Building RAID Storage Systems

Lecture 9

NEU ¢sg389, Spring 2005

Plan for today

* Review

+ Ordering of metadata operations

« Striping & redundancy

Disk rebuild and reliability math

Disk array controllers, parts and functions
« increasing performance

* increasing reliability
Aggregation of storage

Modeling & prediction

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 2

Disk Striping

* Interleave data across multiple disks
« Large file streaming can enjoy parallel transfers
+ High throughput requests can enjoy load balancing

File Foo: 4‘_;4‘_;4‘_;4‘4‘

stripe unit
or block

Stripé

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Disk Striping Details

* How disk striping works
» Break up total space into fixed-size stripe units
« Distribute the stripe units among disks in round-robin
» Compute location of block #B as follows
— disk# =B % N (%=modulo, N = # of disks)
—LBN#=B/N (computes the LBN on given disk)
* Key design decision: picking the stripe unit size
+ too big: no parallel transfers and imperfect load
balancing
 too small: small transfers span stripe unit boundaries

« also, should be a multiple of block size to assist
alignment

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 4

Striping Issues

* Striping distributes load across all the disks
« Significantly improves load balancing

* However, watch out for multiple disk accesses
« Small access > 1 strip unit require multiple disk
accesses

» Small accesses < 1 strip unit that cross strip unit
boundaries

» Performance is bounded by “slower” access
* What's the “optimal” strip unit?

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler 5

Picking a Striping Unit

* Exponential distribution
with mean of 4KB
+ Concurrency = 1 means
the system is idle when a
request is launched h 13
* 16 drives is simulations i

* For a small request size (4K) & }1
concurrency = 1, the strip size "

doesn’t matter &
Why? B
§ 0.5

——————————— conl

0 1 100 1000

10
Striping Unit (KB)

(a) size exp4k

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (2)

Picking a Striping Unit (2b)

* Exponential distribution s
with mean of 16KB

* Forconcurrency = 1, '
the strip size matters only a little 7
o

3
Why? g
b
o
t

(2
M
e
4
)

1

T
0 10 100 1000
Striping Unit (KB)
(b) size expl 6k
NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 7

* Exponential distribution 2
with mean of 400KB

* Forconcurrency = 1,
stripe size matters a lot

Why?
10

—u—EZ~ ~eTomEc-so

conl

0 1 100 1000

10
Striping Unit (KB)

(c) size norm4 00k

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (3)

Picking a Striping Unit (4)

* Exponential distribution

with mean of 4KB 2"
+ With concurrency from
1--20 outstanding requests cono
- Concurrency = 1 means s conts
the system is idle when a o
request is launched i conlt
* For a small request size (4K) & l:. Lo e
concurrency = 1, the strip size con6
doesn’t matter M
© Why? ‘os CO“:
» For larger concurrency, perform ! z::z
|ncr¢\el\e;:e?s with larger strip unit ont
. y?
0 100 1000

1 10
Striping Unit (KB)

(a) size expdk

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

* Exponential distribution s
with mean of 16KB

WE~ ~ETEEES S T

con20

conls

conl0

con8

con6

cond

con3

con2

conl

0 10
Striping Unit (KB)

(b) size expi 6k

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

100

1000

Picking a Strip Unit (5)

Picking a Strip Unit (6)

* Normal distribution with mean
request size = 400KB and
standard deviation of 400KB

con20

conls

conl0

cong

* For each level of concurrency,
there is optimal striping unit
» For concurrency=1, the
optimal striping unit is 0.5K

10 con6

cond

con3

—u-WE~ ~ETEmESn TS

con2
« For concurrency=20, the
optimal striping unit is ~400K

conl

10 100 1000
Striping Unit (KB)

(c) size norm4 00k

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

* Normal distribution with mean
request size = 1.5 MB and
standard deviation of 1.5 MB

* Again, every level of)
concurrency has an optimal
striping unit

—w - mZm mEToweESa =

con20

conl0

conG

cond

con3

con2

conl

0 10
Striping Unit (KB)

(d) size normi.5m

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

100

1000

Picking a Striping Unit (7)

* Both concurrency and request
size are important facts when
picking the optimal striping unit

* Inthese 3 graphs (see next
slide), there is an optimal point
for a given request size

* Could also compute optimal
point for a given level of
concurrency

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (8)

1009 conl

90

80-

o
0] con2 /

-
cond ¥ s

con20 &

1 10 27 100 1000
Striping Unit (KB)

