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Abstract  
The purpose of this research is to know how Naïve Geometry method can support students’ 
understanding about the concept of solving quadratic equations. In this article we will discuss 
one activities of the four activities we developed. This activity focused on how students linking 
the Naïve Geometry method with the solving of the quadratic equation especially on how 
student bring geometric solution into algebraic form. This research was conducted in SMP 
Negeri 1 Palembang. Design research was chosen as method used in this research that have 
three main phases. The results of this research showed that manipulating and reshaping the 
rectangle into square could stimulate students to acquire the idea of solving quadratic equations 
using completing perfect square method. In the end of the meeting, students are also guided to 
reinvent the general formula to solve quadratic equations.  
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Abstrak.  
Tujuan dari penelitian ini adalah untuk mengetahui bagaimana metode Naïve Geometri dapat 
membantu pemahaman siswa tentang konsep penyelesaian persamaan kuadrat. Pada artikel ini 
akan dibahas salah satu aktivitas dari empat kegiatan yang kami kembangkan. Kegiatan ini 
berfokus pada bagaimana siswa mengaitkan metode Naïve Geometri dengan penyelesaian 
persamaan kuadrat. Penelitian dilaksanakan di SMP Negeri 1 Palembang. Metode penelitian 
yang digunakan dalam penelitian ini adalah desain riset  yang dilakukan melalui 3 tahap utama. 
Hasil dari penelitian ini menunjukkan siswa dapat memahami konsep penyelesaian persamaan 
kuadrat dengan cara melengkapkan kuadrat sempurna melalui metode naïve geometry, yang 
diinterpretasikan sebagai manipulasi bentuk persegipanjang menjadi bentuk persegi. Pada akhir 
pertemuan, siswa juga diarahkan untuk menemukan rumus bentuk umum penyelesaian 
persamaan kuadrat. 
  
Kata kunci: Persamaan Kuadrat, Design Research, Naïve Geometry, PMRI 

  
  

In emphasizing the importance of learning algebra, Tall and Thomas (French, 2002) states: "there is a 

stage in the curriculum when the introduction of algebra may make-Simple Things hard, but not 

teaching algebra will soon render it impossible to make-the hard things simple ". However, it is not 

supported by the learning conditions in Indonesia, which is only emphasizes the use of an algorithm or 

formula, especially on the topic of the solving quadratic equation (Zakaria & Maat, 2010). 

Zakaria & Maat (2010) showed that some errors in solving quadratic often occurs due to the 

weakness in understanding the concept. French (2002) found that the common mistakes made by 

students is assuming that (푎 + 푏)  is equivalent to 푎 + 푏 . Zakaria & Maat (2010) research also 

showed that most of students still make mistakes in terms of transformation and multiplication of 
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algebraic form. This implies that a learning that supporting the student understanding in concept of 

solving quadratic equation is needed. 

Pendidikan Matematika Realistik Indonesia (PMRI) is a learning approach that adapted from 

Realistic Mathematics Education (RME). Sembirng et al (2010) stated that PMRI is Indonesian 

version of RME due to the use of Indonesian culture and RME as a based theory. In PMRI problem 

situation or context play a key role in developing mathematical concepts (Gravemeijer, & Doorman, 

1999; Sembiring, 2010; Van Den Heuvel-Panhuizen, 2003; Zulkardi, 2002). Applying PMRI approach 

will provide a positive character on teaching and learning in the classroom as follows (Sembiring, 

2010): 

1. Students will more active in thinking  

2. Context and instructional materials directly related to schools and students  

3. Teacher will more active in designing the teaching activities. 

 

Problems from history mathematics can be used as a context to make a meaningful learning. 

This is also supported by a statement of some researchers who suggest the integration of learning 

mathematics with the history of mathematics (Bakker, 2004; Fauvel & Van Maanen, 2000; Katz, 

2000; Panasuk & Horton, 2012; Radford, 2000; Radford & Guerette, 2000). Radford (1996) state the 

historical construction of mathematical concepts can supply us with a better understanding of the ways 

in which our students construct their knowledge of mathematics. According to Grugnetti (2000), there 

are three points of history of mathematics can influence the pedagogical problems. 

