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The exponential growth in world population is feeding a steadily increasing global need for
arable farmland, a resource that is already in high demand. This trend has led to increased
farming on subprime arid and semi-arid lands, where limited availability of water and a
host of environmental stresses often severely reduce crop productivity. The conventional
approach to mitigating the abiotic stresses associated with arid climes is to breed for
stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex
ecological context of the soil environment in which the crop is grown. In recent years,
studies have attempted to identify microbial symbionts capable of conferring the same
stress-tolerance to their plant hosts, and new developments in genomic technologies have
greatly facilitated such research. Here, we highlight many of the advantages of these
symbiont-based approaches and argue in favor of the broader recognition of crop species
as ecological niches for a diverse community of microorganisms that function in concert
with their plant hosts and each other to thrive under fluctuating environmental conditions.
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INTRODUCTION
Climate change and an increasing world population are predicted
to drastically increase the global need for arable farmland, a
resource that is already in high demand (Barrow et al., 2008).
With the world population expected to reach 9 billion by 2050,
it is estimated that the global food supply will need to increase by
70% to meet rapidly rising demand (Editorial, 2010). Changes in
the global climate may well compound this challenge, as predicted
increases in drought and temperature-related stresses are expected
to reduce crop productivity (Ciais et al., 2005; Grover et al., 2010;
Larson, 2013).

This large expansion in agricultural output will require both
improvements in crop yield as well as the cultivation of addi-
tional farmland. One direct effect of this trend will be the steadily
increasing prevalence of farming on marginal, arid, and semi-arid
lands, especially in the developing world (Lantican et al., 2003;
Köberl et al., 2011). Even without considering the effects of cli-
mate change, semi-arid, and arid lands often present a host of
abiotic challenges to plant growth, including extreme tempera-
tures, excess radiation, and poor nutrient and water availability
(Yang et al., 2009).

The historical approach to mitigate the negative effects of abi-
otic stresses on crop yield has been the creation of stress-tolerant
cultivars (Barrow et al., 2008; Eisenstein, 2013). Conventional
breeding techniques have enabled the development of crop vari-
etals with increased yields and greater tolerance to a variety of
abiotic stresses (Atkinson and Urwin, 2012), but are both time
and labor intensive; genetic engineering of crops with improved
stress tolerance is faster, but comes with its own set of draw-
backs. Furthermore, both methods often neglect the complex

ecological context of the soil environment in which the crop is
grown (Morrissey et al., 2004).

In recent years, plant-associated microbial communities have
received considerable attention for their ability to confer many
of the same benefits to crop productivity and stress resistance
as have been achieved through plant breeding programs (Mayak
et al., 2004; Barrow et al., 2008; Marulanda et al., 2009; Tank and
Saraf, 2010; Marasco et al., 2012). It is now well recognized that all
plants, and nearly all tissues within the plant, are inhabited by a
variety of microorganisms (Partida-Martínez and Heil, 2011; Berg
et al., 2013), many of which offer benefits to the host, improving
nutrient uptake, preventing pathogen attack, and increasing plant
growth under adverse environmental conditions (Yang et al., 2009;
Turner et al., 2013). In return these microorganisms receive shel-
ter from the surrounding environment and access to a carbon-rich
food supply. The most well-studied of these symbionts include the
mycorrhizal fungi, which enhance nutrients uptake (Bonfante and
Anca, 2009) and root-nodulating bacteria, which fix nitrogen from
the surrounding soil (Lugtenberg and Kamilova, 2009), but many
other novel plant growth-promoting microorganisms (PGPM)
continue to be identified each year. These organisms confer stress
resistance via diverse mechanisms recently reviewed elsewhere
(Lugtenberg and Kamilova, 2009; Yang et al., 2009; Grover et al.,
2010; de Zelicourt et al., 2013; Nadeem et al., 2014). Importantly,
efforts are being made to harness these naturally occurring, soil-
derived beneficial microbes for large-scale improvement of crop
performance in agriculture (Nadeem et al., 2014).