(b) size expi 6k

8 con2)
00 + conls
conl0
% %
80 con$
M
a con6 b
2 70 3
1 i
m “
™ 60 con =
m 4
501 con3
T T
h b
R0 B o2 :
u u
£ 30 a
h H
P
u 20 conl 14
t t
10

0 1 10 40 100 1000
Striping Unit (KB)

(c) size norm4 00k

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

100 — — 8 con20
TR o
9% =
v A
80
cond
70
con3
60
50 & con2
40
301 conl
20
10
0
0 I 1030 100 1000
Striping Unit (KB)
(d) size norm1.5m

Picking a Striping Unit (9)

TR M oL S—

-
904 normd00k

m
M 0] exphf

&
s0d explok b

1 10 100 1000
Striping Unit (KB)

(b) concurrency 3

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Picking a Striping Unit (10)

Ppa—
norm400k

Er/vv
P explok

1 10 100 1000
Striping Unit (KB)

(¢) concurrency 8

* Using the data from the previous
graphs
+ This graph plots the range of
striping unit sizes which have
95%+ throughput
+ Fitting a line to this graph, we get

SU =9.8KB * (Concurrency-1) + 0.5KB

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

450,
S 400,
1350
P

i

n

g 300
u_.
n 250

t
200

—mR~

5 10 15
Degree of Concurrency

Picking a Striping Unit (11)

pl6k con2) o inormdl0kconl0 g —gnorn

kconl o _qnomi#00kconl g-.—gnom

For a wider range of workload
options, a 30KB striping unit works
best
At this point, all of the workloads
achieve at least 80% throughput
Picking a strip unit is trading off
Decreased transfer time (by using
more disks per request)
Increasing disk utilization
The benefit of decreasing transfer
time is apx
striping unit / disk transfer rate
The increasing cost of disk
positioning is apx
Average positioning time

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

m
u 60

1 10 30 100
Striping Unit (KB)

1000

Simplest approach: Parity Disk

* One extra disk
* All writes update
parity disk
* potential
bottleneck

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Ap

Bp

Cp

Dp

Updating and Using the Parity

The Disk Array Matrix

Fault-Free Read Fault-Free Write
&b

% [©H@
Degraded Read Degraded Write

X m

X5

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Independent | Fine Striping | Coarse Striping
None JBOD RAIDO
Replication MFi{r;\o”r:i)r;g RAIDO+1
Parity Disk RAID3 RAID4
Striped Parity RAID5

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Efficiencyt

Level SmallRead Small Write Large Read Large Write
0 1
1 1
3 1/G
5 1
G is the # of drives in the error-correction group
‘Small Reads
s IO |
;; \ FADs|
2 .
Growp Size. 5 10 15
Group Size

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Efficiencyt

Level SmallRead Small Write Large Read Large Write
0 1 1
1 1 Vo
3 1/G 1/G
5 1 max(1/G,1/4)
G is the # of drives in the error-correction group
Small Writes
« 06
; 05—
"E 04 —e—RAD1
% 03 —=— RAD3|
2o - RADS|
g o1 \"‘\-
£ e
0
Group Sze 5 10 15
Group Size

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

RAID Performance (relative to RAID 0)

Efficiency

Level SmallRead Small Write Large Read Large Write
0 1 1 1
1 1 Y2
3 1/G 1/G (G-1)/G
5 1 max(1/G,1/4) 1
G is the # of drives in the error-correction group
Large Reads
12
% e W’
e
E. o4 / PRAIDS5|
g
ﬁ 02
Group Sze 5 10 15
Group Size

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

23

RAID Performance (relative to RAID 0)

0
1
3
5

Level SmallRead Small Write Large Read Large Write _ Efficiency
1 1 1 1 1
1 Y2 Y2 Yo
1/G 1/G (G-1)/G (G-1)/G (G-1)/G
1 max(1/G,1/4) 1 G-1)/G G-1)/G
G is the # of drives in the error-correction group
Large Writes
Y -
g o7 4
¥ o6 —e—PRAD1
g o5l o —=—PAD3|
§ 04 RAIDS|
(gmpsZe 5 10 15
Group Size

