
1

NEU csg389, Spring 2005

Building RAID Storage Systems

Lecture 9

2NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Plan for today

• Review
• Ordering of metadata operations
• Striping & redundancy

• Disk rebuild and reliability math
• Disk array controllers, parts and functions

• increasing performance
• increasing reliability

• Aggregation of storage
• Modeling & prediction

3NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Striping

• Interleave data across multiple disks
• Large file streaming can enjoy parallel transfers
• High throughput requests can enjoy load balancing

stripe unit
or block

File Foo:

Stripe

4NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Striping Details

• How disk striping works
• Break up total space into fixed-size stripe units
• Distribute the stripe units among disks in round-robin
• Compute location of block #B as follows

– disk# = B % N (%=modulo, N = # of disks)
– LBN# = B / N (computes the LBN on given disk)

• Key design decision: picking the stripe unit size
• too big: no parallel transfers and imperfect load

balancing
• too small: small transfers span stripe unit boundaries
• also, should be a multiple of block size to assist

alignment

2

5NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Striping Issues

• Striping distributes load across all the disks
• Significantly improves load balancing

• However, watch out for multiple disk accesses
• Small access > 1 strip unit require multiple disk

accesses
• Small accesses < 1 strip unit that cross strip unit

boundaries
• Performance is bounded by “slower” access

• What’s the “optimal” strip unit?

6NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit

• Exponential distribution
with mean of 4KB
• Concurrency = 1 means

the system is idle when a
request is launched

• 16 drives is simulations
• For a small request size (4K) &

concurrency = 1, the strip size
doesn’t matter

• Why?

7NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (2)

• Exponential distribution
with mean of 16KB

• For concurrency = 1,
the strip size matters only a little

• Why?

8NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (2b)

• Exponential distribution
with mean of 400KB

• For concurrency = 1,
stripe size matters a lot

• Why?

3

9NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (3)

• Exponential distribution
with mean of 4KB
• With concurrency from

1--20 outstanding requests
• Concurrency = 1 means

the system is idle when a
request is launched

• For a small request size (4K) &
concurrency = 1, the strip size
doesn’t matter

• Why?

• For larger concurrency, performance
increases with larger strip unit

• Why?

10NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (4)

• Exponential distribution
with mean of 16KB

11NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Strip Unit (5)

• Normal distribution with mean
request size = 400KB and
standard deviation of 400KB

• For each level of concurrency,
there is optimal striping unit
• For concurrency=1, the

optimal striping unit is 0.5K

• For concurrency=20, the
optimal striping unit is ~400K

12NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Strip Unit (6)

• Normal distribution with mean
request size = 1.5 MB and
standard deviation of 1.5 MB

• Again, every level of
concurrency has an optimal
striping unit

4

13NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (7)

• Both concurrency and request
size are important facts when
picking the optimal striping unit

• In these 3 graphs (see next
slide), there is an optimal point
for a given request size

• Could also compute optimal
point for a given level of
concurrency

14NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (8)

15NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (9)

16NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (10)

• Using the data from the previous
graphs
• This graph plots the range of

striping unit sizes which have
95%+ throughput

• Fitting a line to this graph, we get:

SU = 9.8KB * (Concurrency-1) + 0.5KB

5

17NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (11)

• For a wider range of workload
options, a 30KB striping unit works
best

• At this point, all of the workloads
achieve at least 80% throughput

• Picking a strip unit is trading off
• Decreased transfer time (by using

more disks per request)
• Increasing disk utilization

• The benefit of decreasing transfer
time is apx

striping unit / disk transfer rate

• The increasing cost of disk
positioning is apx

Average positioning time

18NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

• One extra disk
• All writes update

parity disk
• potential

bottleneck

Ap

Bp

Cp

Dp

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Simplest approach: Parity Disk

19NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Updating and Using the Parity

