Building the modified Microchip’s TCP/IP Stack v3.75.6

LJCV
Electronics

Building the modified Microchip
TCP/IP Stack
Version 3.75.6

Preliminary Informaton ~ Page 1

Building the modified Microchip’s TCP/IP Stack v3.75.6

Contents
S 1 0o T [T3 (] o AR 3
2 - DIreCtory StrUCIUIEeeeee e e 5
3 - CoNFIQUIAtION ... 6
3.1 - Anatomy of the config.h fileccooeeririi e 7
3.2 - Anatomy of the hardware configuration filescccccccoeeee 12
3.3 - Main application source codeccccceeeeeeiiiiiiiiiiiieeee e 17
4 - Building the COde iMagEecccuvviieiiiiee e 18
5 - Uploading the HTTP documents..........cccuiiiiiiiiiiie e 20
6 - Testing the TCP/IP StackK ... 22
6.1 - Sending ICMP echo requests (PiNG) ..ccveveereriiereniiee e 23
6.2 - Using Microchip’s Ethernet Discoverer.........cccoocveevcciieneeccneenn. 24
6.3 - Using the serial interface...........cccuveviiiiei e, 25
6.4 - Uploading the HTTP documents binary image with FTP........... 26
6.5 - Testing the HTTP SEIrver ... 27
7 - The udptest MOAUIE ... 29
8 — Connecting to the Internet ... 31

|
© 2007, LJCV Electronics Preliminary Information Page 2

Building the modified Microchip’s TCP/IP Stack v3.75.6

1 - Introduction

This modified version of the TCP/IP stack is based on the original dstribution of the
Microchip TCP/IP stack v3.75. The main goal for creating this version was to be able to
have a consistent and common source code base across different projects and
reference designs, more easy to configure, better organized and easier to read and
modify.

While most of the code in this version follows the same logic as the original version,
some of the differences with previous versions are the directory structure, file names
and the way the stack options and hardware configurations are defined.

There are also some fixes and improvements, such as the LCD routines that have been
replaced with new code that includes support for a character LCD module using the
standard parallel interface or the SPI interface using a Microchip MCP23S08 port
extender.

Another addition is for example support for the new Microchip 25LC1024 1Mb serial
EEPROM and better code selection to handle 24 and 32 bit addressing.

All the source code is organized in the sr c directory with subdirectories for each of the
major modules, such as the code for the TCP/IP stack in the net directory, the LCD
driver functions in the | cd directory, etc.

Each of these subdirectories also contain an i ncl ude subdirectory where the
associated header files for each module are located.

All the files went through a clean up process to improve readability and better code
organization, some definitions have been moved to other include files, all configuration
options have been moved to the main confi g. h and hardware configuration files, all
the header and source code files have been reorganized in sections and in an order
such as the prototype definitions for every and each function could be removed
eliminating a substantial amount of clutter from the source files.

All the code heritage or version log history has been preserved but reorganized, all tabs
replaced by white spaces to permit using any text viewer or editor without loosing the
indentation for easy readability.

Most of the files now follow a common editing style.

__|
© 2007, LJCV Electronics Preliminary Information Page 3

Building the modified Microchip’s TCP/IP Stack v3.75.6

There are several modifications based on suggestions, findings and comments from
many members of the Microchip User's forum and some ideas taken out from the latest
release (v4.02) of the original Microchip TCP/IP stack code.

Note: The current version DOES NOT support the HI-TECH or CCS compilers yet.

Thanks to all members of the Microchip Users Forum that actively participate in
the forum making great contributions and providing countless suggestions and
ideas.

A zip file containing the latest release of this software and an online version of this
document is available at http://www.ljcv.net/projects/mchptcp3.75/.

Happy Networking !!!
Jorge Amodio

LJCYV Electronics
San Antonio, Texas
USA

__|
© 2007, LJCV Electronics Preliminary Information Page 4

Building the modified Microchip’s TCP/IP Stack v3.75.6

2 - Directory structure

For this version all the source and include files rave been reorganized in a directory
tree where each module has its own subdirectory, all file names have been converted to
lower case and stripped of white spaces and many of them renamed.