In this article, we will highlight some of the advantages associ-
ated with symbiont-based approaches to increasing crop resistance
to abiotic stress, with a focus on engineering increased tolerance
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to drought, which is the most critical and prevalent factor for
crop production in many parts of the world (Castiglioni et al.,
2008; Grayson, 2013). We present suggestions for future direc-
tions of abiotic stress tolerance improvement in crop plants,
including the use of cutting edge genomic technologies for the
identification and selection of candidate symbionts and the func-
tional modules they employ for enhancing host growth, as well
as an assessment of current agronomic practices in the light of
modern understanding of microbial community influence over
plant phenotype. We conclude with an argument in favor of
increased collaboration between conventional breeding programs
and microbial-based research for crop improvement and, more
generally, for a broader conceptual understanding of crop pro-
ductivity as a complex product of plant genetics and microbial
community function.

LIMITATIONS ASSOCIATED WITH DIRECT ENGINEERING OF
INCREASED STRESS TOLERANCE INTO CROP PLANTS
The success of plant biotechnology programs has helped the
world’s food supply keep pace with the increasing rate of pop-
ulation growth (Morrissey et al., 2004). Novel crop varietals,
with superior yields as well as increased tolerance to biotic and
abiotic stresses, have been continuously produced for decades
through conventional plant breeding programs, and more recently
through genetic engineering (Atkinson and Urwin, 2012). Despite
the undeniable success of these past efforts and their contin-
ued applicability to drought-tolerance in crop species, each of
these methods has its drawbacks, which should be fully con-
sidered. Plant breeding is highly time consuming, as well as
labor and cost intensive (Ashraf, 2010; Eisenstein, 2013). Addi-
tionally, in the quest for the improvement of a particular trait,
such as drought tolerance, certain (often unknown) desirable
traits can be unintentionally lost from the host’s gene pool dur-
ing conventional breeding (Philippot et al., 2013). Perhaps the
largest drawback, however, is that plant breeding only confers
benefit to a single host species, and this benefit is often not
easily transferable to other crop systems, as the genetic com-
ponents responsible for the improvements frequently remain
unidentified.

To avoid the time and labor costs associated with conven-
tional breeding, some researchers have turned to generation
of transgenic lines for producing varietals with improved plant
growth regulators, antioxidants, organic osmolytes or other fac-
tors capable of increasing drought tolerance (Eisenstein, 2013).
Unfortunately, the vast majority of these are developed and tested
in the greenhouse, rather than in the field and claims made
regarding their performance are often inflated compared to actual
results in agricultural settings, due to the large array of abi-
otic and biotic factors left out of the initial experiments (Ashraf,
2010). Additionally, these transgenic crops often must pass rigor-
ous food and environmental safety regulations and trials before
becoming marketable, which adds additional time to the prod-
uct development process (Eisenstein, 2013). Furthermore, release
of a transgenic product into the marketplace does not guaran-
tee its success, as public response to use of genetically modified
crops varies considerably from country to country (Fedoroff et al.,
2010).

Both the conventional breeding and genetic engineering based
approaches may rely too heavily on the assumption that plants
function as autonomous organisms regulated solely by their
genetic code and cellular physiology (Barrow et al., 2008), although
plant–microbe interactions can heavily influence crop response
to environmental conditions. Many field trials of new stress-
tolerant cultivars simply have not addressed microbial influence
on improved performance (Budak et al., 2013; Swamy and Kumar,
2013; Cooper et al., 2014). Greenhouse trials are often conducted
with standard sterilized potting soils and sterilized soil amend-
ments (Porch, 2006; Waterer et al., 2010; Witt et al., 2012) in
an attempt to create a microbe-free growth environment, an
artificial context rarely if ever found in nature (Friesen et al.,
2011; Partida-Martínez and Heil, 2011). By doing so, they not
only neglect one of the top determinants of phenotypic out-
put, they may also miss vertically transmitted symbionts present
within the plant seed (Barrow et al., 2008), which could lead to
overestimations of the effect of host genotype on plant phenotype.