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

24

Reliability Without Rebuild

¢ 200 data drives with MTBF ;¢
* MTTDL,q = MTBF g, / 200

¢ Add 200 drives and do mirroring
© MTBF 5 = (MTBF g0 / 2) + MTBF g0 = 1.5 * MTBF
« MTTDL,, = MTBF,, / 200 = MTBF 4, / 133

e Add 50 drives, each with parity across 4 data
disks

- MTBF,, = (MTBFyy. /5) + (MTBF,, / 4) = 0.45 * MTBF,,
« MTTDL,,, = MTBF,, /50 = MTBF g, / 111

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 25

Rebuild: Restoring Redundancy After Failure

* After a drive failure
+ data is still available for access
* but, a second failure is BAD

* So, should reconstruct the data onto a new drive

+ on-line spares are features of high-end disk arrays
— reduce time to start rebuild

» must balance rebuild rate with foreground performance
impact
— a performance vs. reliability trade-offs
* How data is reconstructed
» Mirroring: just read good copy
 Parity: read all remaining drives (including parity) and
compute

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 26

Reliability Consequences of Adding Rebuild

No data loss, if fast enough
» That is, if first failure fixed before second one happens
New math is...

* MTTDL,, = MTBFyggnve * (1 / prob of 2Md failure before
repair)
... which is MTTR ;e / MTBF¢¢congarive

For mirroring
© MTBF ;= (MTBF e / 2) * (MTBF e / MTTRgrive)

For 5-disk parity-protected arrays
° MTBFset = (MTBFdrive / 5) * (MTBFdrive 147 MTTRdrive)

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 27

Updating and Using the Parity

Degraded Read Degraded Write

New

Dsz:::d @@E

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 2

Three Modes of Disk Array Operation

Mechanics of Rebuild

¢ Normal mode
« everything working; maximum efficiency

¢ Degraded mode
» some disk unavailable
» must use degraded mode operations

* Rebuild mode
« reconstructing lost disk’s contents onto spare

» degraded mode operations plus competition with
rebuild

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 29

* Background process
 use degraded mode read to reconstruct data
« then, write it to replacement disk

* Implementation issues
« interference with foreground activity
— rebuild is important for reliability
— foreground activity is important for performance
« using the rebuilt disk
— for rebuilt part, reads can use replacement disk

— must balance performance benefit with rebuild
interference

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 30

Refresh: The Disk Array Matrix

Independent | Fine Striping | Coarse Striping

None JBOD RAIDO
ot Mirroring
Replication RAID1 RAIDO+1
Parity Disk RAID3 RAID4

Striped Parity RAID5

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 3

Disk Array Subsystems

NEU csg389, Spring 2005

Disk Array Subsystems

Disk Array Controller components

» Sets of disks managed by a central authority
+ e.g., file system (within OS) or disk array controller

» Data distribution
+ squeezing maximum performance from the set of disks

+ several simultaneous considerations
— intra-access parallelism: parallel transfer for large requests
— inter-access parallelism: concurrent accesses for small requests

— load balancing for heavy workloads
* Redundancy scheme
« achieving fault tolerance from the set of disks
+ several simultaneous considerations
— space efficiency
— number/type of faults tolerated
— performance

33

Host Host Array
Adaptor Controller

Disk
Controller

Disk
Manages interface Controller

to host, DMA

Control, buffering,
parity logic Disk
Controller

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Physical device
control

34

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Improving Reliability

* Addressing potential failure of other
components

* Array component organization
 put redundancy orthogonal to correlated disk hook-

ups
* In-progress writes
 NVRAM
 write-ahead logging

* End-to-end integrity checks
« error detection codes added by controller

NEU csg389 Spring 2005, Gene Gooperman & Jiri Schindler

Arrays Contain Support Hardware

* must protect external power quality first
» combined effects of other components rival disk failures

Controller
SCSI Host
AC Power 113;8 llz;llapler
4.3 KHours ours
SCSI cable
21,000 KHours
300W supply

123 KHours

—
PR
Power cable
10,000 KHours

Fan
195 KHours

Schulze, Compeon, 1989

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 36

Redundancy Orthogonal to Shared Paths

* Two 4-disk array setups
« A) one array per controller
» B) each array across all the controllers

Controller

Controller

Controller

Ccmmnsr(

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 37

Dual-Path Everything

To Host To Host

e}
Controller

e}
Controller

Array Array
Controller Controller
NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 38

Disk Array Integrity

» Disk arrays require writes to multiple disks
« What happens if the array controller crashes during a write
« Example, during the update operation, the parity disk is written,
but the new data is not
« When the controller comes back up the data will be inconsistent

00001111 11111111 IOOOOOOO 11110001 10000001

00110011 4’

00001111 11111111 10000000 11110001 10111101

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 39

Disk array integrity (cont.)