Below is the directory structure for the current version

MCHTCP Main Directory
+- v3.75. X Current version, MPLAB project files
|
+-- bin Bi nary I mages (Intel Hex)
+-- doc Docunent ati on, M crochip License Agreenent
+- htm Sanpl e HTTP server docunents
+-- linker Linker Scripts for MPLINK C18 & C30
+-- tools Uilities (npfs.exe, etc)
+-- src Mai n source code directory
|
+-- include GCeneral include headers and configuration files
+-- net TCP/ I P Modul es source code and incl udes
+- lcd LCD Driver source code and incl udes
+-- npfs M crochip File System source code and incl udes
+-- eeprom Serial EEPROM drivers source code and incl udes
+- time RTCC and tinme support source code and incl udes
+-- uart Serial UART interface source code and incl udes

© 2007, LJCV Electronics Preliminary Information Page 5

Building the modified Microchip’s TCP/IP Stack v3.75.6

3 - Configuration

There are at least three files that you will need to edit and modify to reflect your
particular hardware configuration and code options, the confi g. h file, the particular
hardware configuration file for your board and if necessary the main application source
code.

Once you have the files "tailored" for your project or application you must select the
correct processor on MPLAB IDE and if necessary the language toolset tat will be
used to compile the code.

Remember that some microcontrollers such as the PIC18F452 or PIC18F4520 have
limited amount of program memory space to fit all stack modules and leave available
space for your application. A recommended pin compatible device with more memory
both program and RAM, and more advanced peripherals is the PIC18F4620 or its 28-
pin version the PIC18F2620.

The main configuration file and other parts of the code use a special macro that define
which is the hardware profile to be included for building the stack, you need to add this
macro to the project build options on MPLAB IDE.

For example if you are planning to build the code for the Microchip PICDEM.net board,
on the Projects->Build Options->Project menu and MPLAB C18 tab you must add the

macro Pl CDEMNET.

© 2007, LJCV Electronics Preliminary Information Page 6

Building the modified Microchip’s TCP/IP Stack v3.75.6
. __|]

3.1 - Anatomy of the confi g. h file

The confi g. h file is included throughout the code to select particular pieces of code
and initialization values based on the particular hardware configuration (more about it
later) and TCP/IP stack configuration and options.

The confi g. h is located in the sr c/ i ncl ude subdirectory.

The file is organized in different sections. Below is an explanation of each section and
some of the configuration options/macros.

The first section defines a string with the current version of the code, this string will be
displayed on the LCD if present and available as a variable for the HTTP server in case
like the HTTP documents examples you want to show the version on a HTML page.

#def i ne VERSI ON "3.75.6" /1 Firmvare version

The following group of conditional macros selects which hardware configuration file to
include based on a macro that must be defined in the projects options. The software
distribution includes several MPLAB IDE project files that have the correct macro
defined for each project. Notice that this macro value will be used in other parts of the
code such as the main application code to set the appropriate processor configuration
bits.

Also each project may have some variants based on the particular hardware
configuration, for example if you want to compile the code for the PICNet 1 Board
without the SPI LCD drivers you must comment the line that includes the
pi cnet 1_spi | cd. h file and uncomment the one that includes the pi cnet 1. h.

//***

/1 Define or include your hardware configuration
I
#i f defi ned(PI C10T)

#i ncl ude "incl ude/ pi c10t. h"
#elif defined(M N PI C10T)

#i ncl ude "incl ude/ m ni pi c10t. h"
#elif defined(Pl CNET1)
/1 #i ncl ude "incl ude/ pi cnetl1. h"

#i ncl ude "incl ude/ picnetl_spilcd. h"
#elif defined(El P10)
/1 #i ncl ude "incl ude/ ei p10. h"

#i ncl ude "incl ude/ei p10_I cd. h"
/1 #i ncl ude "incl ude/ ei p10_spil cd. h"
#elif defi ned(Pl CDEM2)

#i ncl ude "incl ude/ pi cden®. h"
#elif defined(Pl C18_N C28)