ADVANTAGES OF SYMBIONT-BASED APPROACHES TO
IMPROVING STRESS TOLERANCE
Compared with methods for directly engineering stress tolerance
into the host described above, symbiont-based approaches to
improving stress tolerance offer some clear advantages (Figure 1).
First, microbial symbionts are frequently capable of conferring
stress tolerance to a wide variety of diverse plant hosts, and many
PGPM can confer benefits to both monocots and dicot crop species
(Timmusk and Wagner, 1999; Redman et al., 2002; Zhang et al.,
2008). The bacterium Achromobacter piechaudii, isolated from
dry riverbeds of southern Israel, was capable of increasing salt
and drought resistance in both pepper and tomato (Mayak et al.,
2004). Using olive trees, tomato, grapevine, and pepper plants,
Marasco et al. (2013) have demonstrated that microbes isolated
from the roots of one host species cultivated under desert farm-
ing conditions are capable of improving the growth of a different
host species when grown under a water-stress regime. The abil-
ity to transfer stress-resistance solutions from one crop species to
another through a microbial inoculum has the potential to save
years of plant breeding effort.

Secondly, PGPM frequently confer more than one type of abi-
otic and/or biotic stress tolerance (Mayak et al., 2004; Rodriguez
et al., 2008), and crops grown on arid and semi-arid lands typ-
ically suffer from multiple stress factors. It has been shown
that Arabidopsis plants in symbiosis with Paenibacillus polymyxa
have increased drought tolerance as well as improved resis-
tance to pathogen attack (Timmusk and Wagner, 1999). Waller
et al. (2005) demonstrated that barley plants inoculated with
the fungus Piriformospora indica have both increased resistance
to Fusarium and Blumeria infections and increased salt toler-
ance. These examples of microbes conferring multiple benefits
are likely due to the fact that many symbionts exert their influ-
ence over the plant host through manipulating plant hormone
pathways (Glick et al., 2007; Friesen et al., 2011) and that con-
siderable cross-talk exists between plant stress response pathways
(Atkinson and Urwin, 2012).

Thirdly, plant-associated microbial species represent a vast
reservoir of genetic information that has coevolved with their hosts
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FIGURE 1 | Advantages of symbiont-based approaches to improving

stress tolerance in crops. Plant-growth promoting microbes are capable
of conferring benefits to multiple species of plant hosts, and of offering
improved tolerance to multiple stresses simultaneously. Inoculations with
combinations of PGPM can be tailored to specific environmental

conditions. Dissection of plant–microbe interactions during symbiosis has
the potential to reveal both the microbial and host genetic components
responsible for improved stress tolerance; these may serve as targets
for plant-breeding/genetic-engineering based approaches to improving
stress tolerance in the host.

under natural environmental conditions. These microbes can add
genetic flexibility to the adaptation of comparatively sessile and
longer-lived plants (Barrow et al., 2008). The concept of “habitat-
specific symbioses,” put forth by Rodriguez et al. (2008), is one of
the most intriguing discoveries pertaining to microbial contribu-
tions to stress tolerance made in recent years. Their research found
that salt, drought, and disease resistance were each individually
conferred by specific fungal symbionts that had been harvested
from coastal, arid, and agricultural environments, respectively.
Furthermore, they found that these beneficial effects could be
conferred on different plant host species, including both mono-
cots and dicots. These insights suggest that the foundation for the
growth-promoting effects of microbial symbionts is based on the
co-evolution of the association between plant and microbe under
adverse environmental conditions (Rodriguez et al., 2008). For the
purposes of developing novel biotechnological agents for use in
agriculture, this study supports the idea that the optimal place to
look for PGPM that confer resistance to a specific environmental
stress is in soils where that stress is a regular phenomenon.

