
eBook 1

Building Continuous
Delivery Pipelines
Deliver better features, faster

eBook 2

CI/CD - Continuous Integration, Continuous Delivery and Continuous Deployment	

Table of Contents

Benefits of an Automated CI/CD Pipeline					

Start Your Automation Journey	 						

Understanding Production Ready							

Best Practices for Continuous Delivery	 					

CI/CD and Your Business								

04

08

10

12

18

23

eBook 3

Building Continuous Delivery Pipelines

A continuously automated flow of features is what distinguishes DevOps from other software development philosophies and

practices, unlike the waterfall model where development follows an orderly sequence of stages. Continuous of course means without

interruption, but that doesn’t mean your engineers are working 24/7 updating code, or that they are deploying updates every time a

line of code is changed. Rather “continuous” refers to software changes and new features rolling out on a regular basis.

By continuously pushing feature updates, businesses are more agile, can respond more quickly to customer demands and are more

competitive in the marketplace.

CI/CD
Continuous Integration,
Delivery and Deployment

eBook 5

CI/CD - Continuous Integration

The first step toward an automated pipeline is implementing Continuous

Integration. With Continuous integration, developers are integrating small

changes to the code base on a regular basis to ensure that their change

hasn’t broken the build.

When a developer commits a change to the code base, the CI system

automatically builds and tests the changed code to make sure that it can

safely merge into the main branch. Performing this integration check each

time a developer commits changes, maintains the integrity of the code base

and also minimizes the chance of a breaking change.

Click here for more
information on

“CI/CD for Kubernetes:
What You Need to Know.”

https://www.weave.works/technologies/ci-cd-for-kubernetes/
https://www.weave.works/technologies/ci-cd-for-kubernetes/
https://www.weave.works/technologies/ci-cd-for-kubernetes/

eBook 6

Continuous Delivery vs. Continuous Deployment

Continuous delivery takes the idea of continuous integration one step further and advances automation along

the pipeline. With continuous delivery, code is not only integrated with changes on a regular basis, but as a

second stage it is also deployed to a given environment, such as staging or production.

Some teams use the term “continuous delivery” interchangeably with the similar DevOps term “continuous

deployment.” The difference between the two terms is subtle but important. Continuous delivery means that the

updated code base is available to move onto the next development stage, whether that be staging, user review,

or production.

Continuous deployment is a natural progression of continuous delivery. Once all software changes pass

automated and functional testing, as well as the build stages, they are automatically deployed to production

without human intervention. Continuously deploying code without human intervention is the goal that most

companies hope to achieve.

eBook 7

METHOD UPFRONT COSTS WHAT YOU GAIN

Continuous
Integration

•	 Unit tests need to be written for every new
function and bug fix.

•	 An integration server to manage the tests and
to integrate with the code base.

•	 Developers must check in code frequently.

•	 Low level errors are caught early before they
hit production.

•	 An integrated code base that ensures that
the build always works.

•	 Developers are alerted early when the build
breaks, resulting in less context-switching for
the team.

•	 Massive reduction in testing costs.

Continuous
Delivery

•	 Integration tests must have good code base
coverage.

•	 Fully automated deployments without human
intervention should be possible.

•	 Embrace feature flags so that incomplete
features don’t affect other developers on your
team or customers in production.

•	 Increases the number of releases and
features that you can deliver.

•	 Features are iterated on more quickly, based
on customer feedback, resulting in a more
effective feedback loop.

Continuous
Deployment

•	 Establish a good test process and have
confidence in your automated test suites.

•	 Make feature flags central to your deployments
so that your company can easily co-ordinate
new requests.

•	 Other processes in the company need to keep
up with the rapid pace of deployments.

•	 Since every change triggers the deployment
pipeline, even faster releases are possible.

•	 Releases are done in small batches so
customers see improvements on a daily basis
rather than quarterly or monthly.

BENEFITS OF
AN AUTOMATED
CI/CD PIPELINE

eBook 9

There Are a Number of Benefits
to Automating Your CI/CD Pipeline

Increased Speed
Reduce your time to market from weeks and months to

days or hours. With an automated pipeline, development

teams improve both the velocity of releases as well as

the quality of the code. New features, improvements

and fixes are added continuously in small increments

resulting in a product with fewer defects, allowing you

to be more competitive.

A Strong Development Team
Because all stages of the delivery pipeline are available

for anyone on the team to examine, improve upon and

verify, a sense of ownership over the build is created

that encourages strong teamwork and collaboration

across your entire organization. This results in better

communication between employees.