#i ncl ude "incl ude/ pi c18_ni c28. h"
#el i f defi ned(Pl CDEMNET)

#i ncl ude "incl ude/ pi cdemrmet . h"

|
© 2007, LJCV Electronics Preliminary Information Page 7

Building the modified Microchip’s TCP/IP Stack v3.75.6

]
#elif defined(Pl CDEMNET2)
#i ncl ude "incl ude/ pi cdemmet 2. h"
#elif defi ned(HPC_EXPLORER)
#i ncl ude "incl ude/ hpc_expl orer. h"
#elif defined(Pl CV\EB1)
#i ncl ude "incl ude/ pi cwebl. h"
#elif defined(EXP16_DSPI C33)
#i ncl ude "incl ude/ expl6_dspi c33. h"
#elif defined(EXP16_PI C24H)
#i ncl ude "incl ude/ expl6_pi c24h. h"
#elif defined(EXP16_PI C24F)
#i ncl ude "incl ude/ expl6_pi c24F. h"
#el i f defined(Pl C24FJ64_NI C28)
/1 #i ncl ude "incl ude/ pi c24fj 64. h"
#i ncl ude "incl ude/ pi c24fj 64_| cd. h"
#el se
#error:
#endi f

CFQ01: No hardware configuration defined

The following group of macros set the default MAC Address and IP configuration.
Observe that for the MAC and IP addresses the values are separated by commas.

//***

/1 TCP/IP Config

I

#defi ne DEFAULT_MAC ADDRESS { 0x00, 0x04, Oxa3, 0x00, 0x02, 0x00 }
#define DEFAULT | P_ADDRESS { 192, 168, 1, 201 }

#defi ne DEFAULT_NETMASK { 255, 255, 255, 255}

#defi ne DEFAULT_GATEWAY { 192, 168, 1, 1}

#def i ne DEFAULT_NS1 { 192, 168, 1, 1}

#defi ne SNTP_SERVER | P { 192, 43, 244, 18 } /1 time.nist.gov

#if defined(Pl CDEMR)

#def i ne DEFAULT NETBI OS_NAMVE
#el i f defined(Pl C10T) ||

" PI CDEMR"

defi ned(M NI PI C10T)

#defi ne DEFAULT_NETBI OS_NAVE " Pl C10T"
#elif defined(El P10)

#defi ne DEFAULT_NETBI OS_NAME " EI P10"
#elif defined(Pl CNET1)

#defi ne DEFAULT_NETBI OS_NAME " Pl CNET1"
#el se

#def i ne DEFAULT_NETBI OS_NAVE " MCHPBOARD"
#endi f

The following group of macros select which modules of the TCP/IP stack will be
included, there is no need to include the UDP and TCP modules since they will be
automatically include based on the requirements of each of the modules listed below.

To include a particular module just uncomment the corresponding line. Be aware that
some modules like the TCP Client Example will automatically include the DNS module
regardless if the line in this section is commented or not.

//***

/1 Stack Mbdul es

/1

#defi ne STACK USE | CWP

#def i ne STACK_USE_HTTP_SERVER

/1 1CVWP reply (ping) nodule
/'l HTTP server

__|
© 2007, LJCV Electronics Preliminary Information Page 8

Building the modified Microchip’s TCP/IP Stack v3.75.6

/| #define STACK USE | P_GLEANI NG [/ Cbtain | P address via I P d eaning

/| #defi ne STACK USE_DHCP /1 DHCP client

#defi ne STACK USE_FTP_SERVER [l FTP server

/1 #define STACK USE TCP_EXAMPLE1l /1 HTTP client exanple in tcp_client_exl.c
#defi ne STACK_ USE_ANNOUNCE /1 Ethernet Device Discoverer server/client
#defi ne STACK _USE_SNTP /1 SNTP client

/| #define STACK_USE_DNS /1 DNS client

#defi ne STACK _USE_NBNS /1 NetBlI OS Nane Service Server

/| #defi ne STACK USE_UDPTEST /1 Enabl e UDP Test code

The following macros define various parameters used by the Timer tick counter and the
Time and SNTP modules.

