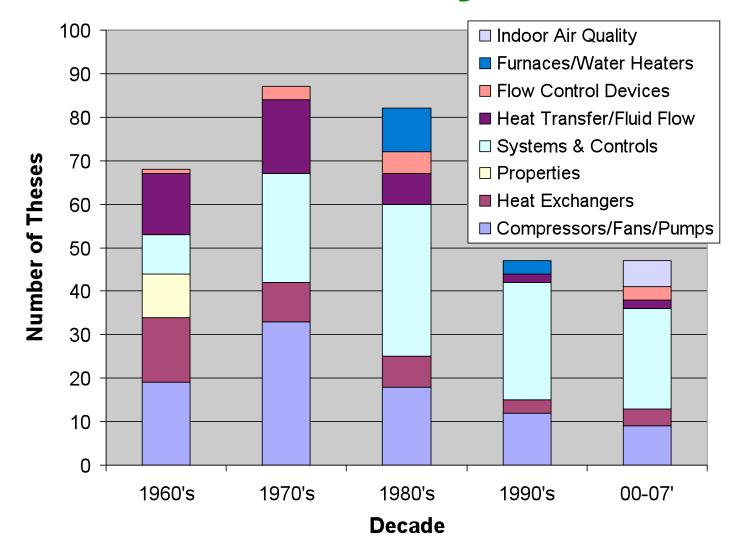
Building-Related Research at Herrick Laboratories: Past, Present, and Future

Jim Braun Ray W. Herrick Laboratories School of Mechanical Engineering Purdue University


Outline

- History of Buildings' Research at Herrick Labs
- Overview of Current Capabilities and Activities
 - Faculty
 - Research Thrusts
 - Facilities
- Future Research
 - Technologies for Existing Buildings
 - Technologies for New Buildings
 - Research to Technology
 - New Research Facilities
 - Opportunities for Collaboration within Purdue

Herrick Labs History

- Founded in the mid-50's with a grant from Ray W. Herrick, founder of the Tecumseh Products Corp.
- Evolved to do research on
 - refrigerating compressors
 - > HVAC&R systems/equipment
 - noise and vibration control
 - electro-mechanical systems and controls (smart machines)
 - building controls and diagnostics
 - indoor air quality
- Strongly connected to industry through research funding, conferences, short courses, employment

Building-Related Research History

Research Evolution

Period	Driving Factors	Research Focus
1960 & 1970's	high-speed computers oil crisis government regulations expanding marketplace size & reliability issues	compressor, heat exchanger, expansion device modeling systems' modeling tools energy analysis compressor reliability
1980's	 low-cost micro-computers computerized energy management micro-processor controllers noise issues 	transient modeling tools intelligent controls compressor noise
1990's	 environmental – ozone depletion worker productivity – comfort, IAQ, noise limited utility capacity reliability expanding service business 	Alternative cycles & refrig. IAQ strategies, active & passive noise control thermal storage controls automated fault detection & diagnosis

Current Research Directions

Driving Factors	Research Directions
Global warming	Building system energy and moisture modeling
Homeland Security	Equipment modeling and optimization
Limited generating capacity	Alternative cooling, heating and power cycles
Information technologies	Transport modeling for contaminants
Consolidation of service providers	Contaminant source identification
Low-cost sensors & computers	Optimal ventilation system design
Worker Health and Productivity	Performance monitoring & diagnostics
Population Growth	Intelligent controls
Aging Population	Human perception and productivity modeling
Global Competition	

Current Faculty and Thrusts

Professor	Primary Research Activities	
Stuart Bolton	Noise control, sound field visualization, wave propagation in structures, noise control material modeling with applications to: Compressor and Fan Noise Reduction, New Insulation Materials	
Jim Braun	Modeling, analysis, and optimization with applications to: Intelligent Controls, Automated Diagnostics, Component & System Improvements, Building Simulation Tools	
Qingyan Chen	CFD for air flow in & around buildings with applications to: Indoor Air Quality, Homeland Security, Energy Analysis	
Patricia Davies	Signal processing, data analysis, and system modeling and identification with applications to: Sound Perception, Sound Quality, Condition Monitoring of Equipment	
Eckhard Groll	Experiments and modeling with applications to: Alternative Refrigeration Technologies, Natural Refrigerants, Component & System Performance	