Reduced Risks and Costs

Automation encourages developers to verify code changes

in stages before moving forward, reducing the chances of

defects ending up in production. Also with an automated

pipeline, deployments are more clearly decoupled from

releases. This allows changes to be tested in multiple ways

before they are deployed to production.

Less Work in Progress
A CD pipeline provides a rapid feedback loop starting from

development through to your customers and around the

loop again. This iteration cycle not only helps you build

the right product, but it allows developers to make product

improvements more quickly and also leaves less work

in-progress to linger.

START
YOUR
AUTOMATION
JOURNEY

eBook 11

Start Your Automation Journey

A mistake made by many organizations is that they take on too much too soon. Implementing CD is not easy,
so it is always better to start off with a small proof of concept project before going ahead and converting
your whole development processes all at once.

Write up your current development process so that you can see which procedures need to change and
which ones can be automated. You may find that you can leverage existing CI tools that you already have in
place and build out an automated pipeline from that.

Analyze Your
Current Process

Start Small

Create transparency around the process of automation. Allow developers to make mistakes, so that gaps
in the process can be addressed and corrected. This is also true once you’ve achieved automation where
developers should have full ownership over the pipeline. In case a test fails, it should be possible to roll
back quickly.

Create an
Open Culture

With ‘declarative infrastructure’ like Kubernetes cluster configuration, infrastructure can be kept in Git
alongside your code. This not only means that there is a ‘source of truth’ for both your infrastructure and
application code, but that when disaster strikes, your infrastructure can be quickly restored from Git. We
discuss GitOps in more detail further on in this document.

Apply GitOps
Principles

Define success metrics before you begin the transition to CD automation. It will allow you to consistently
analyze your progress and help refining where necessary.

Measure
Your Success

Introducing continuous delivery into your organization requires thought and planning as well as team commitment and buy-in. The transition can’t
be made overnight and it involves a number of intermediate and incremental steps to shift away from your current development methodology.

Depending on how far along you are on the Cloud Native journey and whether you are running a Kubernetes cluster on one of the public cloud
providers or on-premise in your own data centre, there are several approaches to consider and plan for before fully automating your pipeline.

Step 1

Step 3

Step 4

Step 5

Step 2

UNDERSTANDING
PRODUCTION
READY

eBook 13

Understanding Production Ready

A Continuous Delivery pipeline involves a number of stages — coding, commiting the code to source control, unit testing and

integration, building and then deployment to production. Between each of these stages, code typically goes through many

different suites of automated tests before the new feature lands in production.

A typical CI/CD pipeline for Kubernetes

eBook 14

3 Steps From Git To Production

The pipeline starts by the developer checking in code into Git which kicks off the CI tool. This
consists of running some unit tests and integrating the changes into the rest of the code base
before it builds a Docker image. This stage of the pipeline provides the first indicator of “health” of
the new code.

STAGE 1

Continuous Integration
and Build

With the Docker container in a registry, the newly built container image runs through a series of
automated tests: functional, security, compliance or performance. These tests provide further
verification stages for the code change. And until you’ve achieved full automation, and you are
confident in your tests and the process, some of these verification stages may need some human
intervention.

STAGE 3

Test Automation
and Verification

This is the final stage of the pipeline where the fully tested, and verified Docker image is deployed
to a staging environment. At this point the change may be deployed to a subset of your production
environment and initially monitored or it can undergo further user testing before being fully rolled

out and released into production.

STAGE 2

Deployment
Automation

eBook 15

Deployments vs. Releases

SMOKE TEST: This test is essential if you want to ensure that the deployment was successful, and in
particular to test that your configuration settings for the production environment are set up correctly.

BLUE-GREEN DEPLOYMENTS: This occurs when you run two identical deployments in parallel: one on
production and another on a staging server. Final testing is done on one server and after testing, the live
server is switched over from the tested version. If you need to rollback at a later point, this deployment
strategy allows you to do that quickly and without any downtime.

CANARY DEPLOYMENTS: This is useful when you want to test out a new feature with a subset of users.
Similar to a blue-green deployment, you might have two almost identical servers: one that goes to all users
and another with the new features that gets rolled out to only a subset of users. These types of deployments
allow you to test new features with a trusted group of users to ensure that you’re building the right product.

A/B TESTING: This is a form of user testing where you compare two different layouts or designs on a subset
of users to see which is the most effective for your use case.

FEATURE FLAGS: These are used when a feature may have passed the unit tests in the integration phase
but is not fully complete. When a feature flag is turned on, it effectively hides it from the rest of the build.
This allows the rest of the development team to release other complete features, without holding up a
deployment or affecting customers in production.