//***

/!l Some tinme related definitions

/1

/1 Define Ticks per second for the tick nanager

/1

#define Tl CKS_PER_SECOND (100) /1 10ns

#define USE_TI ME /1 Include tinme routines

#define TI ME_SOURCE_TI CK /1 Time source is Timer0 Tick counter

/| #defi ne TI ME_SOURCE_32KTI MER

#define TZ_OFFSET (-5) /1 Time Zone offset (negative west of GWVI)
#def i ne SNTP_UPDATE_SECS (43200) // SNTP update interval in seconds (12hrs)

The next group of macros defines various options and parameters for the TCP/IP stack
and main application, each of the macros include a descriptive comment of its use and
accepted values.

//***

/1 M scellaneous Stack Options
/1
/! Define the Baud Rate for the RS-232 Serial Interface

#defi ne BAUD_RATE (19200) Il bps

/1 Include the code for the configuration menu via the RS-232 serial interface
I
#defi ne ENABLE_BUTTONO_CONFI G

/1 I'nclude User process code in main.c
I
/[#def i ne ENABLE_USER_PROCESS

// Define Usernane and Password for the FTP Server
/1

#define FTP_USERNAME "ft p"

#defi ne FTP_PASSWORD "mi crochi p"

#define FTP_USER NAME _LEN (10)

/1 Define default TCP port for HTTP server
I
#defi ne HTTP_PORT (80)

/! Enabl e Hardware assisted | P checksum cal cul ati on
/! Some Ethernet controllers such as the ENC28J60 i nclude a feature that

© 2007, LJCV Electronics Preliminary Information Page 9

Building the modified Microchip’s TCP/IP Stack v3.75.6

/'l permits to use the DVMA nodul e in checksum node to assist in the cal cul ation

/1 of checksum values. The current silicon revisions of the ENC28J60 (B1-B5)

/1 have a bug that may produce incom ng packet loss if this option is enabled

/1 and a packet is received when the DMA nodule is in checksum node.

/1 If this option is comrented the code will set the STACK USE_SW CKSUM and

/1 include the appropriate code to cal cul ate the checksuns by software.

/1 #def i ne STACK_USE_HW CKSUM

/1 Uncoment following line if this stack will be used in client node.

/1 In client node, sone functions specific to client operation are enabl ed.
/1 This option will be enabled by default if you include any stack nodul es
/1 in the "Stack Mdul es" section above that require the stack to operate in
/1 this particular node.

/1 #defi ne STACK_CLI ENT_MODE

/1 Commrent following line if TCP state nachine should wait for acknow edgenent
/1 fromthe renote host before transmtting another packet.

/1 Commenting following |line may reduce throughput.

/1

/1 #define TCP_NO WAI T_FOR_ACK

/1 This macro is specific to the Mcrochip Ethernet controllers.

I/ |f adifferent Ethernet controller is used, this define is not used.

/1 If a Mcrochip controller is used and a self menory test should be done
/1 when the MACInit() function is called, uncoment this line.

/1 The test requires ~512 bytes of program nenory.

/1 #define MAC_PONER ON_TEST

/1 This macro is specific to the Mcrochip Ethernet controllers.

I/ |f adifferent Ethernet controller is used, this define is not used.

/1 ldeally, when MAC FILTER BROADCASTS is defined, all broadcast packets that
/1 are received woul d be discarded by the hardware, except for ARP requests for
/1 our IP address. This could be acconplished by filtering all broadcasts, but
/1 allowing the ARPs using the pattern match filter.

/1 The code for this feature has been partially inplenented, but it is not

/1l complete nor tested, so this option should remain unused in this stack

/'l version.