D D D P

Fault-Free Read

D D D P

Fault-Free Write

4
32 1

D D D P

Degraded Read

D D D P

Degraded Write

20NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Replication

Parity Disk

Striped Parity

None

Independent Fine Striping Coarse Striping

JBOD

Mirroring
RAID1

RAID0+1

RAID0

RAID3 RAID4

RAID5

The Disk Array Matrix

6

21NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Level Small Read Small Write Large Read Large Write Efficiency
0 1
1 1
3 1/G
5 1
G is the # of drives in the error-correction group

Small Reads

0

0.2

0.4

0.6

0.8

1

1.2

Group Size 5 10 15

Group Size

T
hr

o
ug

hp
ut

 R
el

at
iv

e
to

 R
A

ID
 0

RAID 1

RAID 3

RAID 5

22NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Level Small Read Small Write Large Read Large Write Efficiency
0 1 1
1 1 ½
3 1/G 1/G
5 1 max(1/G,1/4)
G is the # of drives in the error-correction group

Small Writes

0

0.1

0.2

0.3

0.4

0.5

0.6

Group Size 5 10 15

Group Size

T
h

ro
u

g
h

p
u

t
R

el
at

iv
e

to
 R

A
ID

 0

RAID 1

RAID 3

RAID 5

23NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Level Small Read Small Write Large Read Large Write Efficiency
0 1 1 1
1 1 ½ 1
3 1/G 1/G (G-1)/G
5 1 max(1/G,1/4) 1
G is the # of drives in the error-correction group

Large Reads

0

0.2

0.4

0.6

0.8

1

1.2

Group Size 5 10 15

Group Size

T
h
ro

u
g
h
p
u
t R

el
at

iv
e

to
 R

A
ID

 0

RAID 1

RAID 3

RAID 5

24NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Level Small Read Small Write Large Read Large Write Efficiency
0 1 1 1 1 1
1 1 ½ 1 ½ ½
3 1/G 1/G (G-1)/G (G-1)/G (G-1)/G
5 1 max(1/G,1/4) 1 (G-1)/G (G-1)/G
G is the # of drives in the error-correction group

Large Writes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group Size 5 10 15

Group Size

T
h
ro

u
g
h
p
u
t R

el
at

iv
e

to
 R

A
ID

 0

RAID 1

RAID 3

RAID 5

7

25NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Reliability Without Rebuild

• 200 data drives with MTBFdrive
• MTTDLarray = MTBFdrive / 200

• Add 200 drives and do mirroring
• MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive

• MTTDLarray = MTBFpair / 200 = MTBFdrive / 133

• Add 50 drives, each with parity across 4 data
disks
• MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive

• MTTDLarray = MTBFset / 50 = MTBFdrive / 111

26NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Rebuild: Restoring Redundancy After Failure

• After a drive failure
• data is still available for access
• but, a second failure is BAD

• So, should reconstruct the data onto a new drive
• on-line spares are features of high-end disk arrays

– reduce time to start rebuild

• must balance rebuild rate with foreground performance
impact

– a performance vs. reliability trade-offs

• How data is reconstructed
• Mirroring: just read good copy
• Parity: read all remaining drives (including parity) and

compute

27NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Reliability Consequences of Adding Rebuild

• No data loss, if fast enough
• That is, if first failure fixed before second one happens

• New math is…
• MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before

repair)
• … which is MTTRdrive / MTBFseconddrive

• For mirroring
• MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive)

• For 5-disk parity-protected arrays
• MTBFset = (MTBFdrive / 5) * (MTBFdrive / 4 / MTTRdrive)

28NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Degraded Read Degraded Write

D D D P

New
Data

D D D P

Desired
Data

Updating and Using the Parity

8

29NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Three Modes of Disk Array Operation

• Normal mode
• everything working; maximum efficiency

• Degraded mode
• some disk unavailable
• must use degraded mode operations

• Rebuild mode
• reconstructing lost disk’s contents onto spare
• degraded mode operations plus competition with

rebuild

30NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Mechanics of Rebuild

• Background process
• use degraded mode read to reconstruct data
• then, write it to replacement disk