FUTURE DIRECTIONS OF ABIOTIC STRESS TOLERANCE
IMPROVEMENT IN CROP PLANTS
Microbial species with plant-growth promoting capabilities are
both numerous and easier to characterize now than ever before.
A considerable fraction of endophytes isolated from crops appear

to have measurable effects on host fitness (Friesen et al., 2011).
Two recent studies found that more than 25% of bacteria iso-
lated from cultivated crops had plant growth promoting activities
(Hassan et al., 2010; Marasco et al., 2012). While the identifica-
tion of microbial endophytes has been challenging in the past
due to the frequent lack of plant–host symptoms, localized colo-
nization, intimate integration with plant cellular structures, and
lack of cultivability, recent advances in genomic technologies
have helped make this process faster and cheaper (Berg et al.,
2013). A recent technique for selective depletion of chloroplast and
mitochondrial-derived 16S amplicons allows for vastly increased
resolution of bacterial endophyte populations derived from within
plant tissues (Lundberg et al., 2013). While in the past whole-
genome sequencing of candidate symbionts was only possible for
cultivable species, it is now possible to obtain draft genomes of
microbial endophytes in a high-throughput fashion using single-
cell sorting coupled with next-generation sequencing technologies
(Woyke et al., 2006). Understanding the genomic content of these
PGPMs will enable us to better understand the mechanisms
behind the conferred stress-tolerances, as well as cultivate them
for experimental investigation (Pope et al., 2011).

As more and more genomes from PGPM become available,
our ability to identify the shared genetic components or metabo-
lites that are responsible for conferring specific abiotic stress
advantages increases. Through a transcriptomic analysis of the
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symbiosis between oilseed rape and Stenotrophomonas rhizophila,
a recent study identified spermidine as a novel PGPM regulator
of plant abiotic stress (Alavi et al., 2013). Identification of the
genetic components within PGPMs that are responsible for alle-
viating abiotic stress may in some cases yield potential targets
for transgenic modification of the host organism (Nadeem et al.,
2014). Recently, bacterial cold-shock proteins transformed into
various plant species led to increased tolerance to a variety of abi-
otic stresses, including cold, heat, and drought (Castiglioni et al.,
2008).

Investigation of the mechanisms by which PGPM confer stress-
tolerance to their plant hosts is another avenue for identifying tar-
gets for direct transgenic manipulation of stress response in crops.
Recent technological advances in cell-type specific transcriptomics
(Taylor-Teeples et al., 2011), combined with an experimental sys-
tem designed to examine host transcription during symbiosis with
PGPM, could allow for a precise dissection of the genetic sig-
naling mechanisms responsible for increased stress tolerance. An
improved understanding of these host mechanisms could provide
potential candidate loci for transgenic or plant-breeding strate-
gies aimed at plant–host improvement (Grover et al., 2010). For
example, salt tolerance induced by Bacillus subtilus was shown to
be the result of tissue specific modulation of the expression of the
Arabidopsis Na+/K+ transporter, HKT1 (Zhang et al., 2008). Sim-
ilarly, drought resistance in Arabidopsis as a result of inoculation
with P. polymyxa was related to strong upregulation of the host
gene ERD15 (Timmusk and Wagner, 1999).

Finally, there is a need for rethinking modern agronomic prac-
tices in light of our current understanding of the importance
of host-associated microbial communities for plant productivity
and health. Current large-scale agricultural systems rely heav-
ily on monoculture cropping systems, in many cases without
between-season crop rotation, which has been shown to lead to
the build up of specialized plant pathogens, increased disease
incidence, and decreased yield (Berendsen et al., 2012; Gentry
et al., 2013). Research is being conducted to determine if the use
of specific cover crops can be used to promote and maintain
a beneficial microbiome between growing seasons for impor-
tant crop species (East, 2013). Current methods of tilling may
also negatively impact the plant microbial community; alter-
natives, including “conservation-” or “zero-tillage,” may have
the potential to promote a healthy belowground microbiome
by reducing moisture loss and maintaining naturally occurring
strata within the soil, which helps support microbial biodiversity
(East, 2013).