A

BG

An important distinction to be aware of is the difference between a deployment and a release. A deployment is when software
has been tested and installed into a particular environment; whereas, a release is when those changes actually get into the
hands of your end-users. Adding a deployment stage before you release to your customers allows you to do smoke tests, or
more advanced testing like blue-green deployments, canary or A/B testing or you may want to deploy with feature flags.

Bv

eBook 16

Rollbacks

The goal is to be able to deploy a new change and get that change
into the hands of your customers as quickly as possible. But equally
important is that when defects are found, you can rollback the change
so that it can be fixed. Rollbacks allow your team to more quickly
iterate back and forth across the pipeline with feedback received via a
failed test or from a customer or other stakeholder. At any point in the
pipeline, developers must be able to smoothly rollback a change and
get back to a stable state.

By implementing rollbacks, you and your team can benefit from
increased confidence and speeding up your feedback loop.

eBook 17

1

2

3

4

5

A term borrowed from manufacturing, “cycle time” is the time it takes for a feature to go from build to production.
By measuring the phases of your development process, for example, coding, review process, test and release to
production, the average cycle time is obtained. This metric provides insight into the bottlenecks in your process and
the overall speed or time to deployment.

Not only do more frequent deployments give you an opportunity to improve upon your software, but by measuring
frequency, it allows you to analyze any bottlenecks you may find during your automation journey. The general rule is
that more frequent smaller releases reduces the risk of defects, and maybe more importantly, increases the ability to
fix them when found. This metric is an overall measure of your team’s efficiency and cohesiveness.

Measures the start of development to deployment. Like deployment frequency, this metric is also an indicator
of your entire development process and how well your team works together. If the lead time is too long, it may
suggest bottlenecks in your process or that your code and development systems are overly complicated.

This metric focuses on the number of times your deployment was successful versus the number of times the
deployment failed. This metric is one that should decrease over time. It is generally a useful measure of the success
of your DevOps process.

The Mean Time to Recovery (MTTR) is the amount of time it takes for your team to recover from a failure; either a
critical bug or a complete system failure. The Mean Time to Failure (MTTF) on the other hand measures the amount
of time between fixes or outages. Both metrics are a reflection of your team’s ability to respond and fix problems.
Generally you will want to see a downward trend for these metrics.

Deployment or
Cycle Time

Deployment
Frequency

Change
Lead Time

Change
Failure Rate

MTTR vs. MTTF

Five Key Performance Indicators (KPIs) for Success

BEST PRACTICES
FOR CONTINUOUS
DELIVERY

eBook 19

Best Practices for Continuous Delivery

Reduced Mean Time to Recovery with GitOps
Git enables declarative tools and for optimized Mean Time to Recovery (MTTR),
you should implement GitOps.

GitOps works by using Git as a single source of truth for declarative infrastructure
and applications within your entire system. Automated delivery pipelines roll out
changes to your infrastructure when changes are made to Git.

Not only is there a ‘source of truth’ for both your infrastructure and application code,
but when disaster strikes, infrastructure can be quickly and easily restored from Git,

reducing your MTTR from hours to minutes.

When you’re ready to start putting the components together for your
automated pipeline, you’ll need to select the right tools for your team. Let’s
review a couple of best practices when it comes to Mean Time to Recovery
(MTTR) and security.

For more on GitOps

See “Operations by Pull Request” and
“GitOps: High velocity CICD for Kubernetes”.

https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/blog/gitops-high-velocity-cicd-for-kubernetes

eBook 20

Best Practices for Continuous Delivery (cont’)

Push Pipelines
Most of the CI/CD tools available today use a push-based model. This means

that code goes through the pipeline starting with the CI system and continues

its path through a series of encoded scripts or by manually pushing changes

to the Kubernetes cluster.

Push Type Patterns Can be Insecure
The reason you don’t want to use your CI system as the deployment catalyst

or do it manually on the command line is because of the potential to expose

credentials outside of your cluster. While it is possible to make those

interactions secure in both your CI/CD scripts and manually on the command

line, you are working outside the trust domain of the cluster. This is generally

not good practice and is why CI systems can be known as attack vectors for

production.

Securing Your Pipeline

eBook 21

Best Practices for Continuous Delivery (cont’)

Pull Pipelines and Weave Cloud

Our product Weave Cloud, is a management and operations platform for containers. It uses a pull strategy and consists

of two key components: a Deployment Automator that watches the image registry and a Deployment Synchronizer in the

cluster to maintain its state.