* Why would a RAID system crash
+ Power failure
+ Earthquake

* Solution:
* Log all writes before committing them to disks
— Log all writes to NVRAM before writing to disk
— After the write to disk(s) completes, update the log
— If there is a failure, the system uses the log to return the
array to a consistent state

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 40

10

Disk array integrity (cont)

Many other integrity mechanisms

* 2-phase commit process

- Read drives to obtain old data and parity

- Compute new parity

Sync points
» Write new block and parity to lo

» Write data and parity to disks

» Mark operation complete in lo

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

a1

* EDC/ECC on memories and buses
+ to protect against bit flips and such

* “Scrubbing” to catch grown defects
* before they found during a rebuild

* Checksum labels on each block
« to proactively detect problems caused by disk bugs

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 42

Improving Performance

Buffering/Caching in Array Controllers

* Hardware assists for XOR

» controller ASIC support
— common approach: a combining memory

» drive-based XOR operations
— Data drive
+ Mask = oldData XOR newData
— Parity Drive
+ Write (Mask XOR oldParity)
— Avoids having to ship oldParity to server or HBA
+ Reduces Bandwidth

* Cache memory

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

43

¢ Writes
« signal completion once data is in array buffers
— must deal with reliability issue (RAM failure, power loss)
* benefits
— all writes finish at RAM speed instead of disk speed
— many writes may be coalesced and/or concatenated
— parity updates can be combined
 propagate to disks in background
— redundancy info updates (even Read-Modify-Write)

* Reads
* basic read caching and prefetching
+ advanced techniques
— caching of parity blocks can eliminate need to read old
parity on writes

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler a4

11

Synchronized Spindles

= Disk Synchronization
+ Sometimes the disks work together
— Full stripe read/write
+ Sometimes the disks work independently
— Small read/write
« If an entire stripe is read, then all of the disk heads will be
on the same track

— All of the disks will have the SAME seek time for the next full-stripe
request
— However, each disk could be spinning at a slightly different rate
« Therefore, each disk may have a different rotational latency
« Does this matter?
— What's the Average Rotational Latency for the entire set of drives?
Avg Rot Lat,,, = N/(N+1) * Rotational Latency
« For alarge number of drives, Avg Rot Lat,,, ~ Rotational Latency

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 45

Synchronized Spindles (cont)

* Disk Synchronization (con’t)

- If an access is not across an entire stripe, then
each disk head will probably be in a different part
of the disk

— Therefore, need to synchronize both seek and rotation

— By simulation, Chen found that not having this
synchronization added apx 3.5 ms (~12%) to an average
seek + average rotation

« What about the 2 disk access

— Remember, RAID 5 does a read-modify-write to both the
data and parity drives

— Since the first access has already moved the head to the
correct track, the drives end up on the same track
« But each must wait an entire rotation to perform the write

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 46

EMC Symmetrix 8000 (in year 2000)

¢ Symmetrix 8000
— Holds up to 384 disks (73 GB/drive — 28 Terabytes)
— RAID 1 or a RAID5 variant called RAID-S
— Group size of 4 or 8 drives
* Architecture
— 4 internal busses (480 MB/sec each with ECC)
— 4 cache boards (1-8GB each)
— 16 Disk Directors
« Connect internal busses to disks
« Two 333 MHz PowerPC750 processors with 16 MB of RAM
« Each uses (redundant) SCSI controller
 Special disks
— 512 byte data + extra bytes for ECC

— Multiple priorities for reordering of requests in the disk
queue

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 47

EMC Symmetrix 8000 (2)

* Performance Optimizations

+ For mirroring, Symmetrix watches disk access
patterns to decide how to issue data requests
— Interleaved — mirrors alternate which cylinders they serve
* Helps with accesses
« How do you express cylinders?
— Mixes — one disk serves the first half of the data, the other
disk serves the second half
« Helps with 110
« What's the effective stripe unit size?