1. By using old problems, students can compare their strategies with the original ones. This is an 

interesting way for understanding the effectiveness of our present algebraic process. In observing 

the historical evolution of a concept, pupils will find that mathematics is not fixed and definitive. 

2. History for constructing mathematical skills and concepts. By knowing the history of how a 

concept was invented or developed, will support improve the skills about that concept. 

3. An historical and epistemological analysis allows teachers to understand why a certain concept is 

difficult for the student. It can support teachers to solve the problem or develop a didactic 

approach. 

 

Based on the historical perspective, the concept of solving quadratic equations was built by the 

geometric foundation (French, 2002; Krantz, 2006; Merzbach & Boyer, 2010). Al-Khwarizmi also 

describes the geometric proof of solving quadratic equations geometrically in his book Hisob Al-Jabr 

wa'l Muqabalah (Krantz, 2006; Merzbach & Boyer, 2010). The Babylonian geometric method is a 

geometric method that can be used to solving quadratic equation. This method was identified by J. 

Hǿyrup and he called it Naïve Geometry (Hǿyrup, 1990). In order to show the method, let we discuss 

one of the Babylonian problems, problem II of a tablet preserved at the bristish museum and known as 

BM 13901. 



194        IndoMS-JME, Volume 5, No. 2, July 2014, pp. 192-202 

푥 

푥 

1 

The statement of the problem appear in the tablet is the following: 

 

My confrontation inside of the surface I have torn out: 14`30°. 1 the wasitum;  
You pose. The moiety (half) of 1 you break, 30’ and 30’ you make span; 15’ to 14`30° 
you append: 14`30°15′ makes 29°30′ equilateral. 30′which you have made span to 
29°30′ you append; 30 the confrontation. (Hǿyrup, 1990b) 
note: 14`30° = 870,  30 = ,  15 = ,  14`30°15 = 870 .  

 

The statement of the problem is, “My confrontation inside of the surface I have torn out: 14`30°. 

1 the wasitum? Hǿyrup explained that the "Confrontation" is a side of the square and the "surface" is a 

square. The side is not a simple side, but as the side along with ut as a side provided with a canonical 

projection that forms, along with the side (rectangle form) (Radford, & Guerette, 2000). The wasitum 

is means something going out, including something projecting from a building (Hǿyrup, 1990b). 

The problem simply is to find the value of the square’s side if it is known that the area of the 

square minus its side is 870 (see Figure 1). Methods of solution of this problems is not fully explained 

in the text on the tablet. The text shows only a list of instruction concerning a sequence of calculation 

that allows one to get the answer (Figure 2 is geometric interpretation of the solution explained by 

Hǿyrup (1990b). 

 

 

 

 

 

 

 

Figure 1. Geometric Interpretation of BM 13901 Problem II 

 

It should be underlined, that the "Confrontation" or side of square here is not as we know, but a 

rectangular projection. To get better understanding of the statement in the tablet, Hǿyrup (1990b) 

interpret the geometric shapes as shown below. 
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Figure 2. The Step of Naïve Geometry Method 

 

It appears that 870 refers to result of reduction area of Fig.1. By doing the geometric 

manipulation (Fig. 2) we got a new square shape (by adding small square). Next, to find the value of 

푥 −  we just look for the square root of the area or the new square. Further, we can easily get the 

value of x. That geometric interpretation also makes the problem easier to understand. In this paper we 

present one of four instructional activities developed based on   that conducted in second cycle of 

teaching experiment in building the concept of solving quadratic equation. 

The purpose of this paper is to explore how the naïve geometry method supports the 

development of students’ understanding the concept of solving quadratic equation. We are also 

interested to know how students interpret their geometric manipulation into algebraic form. Therefore, 

we formulate the general research question as: How naïve geometry method support students’ 

understanding the concepts of quadratic equations in eighth grade junior high school students?  

  

METHOD  

This study involves 32 students of 8th grade students of State Junior High School 1 Palembang. 

This study also involves an 8th grade classroom teacher of State Junior High School 1 Palembang, 

Indonesia. Design research was used as method in this research. The core of this type of research is 

formed by classroom teaching experiments that center on the development of instructional sequences 

and the local instructional theories that underpin them (Gravemeijer, 2004). There are three main steps 

undertaken in this research, preliminary design, teaching experiment, and retrospective analysis 

(Gravemeijer & Cobb, 2006; Gravemeijer, 2004). 