Existing Research Facilities

Two Large Environmental Chambers

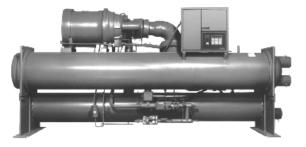
- Testing of AC, HP and Refrig. Systems
- -20 C to + 50 C, < 5-ton equipment
- Steady-state and cyclic testing of existing, modified, or new equipment designs

90-ton Centrifugal Chiller

Automated control of boundary conditions

Heat Exchanger Test Facility

- Testing of coiling coils, heating coils, evaporators, condensers
- Capable of controlled heat exchanger fouling


Compressor Test Facilities

- CO₂, R22, R410a Load Stands
- Compressor Calorimeter

Noise and Vibration Laboratory

- Noise source identification
- Sound quality facility

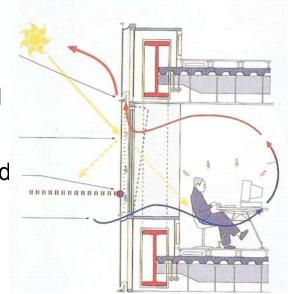
Existing Research Facilities

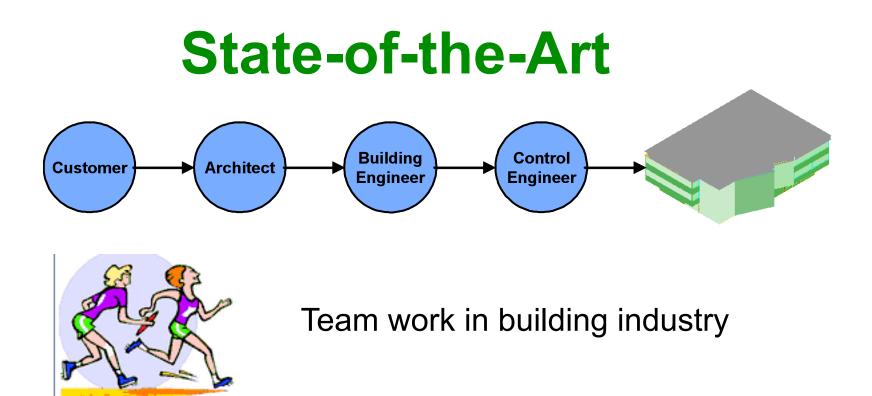
Indoor Environmental Chamber

Future Research

- <u>Existing buildings</u> are the near-term opportunity for "greening" technologies
 - 40% of primary energy usage
 - 70% of electrical energy usage
 - Existing building stock will not change very quickly
 - Limited to technologies that can be "easily" retrofitted
- More possibilities for <u>new buildings</u> but a longer time-horizon for potential impacts