* Migration of partitions to balance load

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler a8

12

EMC Symmetrix 8000 (3)

* Fault Tolerance
« Cache blocks (32KB) plus ECC
« ECC on all transfers between cache/host and disk/cache
+ Memory Scrubbing
— All cache locations are periodically read and rewritten to correct
for single bit errors (and to detect double bit errors)
— bad regions of memory with unrecoverable errors are fenced off
+ Disk scrubbing
— All disk locations are periodically read and rewritten to correct
for errors
— Bad sectors or tracks are fenced off
+ XOR computation is performed inside the drives

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 49

Disk array physical components

Symmetrix 8430 Archi Q directors
Top - High
Top - Low mm
Bottom - High s L : bus
Bottom - Low. N ld— =

W (o) BEE (el =

disks

Complete
=
=

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 50

Aggregation into Logical Volumes

* Logical volumes
+ A single device presented to the client
+ ALV is mapped to a single Front-end director
« created from several hyper volumes (parts of disks)
— RAID-1
— RAID-S (variant of RAID-5)
* Physical disks
« sliced into “partitions” (called hyper volume)
+ one disk holds data from many volumes

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 51

Mapping Logical Volumes to disks

» Spread LV across multiple disks

Logical
Volumes

Physical
disks

disk 1 disk 2 disk 3 disk 4

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 52

13

Load Balancing — avoiding hot spots

Load Balancing — workload adjustments

* Hot volumes — high load B

B B
Logical
Volumes

m = l
balanced load
PhYSicaI ! a

disks

disk 1 disk 2 disk 3 disk 4

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

* Workload changes create imbalance

idle l idle l

B =
Logical
Volumes

hot disk hot disk
Physical
disks
disk 1 disk 2 disk 3 disk 4

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Caching

Shared cache among LVs
« individual pages (32KB)
» LRU policy
* Goal: let all I/Os be serviced from the cache
+ separate back-end traffic from front-end
« discover sequential accesses
— engage prefetching
* lazy write-back
 Challenges
* NVRAM backed by batteries

— need enough power to keep data
— ... and write them all to the disk...
« 384 disks — a lot of power!

NEU csg389 Spring 2005, Gene Gooperman & Jiri Schindler

Cache as a staging area

Host Channel Front-End Back-End
Director Director % é g é
Front-End Back-End —
Director Director
Cache
Front-End ack-]
Director Director
Front-End Back-End
Director Director

Cache Hit)

il > ||| =H\->)

Cache Miss

s

NEU csg389 Spring 2005, Gene Gooperman & Jiri Schindler

14

EMC Symmetrix DMX-3000

CETE
b R s]
RIS

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Some numbers...

DMX3000
Global Maximum
Capacity Memory Global
Drives (raw) Drive Channels Directors Memory Connectivity®
288 427TB 32/64 x 2 Gb 4-8 256 GB 96x 2 Gb FC
Fibre Channel 96 x ESCON

48 x 2 Gb FICON
8 x GigE SRDF
48 x iSCSI

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Predicting Performance With Models

NEU csg389, Spring 2005

More Performance Required

* Add another disk drive
« Distribute (spread) load among two disks
— mirroring
— striping
* Replace the current disk, with a faster one
+ Handle more I/Os

But what if you need another faster component?
 Bottleneck analysis (homework)
+ More rigorous treatment today

NEU 05389 Spring 2005, Gene Cooperman & diri Schindler

15

Need to Know

* Workload

» measure or predict by calculation
* System model

« interactions among components

* Individual device characteristics

NEU c5g389 Spring 2005, Gene Cooperman & Jiri Schindler

Queueing Theory 0.101

» Disclaimer: No proofs in this lecture

* A basic component
* service center
— completion/service rate of x jobs per unit time
+ queue with jobs waiting to be processed
— arrival rate of 1 jobs per unit time
— Large-enough size, but

A<u
P @:>

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Some More Definitions

. . 1
* Mean service time: E[S]=—

* Metrics
- Response time: E[Ts]1=E[T,]1+ E[S]

of completions

» Device throughput: - X = observation period

busy time

» Device utilization: =
v observation period

Nlw NA

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 63

Utilization vs. Throughput

» Express throughput in terms of utilization

X=£=£§=CU B:E[s]:
T BT B C U
X=uU

* Utilization law: U=X- E[S]

* Intuitively:

_ 1y avg. service time
1/A avg. time between arrivals

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

16

Closed System

- o co number of jobs
think time Z ° N is fixed in the system
X depends on
in out TX ol E[T]
subsystem

e Little’s law for closed systems: N =X -E[T.]