In the first phase, researcher formulate a Hyphotetical Learning Trajectory (HLT) that is made 

up of three components: (a) learning goals for students, (b) planned instructional activities and the 

tools that will be used, (c) a conjectured learning process in which one anticipates how students’ 

thinking and understanding could evolve when the instructional activities are used in the classroom 

(Gravemeijer, 2004; Simon  &  Tzur,  2004). In teaching experiment, HLT was tested through two 

phases, pilot experiment (first cycle) and teaching experiment (second cycle). During this phase, data 
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was collected to improve the HLT. The last, HLT and students’ actual learning process was compared 

in retrospective analysis. 

We developed four instruction activities to be implemented in the classroom. The present study 

we just focus on one (last activity) of four instructional activities that conducted in a second cycle of 

teaching experiment that focused on linking between geometric methods and solving quadratic 

equation in algebraic form. In activity IV, we facilitate students to make a connection between the 

geometric interpretations (naïve geometry) that they used to solve the problem in worksheet and 

developed their algebraic skills. First, students are asked to solve the problem using geometric method 

that they have learned in previous activity and then transform it into algebraic interpretation. 

In the first meeting, learning started by introducing the context and steps must be followed so 

that students can solve the problem using geometric method (ignoring algebraic procedure). The 

second problem, students must solve the second problem (determining the length and width of a 

rectangle) using the same method they used in the first meeting. However, the steps needed are the 

opposite way. In first meeting (first activity), to solve the problem they must reshaping square into 

rectangle but in second meeting (second activity) is the opposite. Then, in third and fourth meeting the 

problem used is similar (determining side of a square), they also need to reshaping rectangle into a 

square but the difference is that concrete number numbers are given neither for the area nor base of the 

rectangle. In the last activity, we focus on how student bring the geometric procedure to the algebraic 

form and understand the concept of solving quadratic equation through Naïve Geometry. 

 

 

 

 

 

 

 

Figure 3. Problem in Worksheet 4 (Activity III) and 4 (Activity IV) 

 

RESULTS AND DISCUSSION 

This section will discuss the analysis of student work on activity IV, where students focus on 

how interpret geometric manipulation they had done into algebraic symbols. In this activity students 

are asked to determine the side of a square (valuae of x) if the shaded area is c (see Figure 4). 

 

 

 

 

 

2 b 
Shaded area = 24 square Shaded area = c square 

S
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Figure 4. Problem Worksheet 4 

 

The following transcript show how the students’ discuss about how they interpret geometric 

problem given into algebraic form. 

Teacher : What did you get?(algebraic interpretation of the problem) 

Irfaan : x times x equals 푥 , x times b equals bx are equal to c (the student 

wrote 푥 − 푏푥 = 푐) 

The discussion above shows that they had no difficulties turning the geometric problems into 

the form of algebraic form.  

Further, students worked to determine the value of x by using the naïve method that involves 

algebraic symbols. They begin to determine the extent of the new square is formed. Here are the 

transcript of the video. 

 

after some moments and students did naive method 

Teacher : What is the area of this small pieces added here? 

Irfaan :  푏 times  푏 

Teacher : what is the product of   푏 kali multiplied with  푏? 

Islam and Irfaan : 1
4

 푏  

Teacher : then, what is the area of this new square (the result of 

manipulated geometry)? 

Irfaan : 푐 +
1
4

 푏  

Teacher : That is right, just replace it. 

Irfaan : So.. 

Teacher : What is the area of this square? 

Irfaan : this area… ehm…(humming) 

Teacher : What is the area formula of this square? 

Islam : A square, length of its edge times lengths of its edge)) the product 

of its lengths of edges.. 

Teacher : Yes, a length of its edge times a length of its edge, or the length 

area = 푐 푥 

푥 

푏 
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of its edge is? 

Islam : squared 

Teacher : Indeed, or the square of the length of its edge. Then, what is the 

length of the edge of the new square (refers to the creation of 

naïve geometry)? 