• Implementation issues
• interference with foreground activity

– rebuild is important for reliability
– foreground activity is important for performance

• using the rebuilt disk
– for rebuilt part, reads can use replacement disk
– must balance performance benefit with rebuild

interference

31NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Replication

Parity Disk

Striped Parity

None

Independent Fine Striping Coarse Striping

JBOD

Mirroring
RAID1

RAID0+1

RAID0

RAID3 RAID4

RAID5

Refresh: The Disk Array Matrix

NEU csg389, Spring 2005

Disk Array Subsystems

9

33NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Array Subsystems

• Sets of disks managed by a central authority
• e.g., file system (within OS) or disk array controller

• Data distribution
• squeezing maximum performance from the set of disks
• several simultaneous considerations

– intra-access parallelism: parallel transfer for large requests
– inter-access parallelism: concurrent accesses for small requests
– load balancing for heavy workloads

• Redundancy scheme
• achieving fault tolerance from the set of disks
• several simultaneous considerations

– space efficiency
– number/type of faults tolerated
– performance

34NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Array Controller components

HostHost Host
Adaptor
Host

Adaptor
Array

Controller
Array

Controller

Disk
Controller

Disk
Controller

Disk
Controller

Disk
Controller

Disk
Controller

Disk
Controller

Manages interface
to host, DMA

Manages interface
to host, DMA

Control, buffering,
parity logic

Control, buffering,
parity logic

Physical device
control

Physical device
control

35NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Improving Reliability

• Addressing potential failure of other
components

• Array component organization
• put redundancy orthogonal to correlated disk hook-

ups

• In-progress writes
• NVRAM
• write-ahead logging

• End-to-end integrity checks
• error detection codes added by controller

36NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

AC Power
4.3 KHours

Power cable
10,000 KHours

300W supply
123 KHours

SCSI Host
Bus Adapter
120 KHours

SCSI cable
21,000 KHours

Fan
195 KHours

Controller

Schulze, Compcon, 1989

Arrays Contain Support Hardware

• must protect external power quality first
• combined effects of other components rival disk failures

10

37NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Redundancy Orthogonal to Shared Paths

• Two 4-disk array setups
• A) one array per controller
• B) each array across all the controllers

ControllerController

ControllerController

ControllerController

ControllerController

38NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Dual-Path Everything

Array
Controller

Array
Controller

Array
Controller

Array
Controller

I/O
Controller

I/O
Controller

I/O
Controller

I/O
Controller

To Host To Host

39NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Array Integrity

• Disk arrays require writes to multiple disks
• What happens if the array controller crashes during a write
• Example, during the update operation, the parity disk is written,

but the new data is not
• When the controller comes back up the data will be inconsistent

00001111 11111111 10000000 11110001 10000001

XOR

00001111 11111111 10000000 11110001 10111101

00110011

40NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk array integrity (cont.)

• Why would a RAID system crash
• Power failure
• Earthquake

• Solution:
• Log all writes before committing them to disks

– Log all writes to NVRAM before writing to disk
– After the write to disk(s) completes, update the log
– If there is a failure, the system uses the log to return the

array to a consistent state

11

41NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk array integrity (cont)

• 2-phase commit process

• Read drives to obtain old data and parity

• Compute new parity

• Write new block and parity to log

• Write data and parity to disks

• Mark operation complete in log

Sync points

42NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Many other integrity mechanisms

• EDC/ECC on memories and buses
• to protect against bit flips and such

• “Scrubbing” to catch grown defects
• before they found during a rebuild

• Checksum labels on each block
• to proactively detect problems caused by disk bugs

43NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Improving Performance

• Hardware assists for XOR
• controller ASIC support

– common approach: a combining memory

• drive-based XOR operations
– Data drive

• Mask = oldData XOR newData

– Parity Drive
• Write (Mask XOR oldParity)

– Avoids having to ship oldParity to server or HBA
• Reduces Bandwidth

• Cache memory

44NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Buffering/Caching in Array Controllers