Technologies for Existing Buildings

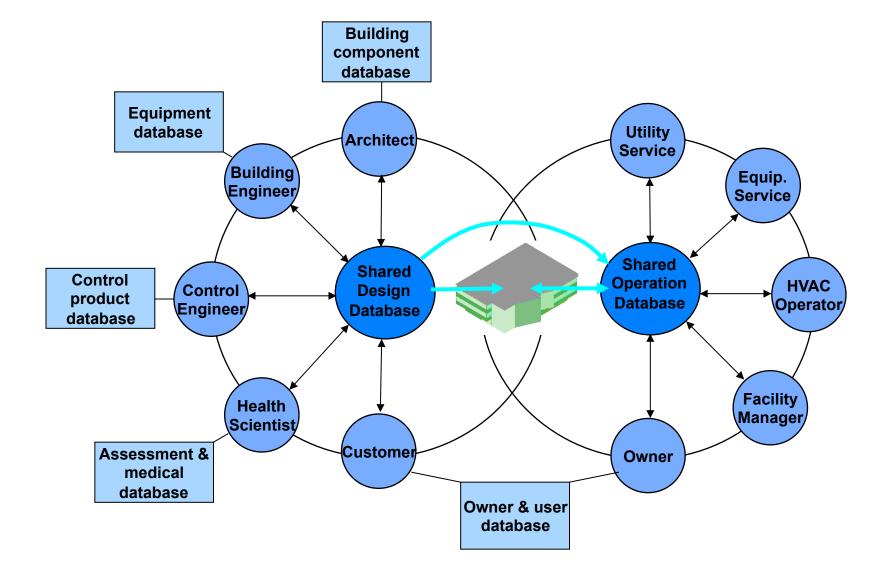

- Performance monitoring & diagnostic technologies
 - Tools for benchmarking the performance of buildings in terms of energy usage, environmental conditions (thermal comfort, IAQ, noise), occupant health and productivity, ...
 - Diagnostic tools for identifying specific problems in buildings (high energy usage, envelope moisture/mold problems, contaminants, noise, ..)
- Retrofit analysis/decision tools
 - Simple, tunable models for analyzing site-specific retrofit opportunities (equipment, ventilation, controls)
- Improved equipment & controls
 - High efficiency HVAC equipment with embedded diagnostics
 - Application of wireless technologies and enterprise networks for low-cost control retrofits (energy management, diagnostics, safety, ..)
 - Optimal control of HVAC system setpoints for minimum energy costs
 - Controlling buildings for minimum net carbon emissions

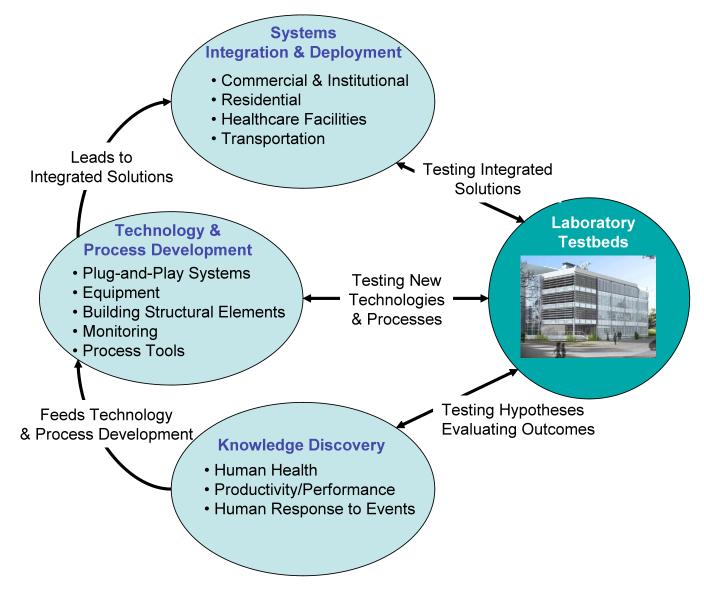

Technologies for New Buildings

- Integrated Design/Decision Modeling Tools
 - Overall impacts of design choices on energy, CO2 emissions, occupant health and productivity, safety, costs, …
 - Integration with existing architectural design tools utilizing emerging building information modeling (BIM) protocols
- Equipment
 - Ultra high-efficiency HVAC equipment with environmentallyfriendly working fluids
 - "Smart" HVAC components and equipment with embedded intelligence to allow virtual sensing for diagnostics and controls
 - Plug-and-Play comfort delivery architectures and equipment to allow personal environmental control and energy recovery
 - Technologies for on-site combined cooling/heating/power production to enable net-zero energy buildings/communities

Technologies for New Buildings

- Envelopes
 - Integrated ventilation heat recovery in building envelopes
 - "Smart" envelope structures with embedded intelligence to allow virtual sensing for diagnostics and control
 - Integrated photovoltaics in window, wall, and roof elements
 - Optimal envelop constructions for thermal, acoustic, and recycling performance
 - Advanced daylighting technologies
- Operations
 - Plug-and-Play controls for energy cost minimization, diagnostics, safety, etc.
 - Integration of design information into automated operations using BIMs