Irfaan  : 푥 −
1
2
푏 

Teacher : Therefore, this square of the length of the edge is equal to what? 

You can write it directly 

Teacher : As you knew it before this area is equal to what?? 

Irfaan : 푐 +
1
4

 푏  

 

 
Figure 5. Students’ Work in Determining the Area in Algebraic form 

 

Furthermore, with the teacher’s guidance, students trying to find the value of x. 

Teacher : What is the area formula? 

Irfaan : the area formula is the square of the length of its edge) 

(writing square of the length of its edge ) 

(after a few minutes) 

Irfaan : The square of the length of its side is equal to (then humming) 

푐 +
1
4

 푏  

Teacher : So, what is the length of its edge? 

Irfaan : 푥 −
1
2
푏 

Islam : it means we should take a root of it 

Teacher : What do you do? 

Irfaan : Square it 
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Teacher : Please, repeat it again 

Islam : we take a root, don’t we? 

Teacher : Yes, later on we can move the root) (gave a wrong guidance) 

Irfaan : 
푥 −

1
2
푏 = 푐 +

1
4

 푏  

Teacher : can we omit the power? 

Irfan : yes, we can 

Teacher : then? 

Irfaan : 
푥 − 푏 = 푐 +  푏  (after the researcher gave some 

guidance)  

Irfaan and 

Islam 

: 
푥 = 푐 +

1
4

 푏 −
1
2
푏 

 

From the results of geometric manipulation, students get a gnomon form and add it to the small 

square into get a square shape. Because of the area of the gnomon is c unit area (equal to the initial 

area before manipulating) then the new square has an area of 푐 +  푏  unit area, because the added 

 푏  areas required to complete a square shape (Figure 5). 

To understand the idea to find the value of x is by using formula of square area, students still 

need guidance although they understand that the new square’s area they get is 푐 +  푏  and the area of 

the square is squared of its side. That may occurred due to students have not accustomed to solve 

problems involving geometric and algebraic manipulations together. However, students didn’t get 

serious problem in calculating until they obtain the form 푥 − 푏 = 푐 +  푏 . Base on the fragment 

above, in the end they get that the value of 푥 = 푐 +  푏 + 푏. 

In general, the purpose already achieved based on the conjecture of the HLT has been made. 

Through that problem, students noticed that the side of square they found is the formula to find the 

value of x if the quadratic equation given in the form 푥 − 푏푥 = 푐 . From here, they also learned that 

in naïve geometry method, the idea of "reshaping into square form" is equal to "completing perfect 

square" in terms of quadratic equation. 

The next step is to give the general equation 푎푥 + 푏푥 + 푐 = 0 and ask students to find the 

formula to solve this equation. They noticed that the equation must be divided by a to get the similar 

form with the previous one. 
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Figure 6. Student’s Work in Algebraic Manipulation 

 

By substituting the forms above to the formula that had been discovered earlier (푥 =

푐 +  푏 + 푏), students got the form 푥 = − +  (− ) + (− ). Furthermore, to be able to 

convert the formula into 푥 = ±√  teacher’s guidance is needed. 

 

        
Figure 7. the Reinvention of General Formula 

  

CONCLUSION AND SUGGESTION  

Based on that learning conducted in a second cycle of teaching experiment, we can conclude 

that through these activity students can realize the idea of naïve geometry can be used to solve 

quadratic equations and finding a general form to solve quadratic equations. Through the geometric 

idea (reshaping into a square), also supports students to perform symbolic operations are meaningful 

because they are familiar with the context involved. However, we want to stress the fact that this 
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approach cannot avoid the problems due to understanding of algebraic symbols. For example, the 

guidance from the teacher becomes very necessary because of the low ability student in algebra also 

the learning style that students are still not familiar with. Moreover, many students had not enough 

time to complete the task in worksheet. Actually, this is only intended instructional design provide a 

useful context to support the students develop a meaning for symbols that are useful for developing 

their algebraic skills. 

Based on the results obtained for better further research quality then the researchers suggest that 

collaboration between researchers and teacher to be improved so teacher gain knowledge on how to 

handle PMRI classroom based on the HLT. Thus, the error in the study can be minimized. 
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