• Writes
• signal completion once data is in array buffers

– must deal with reliability issue (RAM failure, power loss)
• benefits

– all writes finish at RAM speed instead of disk speed
– many writes may be coalesced and/or concatenated
– parity updates can be combined

• propagate to disks in background
– redundancy info updates (even Read-Modify-Write)

• Reads
• basic read caching and prefetching
• advanced techniques

– caching of parity blocks can eliminate need to read old
parity on writes

12

45NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Synchronized Spindles

• Disk Synchronization
• Sometimes the disks work together

– Full stripe read/write

• Sometimes the disks work independently
– Small read/write

• If an entire stripe is read, then all of the disk heads will be
on the same track

– All of the disks will have the SAME seek time for the next full-stripe
request

– However, each disk could be spinning at a slightly different rate
• Therefore, each disk may have a different rotational latency
• Does this matter?

– What’s the Average Rotational Latency for the entire set of drives?
Avg Rot Latset = N/(N+1) * Rotational Latency

• For a large number of drives, Avg Rot Latset ~ Rotational Latency

46NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Synchronized Spindles (cont)

• Disk Synchronization (con’t)
• If an access is not across an entire stripe, then

each disk head will probably be in a different part
of the disk

– Therefore, need to synchronize both seek and rotation
– By simulation, Chen found that not having this

synchronization added apx 3.5 ms (~12%) to an average
seek + average rotation

• What about the 2nd disk access
– Remember, RAID 5 does a read-modify-write to both the

data and parity drives
– Since the first access has already moved the head to the

correct track, the drives end up on the same track
• But each must wait an entire rotation to perform the write

47NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

EMC Symmetrix 8000 (in year 2000)

• Symmetrix 8000
– Holds up to 384 disks (73 GB/drive – 28 Terabytes)
– RAID 1 or a RAID5 variant called RAID-S
– Group size of 4 or 8 drives

• Architecture
– 4 internal busses (480 MB/sec each with ECC)
– 4 cache boards (1-8GB each)
– 16 Disk Directors

• Connect internal busses to disks
• Two 333 MHz PowerPC750 processors with 16 MB of RAM
• Each uses (redundant) SCSI controller

• Special disks
– 512 byte data + extra bytes for ECC
– Multiple priorities for reordering of requests in the disk

queue

48NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

EMC Symmetrix 8000 (2)

• Performance Optimizations
• For mirroring, Symmetrix watches disk access

patterns to decide how to issue data requests
– Interleaved – mirrors alternate which cylinders they serve

• Helps with _____ accesses
• How do you express cylinders?

– Mixes – one disk serves the first half of the data, the other
disk serves the second half

• Helps with ______I/O
• What’s the effective stripe unit size?

• Migration of partitions to balance load

13

49NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

EMC Symmetrix 8000 (3)

• Fault Tolerance
• Cache blocks (32KB) plus ECC
• ECC on all transfers between cache/host and disk/cache
• Memory Scrubbing

– All cache locations are periodically read and rewritten to correct
for single bit errors (and to detect double bit errors)

– bad regions of memory with unrecoverable errors are fenced off
• Disk scrubbing

– All disk locations are periodically read and rewritten to correct
for errors

– Bad sectors or tracks are fenced off
• XOR computation is performed inside the drives

50NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk array physical components

directors

bus

disks

51NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Aggregation into Logical Volumes

• Logical volumes
• A single device presented to the client
• A LV is mapped to a single Front-end director
• created from several hyper volumes (parts of disks)

– RAID-1
– RAID-S (variant of RAID-5)

• Physical disks
• sliced into “partitions” (called hyper volume)
• one disk holds data from many volumes

52NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Mapping Logical Volumes to disks

• Spread LV across multiple disks

Logical
Volumes

Physical
disks

disk 1 disk 2 disk 3 disk 4

14

53NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Load Balancing – avoiding hot spots

• Hot volumes – high load

Logical
Volumes

Physical
disks

disk 1 disk 2 disk 3 disk 4

balanced load

54NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Load Balancing – workload adjustments

• Workload changes create imbalance

Logical
Volumes

Physical
disks

disk 1 disk 2 disk 3 disk 4

idle

hot disk

idle

hot disk

55NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Caching

Shared cache among LVs
• individual pages (32KB)
• LRU policy

• Goal: let all I/Os be serviced from the cache
• separate back-end traffic from front-end
• discover sequential accesses

– engage prefetching
• lazy write-back

• Challenges
• NVRAM backed by batteries

– need enough power to keep data
– … and write them all to the disk…

• 384 disks – a lot of power!

56NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Front-End
Director

Cache

Host Channel

Front-End
Director

Back-End
Director

Front-End
Director

Front-End
Director

Back-End
Director

Back-End
Director

Back-End
Director

Cache Hit

Cache Miss

Cache as a staging area

15

57NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

EMC Symmetrix DMX-3000

58NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Some numbers…

96 x 2 Gb FC
96 x ESCON
48 x 2 Gb FICON
8 x GigE SRDF
48 x iSCSI

256 GB4-832/64 x 2 Gb
Fibre Channel

42 TB288

NEU csg389, Spring 2005

Predicting Performance With Models

60NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

More Performance Required

• Add another disk drive
• Distribute (spread) load among two disks

– mirroring
– striping

• Replace the current disk, with a faster one
• Handle more I/Os

But what if you need another faster component?
• Bottleneck analysis (homework)
• More rigorous treatment today

16

61NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Need to Know

• Workload
• measure or predict by calculation

• System model
• interactions among components

• Individual device characteristics

62NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Queueing Theory 0.101

• Disclaimer: No proofs in this lecture
• A basic component

• service center
– completion/service rate of µ jobs per unit time

• queue with jobs waiting to be processed
– arrival rate of λ jobs per unit time
– Large-enough size, but

λ µ

µλ ≤

63NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Some More Definitions

• Mean service time:

• Metrics
• Response time:

• Device throughput:

• Device utilization:

µ
1

][=SE

][][][SETETE QS +=

T
B

U =

T
C

X =

� � � � � �� �� � 	 �
 �

� �� � 	 ��

� � �� �� � � 	 �
 � � � 	 � �

� � �� �� � � 	 �
 � � � 	 � �

64NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Utilization vs. Throughput

• Express throughput in terms of utilization

• Utilization law:

• Intuitively:

U
B
C

T
B

B
C

T
C

X ===
µ
1

][== SE
C
B

UX ⋅= µ

][SEXU ⋅=

λ
µ

/1
/1=U

�� ��� ��� � �� � � �� �

�� ��� � �� � � � � � �! �� � �� � " � µ
λ=U

17

65NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Closed System

• Little’s law for closed systems:

][

on depends

sTEX

X

⇔↓↑
µ

fixed is N

in out

][sTEXN ⋅=

#$ % &'() *+) &,

- # . / ' ,0 , .' %

, $ &,0 , .' %

Z. / - # 1 . - % '

66NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Open System

• Arrival rate λ is important
• Various distributions of µ and λ

• Usually exponential Poisson arrival process

• X and response time E[Ts] unrelated

in out

][][sTENE ⋅= λ

23 4 25 2 67 8

λ

λ

λ

µ

µ

µ

λ

9 /LWWOH¶V ODZ�IRU�RSHQ�V\VWHPV

67NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Open vs. Closed System

• We limit our analysis to closed systems
• Easier computations

– No need to know about distributions of λ and µ
– Operational analysis works only for closed systems

• Must know the “other side” of the system
– Think times, batched systems etc.

• Analysis in practice is all about open systems
• Observations made at the system
• More powerful analysis

• Open research questions: open vs. closed

68NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Example 1
• Given a system with number of users N=10, think time E[Z]=5 seconds,

expected response time E[R]=15 seconds. Calculate the throughput X.