Team work in automotive industry

Integrated Design and Operations

Research to Technology

Multi-Scale Testbeds

- Laboratory Scale
 - Indoor air quality chamber
 - Psychrometric chambers
 - Wind tunnel, heat exchanger test facilities, compressor calorimeter, etc.
 - Perception-based engineering (PBE) laboratory (planned facility)
- Building Scale
 - Living laboratory section of new HERL (planned facility)
- Community Scale
 - Campus buildings

New Herrick Layout

PBE Laboratory

9

4

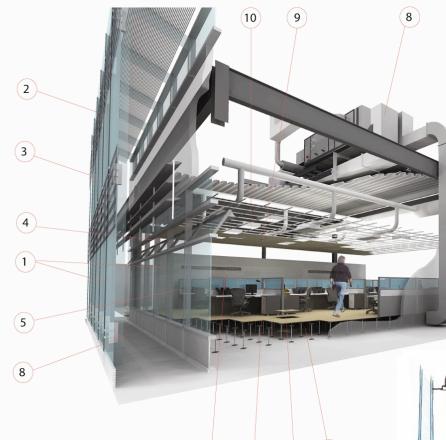
5

6

(7)

(1)

2

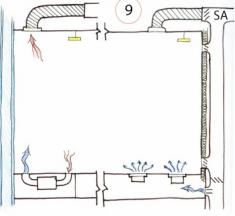

3

8

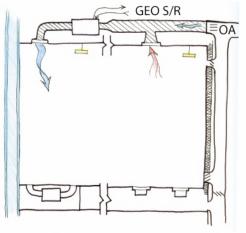
PERCEPTION BASED ENGINEERING (PBE) LABORATORY

ACCESSIBLE CEILING
 OBSERVATION PANEL FOR RESEARCHER'S SUBJECT SUPERVISION
 COVERABLE, ISOLATED 2-D SHAKER TABLE
 RECONFIGURABLE WALLS/ROOM
 OVERHEAD DOORS FOR VEHICLE/EQUIPMENT ACCESS
 RECONFIGURABLE OVERHEAD UTILITIES
 RECONFIGURABLE LIGHTING
 SOUTH FACING DAYLIGHT EXPOSURE ALIGNED WITH CONFIGURABLE WINDOW/ WALL IN LAB
 CONTROL ROOM AND SUBJECT RECEPTION AREA

Living Laboratory (Air Room)

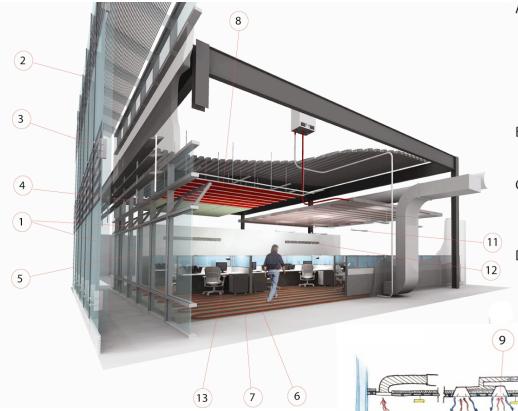


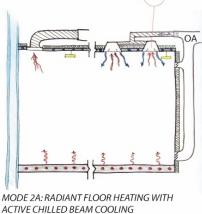
(11)

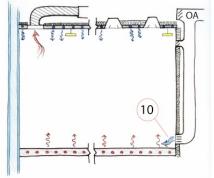

(12) (7)