CONCLUSION
As with the plant-breeding and transgenic approaches to engi-
neering stress-resistance in tomorrow’s crops, there are of course
challenges associated with symbiont based strategies that will need
to be overcome. One potential challenge will be detangling syner-
gistic and antagonistic effects of different microorganisms within
the plant microbiome (Trabelsi and Mhamdi, 2013). Research has
demonstrated synergistic effects of multiple PGPM (Figueiredo
et al., 2008), and another study has identified a virus present
within a plant growth promoting fungus as the causative agent
of heat resistance conferred to a tropical grass (Márquez et al.,

2007). A second challenge stems from the fact that while many
PGPM have been shown to confer their benefits across multiple
host species, it is clear that this is not always the case. In some stud-
ies, the host species (and even host cultivar) has been shown to play
a significant role in driving microbial community composition and
activity (Ofek et al., 2013; Philippot et al., 2013), selecting for and
against particular microbial partners. Additionally, interactions
between the PGPM and the members of the existing microbial
community could alter or negate the potential beneficial effects
of the microbe (Schippers et al., 1987). Due to the complexity of
interactions among the microbes, host, and environment, there
is the potential that a PGPM that confers benefit in one context
may have a null, or even negative, effect in a different context;
therefore, considerable work will need to be done to determine
the range of applicability for each PGPM as a beneficial agri-
cultural agent. A third challenge, which is equally important for
both symbiont and host-based methods of improving stress tol-
erance, will be unraveling the complex relationships between the
various biotic and abiotic stress responses. Research programs
aimed at developing tolerance to a particular stress do not neces-
sarily test susceptibility to other stresses; due to the intrinsically
related nature of the pathways governing stress response, later
field trials have in some instances revealed increased susceptibil-
ity to other stresses (Atkinson and Urwin, 2012). Lastly, methods
of microbial delivery within field settings and stable integration
of PGPMs into the agricultural soil ecosystem will need improve-
ment. While many applications of PGPMs to crops in field settings
have demonstrated significant improvements to stress tolerance
(Celebi et al., 2010; Mengual et al., 2014; Rolli et al., 2014), oth-
ers have shown inconsistent or even negative effects (Nadeem
et al., 2014). One promising method of stabilizing beneficial effects
of PGPM in the field involves the inoculation of a microbial
consortium of PGPM, as opposed to a single PGPM species.
Combining PGPM known to grow and perform well together
will likely increase the resilience of the inoculum and its bene-
ficial effects, and additionally allow for tailoring the community
to respond to specific combinations of abiotic and biotic stresses
(Trabelsi and Mhamdi, 2013).

Agriculture currently accounts for 70% of human fresh water
use, and in many parts of the world this rate of water consump-
tion exceeds local regeneration rates, leading to unsustainable
reliance on underground aquifers that are rapidly depleting
(Castiglioni et al., 2008; Jiao, 2010). Given this, it is not surprising
that drought and other water-related stresses are considered by
many to be the most significant threats to global agricultural secu-
rity in the near future. Encouragingly, in the research conducted
by Rodriguez et al., the “habitat-specific symbionts” selected from
a coastal site, a geothermal site, and an agricultural site shared
one trait: the ability to confer drought resistance. Rodriguez
et al. (2008) hypothesize that the ability of fungal endophytes to
confer drought tolerance may be a common evolutionary relic
from when plants left the ocean, as fungal symbiosis is thought
to be in part responsible for the movement of plants to land.
If this turns out to be the case, proponents of symbiont-based
approaches to increasing stress resistance in crop plants may do
well to focus their efforts on drought and other water-related
stresses.
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In the future, there is a need for more collaboration between
the host-focused and symbiont-focused approaches to mitigating
abiotic stress in crop plants. Medical science has in recent years
undergone a profound restructuring of its understanding of the
microbiome housed within the body and its impact on human
health (East, 2013). There is a clear parallel here for plant science,
with implications that have the potential to change the face of agri-
culture and help us to meet the challenges confronting humanity
in light of our expanding population and changing planet. The
fundamental change required is a broader recognition that plants
do not exist as autonomous organisms governed entirely by their
genetic blueprints, but rather serve as ecological niches for diverse
communities of easily overlooked microbes, which work in concert
with the plant to survive in a wide range of stressful environmental
conditions.
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