• OWASP ZAP - Automation

• Concept Overview

• Useful Concepts and API

• OWASP ZAP Python API Deep-Dive

• Workshop Exercises

Concept Overview - OWASP ZAP

• Context

• Session

• Active Scan

• Passive Scan

• Scan Policy

• Alert

Workshop Exercise - Basic ZAP Functionality

• Concept overview:

• Context

• Sites

• Scan Policy

• Scripts

• Script Console

ZAP - Useful API Operations
from zapv2 import ZAPv2 as ZAP

zap.spider
 #spider operations

zap.core
 #App-wide operations

zap.ascan
 #Active Scan

zap.pscan
 #Passive Scan

zap.script
 #Operations with ZAP Scripts

zap.context
 #Context related operations

ZAP API Quicksearch operations
zap.spider.scan()
 #initiate ZAP Spider Scan against target

zap.ascan.scan()
 #initiate ZAP Active Scan against Target

zap.core.alerts()
 #all alerts (scan results) from the ZAP Scanner

zap.core.urls()
 #list of URLs from ZAP

zap.ascan.status(), zap.spider.status()
 #real time status of the spider or ascan

zap.ascan.scan_progress()
 #List of Vulnerabilities being tested for with number of payloads

Workshop Exercise - ZAP API Walkthrough

1. ipython walkthrough

2. Walkthrough ZAP API Code - Please refer to Instructions in the HTML

Running Authenticated Scans in OWASP ZAP

• Approaches:

• Selenium-driven Scan Process

• Leveraging canned ZAP Sessions

• Zest Scripting

Selenium-Authenticated Scan

Run Selenium and ZAP in Headless Mode

Leverage Functional Scripts

Beats Spidering the app! :)

ZAP Session-Authenticated Scan

Programmatically invoked with ZAP API

Maintains state with Sessions/Tokens, etc

ZestScript Authenticated Scan

Programmatically invoked with ZAP API

Easily Customizable

Workshop Exercise - Automated, Authenticated ZAP Scans

1. Selenium-ZAP Scan - Follow the HTML Instructions

2. ZAP Session Scans - Follow the HTML Instructions

3. Zest ZAP Scans - Follow the HTML Instructions

ZAP in the Continuous Delivery Pipeline

Workshop Exercise - Automated, Authenticated ZAP Scans

• Authenticated ZAP Scans - Jenkins Integration - Follow HTML Instructions

Correlating DAST Results

• The Common Weakness Enumeration (CWE)
system is the best we have for correlation right
now

• Problems:

• Several tools don’t give any/accurate CWEs

• Multiple CWE values tend to be di#cult to
handle and correlate with - BurpSuite, etc

Workshop Exercise

1. Correlation of Application Vulnerabilities based on CWE - Follow HTML Instructions

2. Di$ Scans with ZAP - Follow HTML Instructions

AppSec Automation - A Pentester’s perspective

• How do we go beyond traditional DAST?

• Scale Custom/Business Logic Security
Flaws

• Create Custom Application Exploits for
non-standard/esoteric %aws

• Create a Library of attacks extending/
complementing DAST Scanners

Tools we will use

• OWASP ZAP 2.6.0

• mitmproxy 0.17

OWASP ZAP - Scripting Framework
• Active Rules => Scripts invoked during Active Scan

• Authentication Scripts => Scripts invoked to facilitate
authentication for a Context

• Fuzzer Processors => Scripts invoked after Fuzzers are run
with ZAP

• HTTPSender => Scripts invoked against every request/
response received by ZAP

• Proxy => Runs inline and acts on all requests and responses

• Targeted Rules => Invoked on speci!c urls or on manual
start only

• Standalone => Invoked manually

• Passive Rules => Passive Scanning Rules

Con!guring ZAP to run with Python

• ZAP supports scripts written in Jython

• Python on Java JVM

• Not fully compatible with python libraries

• limitations on networking and i/o libraries in python

• Works when œPython Scripting’ add-on is installed in OWASP ZAP.

• Third Party Python Libs can be linked when refer to the jython site-packages directory

mitmproxy

• Primarily used as an extensible, interception proxy.

• Powerful Inline scripting framework

• Pure Python implementation :) - Highly extensible and scriptable

• Current version is 2.x on python 3 only

ZAP Scripting QuickSearch
msg
 #the message object that is acted upon to parse/manipulate

msg.getRequestHeader()
 #Request Header Object

msg.getRequestHeader().getURI()
 #fetches the URI from the request header

msg.getRequestBody()
 #Fetches the request body from the request

msg.getResponseBody()
 #Fetches the request body from the request

msg.setRequestBody()
 #Sets a different request body from the one in the original request

ZAP Active Rules Template
"""
The scanNode function will typically be called once for every page
The scan function will typically be called for every parameter in every
URL and Form for every page
"""
def scanNode(sas, msg):
 #Invoke something for every page here

def scan(sas, msg, param, value):
 #invoke something for every param here.

 sas.raiseAlert(1, 1, 'Active Vulnerability title', 'Full description',
 msg.getRequestHeader().getURI().toString(),
 param, 'Your attack', 'Any other info', 'The solution
', '', 0, 0, msg);

mitmproxy inline scripting
def request(context, flow):
 flow.request.headers
 #request headers object

 flow.request.host
 #host in the request

 flow.request.path
 #request path

 flow.request.content
 #request body

def response(context, flow):
 flow.response.headers
 # request headers object

 flow.response.host
 # host in the request

 flow.response.path
 # request path

 flow.response.content
 # request body

Workshop Exercises

1. ZAP POST Request Insecure Direct Object Reference Active Script

2. ZAP JSON Insecure Direct Object Reference Active Script

3. ZAP Standalone Script

4. mitmproxy JWT Bruteforce Script

5. mitmproxy JWT Attribute check script