6

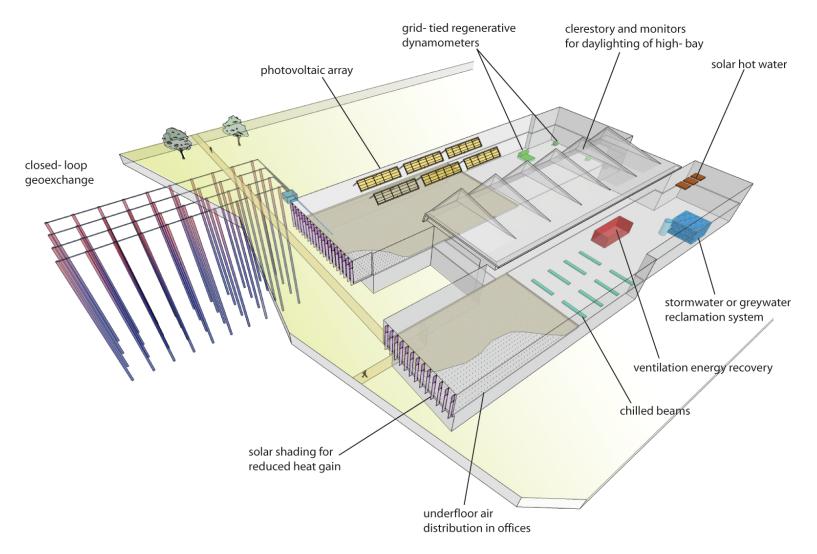
A. RECONFIGURABLE EXTERIOR WALLS WITH OPPORTUNITIES FOR: **1. DOUBLE SKIN FACADE** 2. INTEGRATED PV PANELS **3. ADVANCED GLAZING MATERIALS 4. NATURAL VENTILATION** 5. CONTROLLABLE GLAZING: VISIBLE LIGHT TRANSMITTANCE AND THERMAL PERFORMANCE B. AIR HEATING AND COOLING SYSTEM WITH OPPORTUNITIES FOR: 6. UNDERFLOOR AIR DISTRIBUTION 7. PERSONAL VENTILATION CONTROL 8. PRIMARY AIR SYSTEM WITH BROAD DELIVERY RANGE 9. RECONFIGURABLE OVERHEAD DISTRIBUTION C. LIGHTING OPPORTUNITIES: **10. RECONFIGURABLE OVERHEAD FIXTURES 11.WALL FIXTURES 12.TASK FIXTURES**






MODE 1B: GROUND SOURCE HEAT PUMP WITH DEDICATED OUTSIDE AIR SYSTEM

Living Laboratory (Hydronic Room)


A. RECONFIGURABLE EXTERIOR WALLS WITH OPPORTUNITIES FOR: **1. DOUBLE SKIN FACADE** 2. INTEGRATED PV PANELS 3. ADVANCED GLAZING MATERIALS 4. NATURAL VENTILATION 5. CONTROLLABLE GLAZING: VISIBLE LIGHT TRANSMITTANCI AND THERMAL PERFORMANCE **B. HYDRONIC HEATING SYSTEMS WITH OPPORTUNITIES FOR:** 6. RADIANT FLOOR HEATING 7. INTEGRATED THERMAL MASS C. HYDRONIC COOLING SYSTEMS WITH OPPORTUNITIES FOR 8. RADIANT CEILING PANELS 9. ACTIVE AND PASSIVE CHILLED BEAMS 10. DISPLACEMENT VENTILATION D LIGHTING OPPORTUNITIES: **11. RECONFIGURABLE OVERHEAD FIXTURES** 12. WALL FIXTURES **13.TASK FIXTURES**

MODE 2B: RADIANT FLOOR HEATING WITH RADIANT CHILLED CEILING AND DISPLACEMENT VENTILATION

Whole-Building Energy Features

SUSTAINABLE DESIGN OPPORTUNITIES

Potential Purdue Collaborators

- Mechanical Engineering: Indoor Air Quality, Systems Modeling, HVAC&R Equipment, Intelligent Controls and Diagnostics, Acoustics, Sound Quality, ..
- <u>Architectural Engineering</u>: Lighting/Daylighting, Building Envelope Modeling, Sustainable Building Design, ...

Electrical Engineering: Wireless sensor networks, intelligent agent controls, ...

<u>Psychology</u>: Human perceptions of indoor climate variables and impacts on productivity

Mechanical Engineering Technology: Technology transfer

Building Construction Management: Process tools

Physical Facilities: Testing of new technologies on campus-scale testbeds

Specific Collaboration Opportunities

- Participation in the development of the new Herrick Laboratory facilities
- Large-scale center proposals (e.g., NSF ERC)
- Specific opportunities arising from the new administration

•