/1 #define MAC_FI LTER BROADCASTS

/[Maxi mum nurmber of TCP sockets all owed
/1 Note that each TCP socket consumes 38 bytes of RAM

/1

#defi ne MAX_SOCKETS (6u)

/1 Maxi mum nunber of TCP sockets all owed
/1

#defi ne MAX_UDP_SOCKETS (4u)

/1 Maxi mum nunbers of sinultaneous HTTP connections all owed.
/1 Each connection consunmes 10 bytes of RAM

/1

#defi ne MAX_HTTP_CONNECTI ONS (3u)

© 2007, LJCV Electronics Preliminary Information Page 10

Building the modified Microchip’s TCP/IP Stack v3.75.6

The TCP/IP stack includes a simple HTTP server for which the documents must be
stored either in an external memory or included as part of the code in program memory.
Uncomment the appropriate line based on your hardware configuration.

//***

/1 Storage options

I
#defi ne MPFS_USE_EEPROM /1l Use external serial EEPROMV
/| #defi ne MPFS_USE_PGRM /1 Use Program Menory

The last section of the conf i g. h file includes a large list of conditional macros that will
validate the configuration files and set specific parameters based on the hardware
configuration and previously selected options, such as for example the speed and page
size for the serial EEPROM, etc.

Normally you should not need to change anything below the following comment lines.

N NN NN NNy
NNy
111 UNLESS NECESSARY AND YOU REALLY KNOW WHAT YOU ARE DO NG YQU 111
111 SHOULD NOT NEED TO CHANGE ANY OF THE LI NES BELOW Iy
NN NN NN NNy
NNy

|
© 2007, LJCV Electronics Preliminary Information Page 11

Building the modified Microchip’s TCP/IP Stack v3.75.6

3.2 - Anatomy of the hardware configuration files

This new version of the modified Microchip TCP/IP stack includes now a separate
header file for each development board or reference design file that defines the
particular hardware configuration, options and initialization values for various registers.

The configuration file must include all the required macro definitions for the particular
drivers for each device such as the Ethernet controller, LCD display or serial EEPROM
memory. If something is missing you most probably will get an error during compilation
time.

The current distribution includes several hardware configuration files for different
development boards or designs and different hardware options.

You can use these files as a reference to build the configuration file for your specific
design.

The main confi g. h file will select which hardware configuration file to include in the
project based on the macro previously defined in MPLAB IDE.

All hardware configuration files are located in the general sr c/ i ncl ude directory.

The hardware configuration files included in this distribution are:

- eipl0.h LJCV El ectronics el P-10 Board

- eipl0_lcd. h LJCV El ectronics el P-10 Board + character LCD nodul e

- ei pl0_spilcd.h LJCV El ectronics el P-10 Board + character LCD nodul e
with SPI interface and MCP23S08 port extender

- expl6_dspic33.h Mcrochip Explorer 16 Board with dsPl C33FJ256GP710 PI M
and M crochip Ethernet PICTail +

- expl6_pic24f.h M crochip Explorer 16 Board with Pl C24FJ128GA010 PI M
and M crochip Ethernet PICTail +

- expl6_pic24h.h M crochi p Explorer 16 Board with Pl C4HI256GP610 Pl M
and M crochip Ethernet PICTail +

- hpc_explorer.h M crochi p HPC Expl orer with Pl Cl8F8722 + Ethernet PICtaill

- mnipiclOt.h Jorge Anodio mini PICLOT reference project
- piclOt.h Jorge Anodi o PI C10T reference project
- pic24fj64.h Jorge Anodi o Pl C24FJ64GA002 reference project

- pic24fj64 Icd.h Jorge Anodi o Pl C4FJ64GA002 reference project + character
LCD nodule with SPI interface and MCP23S08 port extender

- picden2. h M crochip PICDEM 2+ (nod) + LJCV Electronics nic28 NIC

- picdemmet. h M crochi p Pl CDEM net Board with RTL8019AS controll er

- picdemmet 2. h M crochip PICDEM net 2 Board with Pl C18F87J60

- picl8 nic28.h Connecting a 28 pin PICL8F to LJCV El ectronics nic28 NIC
- picnetl. h LJCV El ectronics Pl CNet 1 Devel opnent Board

- picnetl spilcd.h LICV Electronics PICNet 1 Board + character LCD nodul e
with SPl interface and MCP23S08 port extender
cwebl. h Cel eritous Pl C\EB1 Modul e with Pl C18F67J60

- p

|
© 2007, LJCV Electronics Preliminary Information Page 12

Building the modified Microchip’s TCP/IP Stack v3.75.6

All the hardware configuration files include references about where to obtain additional
information about each board and detailed schematics.