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 65

Open System

Little’s law for open systems

E[N]=A-E[T]

subsystem

* Arrival rate Ais important

 Various distributions of 4 and 4
« Usually exponential Poisson arrival process

* X and response time E[T,] unrelated

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 66

Open vs. Closed System

* We limit our analysis to closed systems
« Easier computations
— No need to know about distributions of 1 and
— Operational analysis works only for closed systems
» Must know the “other side” of the system
— Think times, batched systems etc.
* Analysis in practice is all about open systems
+ Observations made at the system
+ More powerful analysis

» Open research questions: open vs. closed

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 67

Example 1

* Given a system with number of users N=10, think time E[Z]=5 seconds,
expected response time E[R]=15 seconds. Calculate the throughput X.

N=X-E[T]
E[Z]=5 § W:IOusers N = X (E[Z]+ E[R))
2 N

X=—"
E[Z]+E[R]
in out 10
X =———=0.5 interactions/second
5+15

Response time law: E[R]= %— E[Z]

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 68

17

Operational Laws

Asymptotic Bounds

* Forced flow law: X =X-E[V]

* Device demand: C, =C-E[V]
E[V.] Expected number of visits to device i
» Bottleneck law: E[D,]=E[V,]-E[S,]
B,
E[D.]=—*
(D] C

U,=X-E[D,]

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 69

* Demands: D:iE[Di]
D,. = max(E[D,])

max

» Bounds for throughput:)

X <min(———,
D+E[Z] D

)

max

* Bounds for resp.time:

E[R]>N-D

max

—E[Z]

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 70

Example 2

Modeling - Lessons Learned

Given a system with think time E[Z]=18 s, E[D,, 1= 5 s, Eldisk,]=4 s,
E[disk,]= 3 s. Find the throughput X and E[R] as a function of N.

D=5+4+3=12
D,.. =5 bottleneck device is CPU

X< min(l,l)
30 5

E[R] > max(12,5N —18)

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler n

» Simple observations give powerful analysis
+ Prediction about performance
— Number of users supported
— Demand and throughput of individual components
» No need to know about distributions of z and 4
* Workload in open and closed systems
+ Closed — interactive and batch
» Open —when whole system cannot be observed

* Next: building an open-system model

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 72

18

Workload Characterization

Cache Hit (Reads and Writes)

» Deciding on open vs. closed is not enough, we also
need to characterize the workload bef
+ Recall from stripe-unit lecture how we characterized workload

» Express job size in terms of units (e.g., KB)
u=4 jobs/s of size 1KB or =2 jobs/s of size 2KB

* Open systems
Agize 1=1 jObS/s, A, ,=0.5 jobs/s
= Arrival and completion rate distributions
— Many theorems (and proofs) for exponential dist.
— But the reality may be different
+ heavy-tail distribution for web workloads [Harchol-Balter99]

* A lot of research

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 73

Read/Write Hit

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler

Model for Cache Hits

Cache Miss

* Workload analyzer
+ 2 front-end directors, bus, cache
« job sizes (just one in this example)
« arrival rates for each job of one size
Can involve several LVs

4

—_—

A+,

Internal Bus Cache

Director 2B

NEU csg389 Spring 2005, Gene Gooperman & Jiri Schindler

Read Miss/Delayed Write

NEU csg389 Spring 2005, Gene Gooperman & Jiri Schindler

19

Model for Cache Misses

Simulation vs. Analytical Model

* Workload analyzer
- 2 front-end directors, bus (interconnect), cache, two disks
+ one job size
- arrival rates for each job size to each LV

ﬂ'_l. A+, A
G0N P¥iic
e DD D

Internal Bus Cache Disk Director ~ SCSI Bus

Director 2B Disk2

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler ”

* Analytical Models
» Results valid only if the assumptions are
— Arrival and completion rate distributions
— “Results within 15%-20% of the reality are good” [Lazowska]
+ How to model a disk analytically?

» Simulators
+ Take atrace and run it through the simulator
+ Can give much more precise results
« Time consuming (everything in software)
— 200-5000 instructions/s (real processor vs. 1000s of MIPS)

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler 78

Next week

* Performance analysis of disk array systems
+ guest lecture by Peter Lauterbach

* March 24th

* visit to EMC
— Meet at 9am, van leaves at 9:10 am
— talk by Bob Salomon
— tour of Interoperability lab
— visit to Franklin assembly facility
— Will be back by 3pm

NEU csg389 Spring 2005, Gene Cooperman & Jiri Schindler i

20