Container
Registry

Pull

CI Test + Build
Container

Write Code

VCS
Code Base

 D
eployment Automator

Continuous Integration
CI

Continuous Delivery/Deployment
CD

Kubernetes Cluster

At the centre of our pull pipeline pattern is Git (or

any source control repo) that not only versions code,

but also provides the single source of truth for the

Kubernetes manifests. Developers push their updated

code to the code base repository; where the change

is picked up by the CI tool, tests are run and a Docker

image is built and uploaded to an image repository.

This is where Weave Cloud’s deployment features

come into play. The deployment automator watches

the image repository for new Docker containers, and

when it sees one, it updates the manifest file in Git and

automatically deploys the new image to the cluster.

A pull pipeline for CI/CD

eBook 22

Best Practices for Continuous Delivery (cont’)

The Benefits of a Pull-Based Pipeline

•	CI is decoupled from CD, and therefore the CI tool doesn’t have

elevated access to your cluster. Secure cluster credentials always

remain with the cluster and are not widely shared across the

pipeline or teams.

•	Deployment policies can be set and changed (automatic or manual)

in one place instead of keeping them scattered across your CI

pipelines and embedded in custom scripts.

•	Since all Kubernetes manifests are versioned in Git, if your

cluster ever goes down, developers can restore everything and

recover in minutes. Keeping manifests in Git also means that cluster

configuration is always in-sync with what’s being kept in Git.

CI/CD
AND
YOUR
BUSINESS

eBook 24

CI/CD and Your Business

Achieving automated Continuous Delivery within your organization is not easy. The biggests hurdles you’re likely to face are the

cultural shifts that will need to be made within your organization to make the successful transition. Everyone within your company will

be stakeholders in the new “Continuous Software” paradigm.

DevOps ≠ New Ops Team

One of the biggest misconceptions that some companies make

is that they feel they need to create a ‘DevOps team’ that will

implement and enforce best practices. For example, you don’t

want to transform your Ops team into the DevOps team. Instead,

you want your Ops team to assist with the tools so that developers

can be self-sufficient in their ability to deploy applications safely

and securely to your cluster.

DevOps is less about forming yet another silo and is more about

adopting a new philosophical approach to software development.

Cultural Impacts of CD

The success of DevOps depends a lot on company culture.

Internal teams must be able to adopt cross-functional methods

to ensure that software is iterated on with a continuous cadence

but also complements the marketing and business goals of the

company. Making the actual switch to continuous delivery may

be the easiest part in your company; getting those changes to

stick and also propagating them throughout your organization is

probably the most difficult part of the process.

eBook 25

Culture and Your Journey to
Automatic Continuous Delivery

Transparency
Everyone on the team should know how to fix or rollback

a build, allowing them to take responsibility for the build

and not leave it to one particular team. Creating cross-

functional teams throughout your organization ensures

that everyone has a stake in the outcome and new ideas

are encouraged.

Ownership
While collaboration is important, it is equally important

that developers take full ownership over their production-

ready code. This is the DevOps mantra that says, ‘you

build it, you run it’ and it means that developers should

not have to rely on Ops or any other team to deploy

their changes. The automation pipeline must be able to

accommodate developers deploying code to clusters

safely and securely.

Collaboration
Following on the notion of transparency, it’s also important

that when the pipeline breaks or if a bug is found, that

teams can effectively work together to figure out the best

person to make the fix.

Create a No Blame Atmosphere
Allow developers to make mistakes, so that gaps in the

process can be addressed and corrected. Transitioning to

continuous delivery can be challenging, you need to give

your team the space to experiment and to fail before they

will be successful.

eBook 26

About Weaveworks

Weaveworks makes it fast and simple for developers to build and operate

containerized applications. The Weave Cloud operations-as-a-service platform

provides a continuous delivery pipeline for building and operating applications,

letting teams connect, monitor and manage microservices and containers

on any server or public cloud. Weaveworks also contributes to several open

source projects, including Weave Scope, Weave Cortex, and Weave Flux. It was

one of the first members of the Cloud Native Computing Foundation. Founded

in 2014, the company is backed by Google Ventures and Accel Partners and

others.

Sign up today for a free 30 day trial for Weave Cloud.

Weaveworks now offers Production Grade Kubernetes Support for

enterprises. For the past 3 years, Kubernetes has been powering Weave Cloud,

our operations as a service offering, so we couldn’t be more excited to share

our knowledge and help teams embrace the benefits of cloud native tooling.

Contact us for more information.

https://cloud.weave.works/signup
https://www.weave.works/product/enterprise-kubernetes-support/
mailto:sales@weave.works

eBook 26©2018 Weaveworks, Inc. All rights reserved.