Example description for the PICNet 1 Board with SPI LCD driver hardware configuration
file (pi cnet 1_spi |l cd. h):

First you must include the appropriate header file for the microcontroller family.

/1 Include the appropriate header file for the microcontroller fanly
#i ncl ude <pl8cxxx. h>

Next you must define the CPU clock frequency in Hertz. Notice that this is the actual
CPU clock and not the frequency of the crystal or oscillator source used, the value
depends on the oscillator configuration bits and registers. For example if your hardware
design uses a PIC18F4620 with a 10MHz crystal or ceramic resonator and you set the
HS-PLL the actual clock frequency will be 40 MHz.

TCY_CLOCK defines the actual instruction cycle frequency as a function of the CPU
clock, for PIC18 devices one instruction takes four clock cycles to execute then
TCY_CLOCK=CPU CLQOCK/ 4, on PIC24 and dsPIC33 devices each instruction takes two
clock cycles, then TCY_CLOCK=CPU_CLOCK/ 2.

These two parameters are use throughout the code to provide delays and clock
configuration for peripherals such as the MSSP for SPI or I2C communications, the
USART module for the RS232 interface, etc.

//***

/1 Define Mcrocontroller Cock Frequency in Hertz
I

#def i ne CPU_CLOCK (40000000)

#define TCY_CLOCK (CPU_CLOCK/ 4)

The following section includes for each available Input/Output port, pin by pin a
description of what each pin is used for and its initial direction and state.

The macros defining initial direction and state will be used by the initialization routine in
the main application to properly set the direction and initial state of each 1/O port.

__|
© 2007, LJCV Electronics Preliminary Information Page 13

Building the modified Microchip’s TCP/IP Stack v3.75.6

Below is an example of the definitions for PORTA.

//***

/1 GPIO Ports assignments, configuration and initial default value
/1 Define the direction for each Input/Qutput pin (0-Qutput, 1-Input) and
/1 the initial state at the application startup

11

/1 PORTA Direction and initial status

I s n/a OSCl

/1 R n/a OSC2

11 [|+------------ RA5 = LED Z

11 [[]+--mcmmmenn- RAA = LED Y

11 [[]]+---------- RA3 = LED X

11 [+--------- RA2 = MCP23S08 CS
/1 NIRRT RAL = n/c

11l [ITLTT] 4= - RAO = n/c

#define INIT_TRISA (0b00000000)
#define INIT_PORTA (0b00000100)

There are other registers that may require an initial or configuration value, such as the
configuration of the microcontroller analog features and input ports. The next group of
macros defines the initial values for such registers.

//***

/1 Initialization values for various registers

I

#define | NI T_ADCONO (0b0O0000000) /1 ADON=0, Channel 0

#define I NI T_ADCONL (0b00001111) /1 No anal og inputs

#define INI T_ADCON2 (0b10111110) // Right justify, Fosc/64 (~21.0kHz)

The TCP/IP stack code uses a series of name macros to refer to specific items such as
LEDs, pushbuttons or control signals associated with 1/O ports. The following group of
macros “map” the logic name of the items to the corresponding I/O port and pin.

//***

/1 Avail abl e LEDs and swi tches macro nane definitions for application use
I

#define LEDO_| O (LATAbi t s. LATA3)

#define LED1_I O (LATADI t 5. LATA4)

#define LED2_| O (LATADbi t s. LATA5)

#define LED3_I O (LATAbi ts. LATA5) // No LED3 map to LED2
#define LED4_| O (LATAbi ts. LATA5) // No LED4 nap to LED2
#define LED5_I O (LATAbi ts. LATA5) // No LED5 nap to LED2
#define LED6_I O (LATAbi ts. LATA5) // No LED6 nap to LED2
#define LED7_ IO (LATAbi ts. LATA5) // No LED7 nap to LED2
#define BUTTONO_I O (PORTBbI t s. RBO)

#define BUTTONL_| O (PORTBbi t s. RB1)

#define BUTTON2_| O (PORTBbits. RB1) // No BUTTON2 map to BUTTONL
#define BUTTON3_I O (PORTBbits. RB1) // No BUTTON3 map to BUTTONL

|
© 2007, LJCV Electronics Preliminary Information Page 14

Building the modified Microchip’s TCP/IP Stack v3.75.6

Each driver module requires specific macros to be defined, which command the
compiler to include the appropriate code and set specific options. The next three
sections of the file show various macros used to include the LCD, Ethernet and serial
EEPROM drivers and some of their options and control signal mappings.