5.0
155

10
][][

])[][(

][

=
+

=

+
=

+=
⋅=

X

REZE
N

X

REZEXN

TEXN s

:; <=> ?@ < :A ;B CB = @ A ; D

][][ZE
X
N

RE −=E FG HI JK H G L MN G OP QR

users 10=N

in out

5][=ZE

18

69NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Operational Laws

• Forced flow law:

• Device demand:

• Bottleneck law:

][ii VEXX ⋅=

C
B

DE

SEVEDE

i
i

iii

=

⋅=

][

][][][

ST UVW XV YZ [\]V^ _ `a bc b Xc X _ Y V a bW V i

][ii DEXU ⋅=

][ii VECC ⋅=

][iVE

70NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Asymptotic Bounds

• Demands:

• Bounds for throughput:

• Bounds for resp.time:

∑
=

=
m

i
iDED

1

][

)
1

,
][

min(
maxDZED

N
X

+
≤

])[max(imax DED =

][][ZEDNRE max −⋅≥

71NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Example 2
• Given a system with think time E[Z]=18 s, E[Dcpu]= 5 s, E[diska]= 4 s,

E[diskb]= 3 s. Find the throughput X and E[R] as a function of N.

12345 =++=D

5=maxD de f f gh i hj kl h m nj h no pq r

)
5
1

,
30

min(
N

X ≤

)185,12max(][−≥ NRE

in out

18][=ZE

stu
vwx yz

vwx y{

72NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Modeling - Lessons Learned

• Simple observations give powerful analysis
• Prediction about performance

– Number of users supported
– Demand and throughput of individual components

• No need to know about distributions of µ and λ
• Workload in open and closed systems

• Closed – interactive and batch
• Open – when whole system cannot be observed

• Next: building an open-system model

19

73NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Workload Characterization

• Deciding on open vs. closed is not enough, we also
need to characterize the workload bef
• Recall from stripe-unit lecture how we characterized workload

• Express job size in terms of units (e.g., KB)
� µ=4 jobs/s of size 1KB or µ=2 jobs/s of size 2KB

• Open systems
� λsize 1=1 jobs/s, λsize 2=0.5 jobs/s
• Arrival and completion rate distributions

– Many theorems (and proofs) for exponential dist.
– But the reality may be different

• heavy-tail distribution for web workloads [Harchol-Balter99]

• A lot of research

74NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Cache Hit (Reads and Writes)

12

Read/Write Hit

75NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Model for Cache Hits

• Workload analyzer
• 2 front-end directors, bus, cache
• job sizes (just one in this example)
• arrival rates for each job of one size
• Can involve several LVs

µ

|} ~�� }� �� � �

µ

�� � � �

µ

µ

��� � � ~�� ��

��� � � ~�� ��

λ1

λ2

λ1 + λ2

76NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Cache Miss

Read Miss/Delayed Write

1

3

2

4

5

20

77NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Model for Cache Misses

• Workload analyzer
• 2 front-end directors, bus (interconnect), cache, two disks
• one job size
• arrival rates for each job size to each LV

|} ~�� }� �� � �

µ

λ1 µ

µ

��� � � ~�� ��

��� � � ~�� ��

λ2

λ1 + λ2 µ

µ

�� � � �
�� � � �

λ1

λ2

µ

�� � � �

µ

�� � � ��� � � ~ ��

µ

� � � |� � �

78NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Simulation vs. Analytical Model

• Analytical Models
• Results valid only if the assumptions are

– Arrival and completion rate distributions
– “Results within 15%-20% of the reality are good” [Lazowska]

• How to model a disk analytically?

• Simulators
• Take a trace and run it through the simulator
• Can give much more precise results
• Time consuming (everything in software)

– 200-5000 instructions/s (real processor vs. 1000s of MIPS)

79NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Next week

• Performance analysis of disk array systems
• guest lecture by Peter Lauterbach

• March 24th
• visit to EMC

– Meet at 9am, van leaves at 9:10 am
– talk by Bob Salomon
– tour of Interoperability lab
– visit to Franklin assembly facility
– Will be back by 3pm