//***

/1 LCD Modul e features and configuration

/1 For this particular project the PICNet 1 has a character node LCD
/1 driven via the SPI interface using a MCP23S08 |/ O port extender
/1

#define USE_LCD

#define USE_CM LCD /1 Include Character Mde LCD Driver
#defi ne LCD_USE_BUFFER /1 Enable | ocal RAM LCD Buffer
#defi ne LCD_USE_CGCHARS /1 Enabl e Cust om Characters support

#define LCD_USE_SPI
#define LCD 4BIT_I FACE
#define LCD_RONS 2
#define LCD _CCLS 16

#def i ne USE_MCP23S08

#defi ne PORTX_CS_| O (LATADI t s. LATA2)
#define PORTX_SPI _IF (PIRLbi ts. SSPI F)
#def i ne PORTX_SSPBUF (SSPBUF)

#def i ne PORTX_SPI STAT (SSPSTAT)

#def i ne PORTX_SPI CONL (SSPCON1)

#def i ne PORTX_ADDRESS (0x00)

#define PORTX_SPI CONL_CFG (0x20)
#define PORTX_SPI STAT_CFG (0x40)
/1 #def i ne PORTX_SAVE_SPl _CFG

//***

/1l Definitions for ENC28J60 Ethernet Controller interface

I

#defi ne USE_ENC28J60

#define ENC_CS_I O (LATBbiI t s. LATB3)

#define ENC_SPI _I F (Pl Rlbi ts. SSPI F)

#def i ne ENC_SSPBUF (SSPBUF)

#def i ne ENC_SPI STAT (SSPSTAT)

#defi ne ENC_SPI STATbi ts (SSPSTATDI t s)

#def i ne ENC_SPI CON1 (SSPCONL)

#defi ne ENC_SPI CONlbi ts (SSPCONLbi t s)

#defi ne ENC_SPI CON1_CFG (0x20) /1 SPI master, SCK=Fosc/4, idle |ow
#def i ne ENC_SPI STAT_CFG (0x40) /1 Tx fromactive to idle clock

/!l Rx sanple at middle

//***

// Definitions for 25LC256 or 25LCl1024 Serial EEPROM interface
/1

/| #defi ne USE_25LC256

#defi ne USE_25LC1024

#define EEPROM CS 10 (LATBbi t s. LATB4)
#define EEPROM SPI | F (PI R1bi t's. SSPI F)
#defi ne EEPROM SSPBUF (SSPBUF)
#defi ne EEPROM SPI CONL (SSPCONL)
#define EEPROM SPI STAT (SSPSTAT)

#def i ne EEPROM SPI STATbits (SSPSTATbi ts)
#def i ne EEPROM SPI CONL_CFG (0x20)
#def i ne EEPROM SPI STAT_CFG (0x40)

__|
© 2007, LJCV Electronics Preliminary Information Page 15

Building the modified Microchip’s TCP/IP Stack v3.75.6

For devices with more than one UART peripheral module you can specify which one the
TCP/IP stack will use as the default interface for several routines using the UART by
defining the UART_NO value macro with the values 1 or 2. For example the Microchip
Explorer 16 board uses the second UART, then on the hardware configuration file you
will see a section such as:

//***
/1l Sel ect UART Modul e Nunber for RS232 Interface

// Valid values are 1 for UART1 and 2 for UART2

/1

#define UART_NO 2

© 2007, LJCV Electronics Preliminary Information Page 16

Building the modified Microchip’s TCP/IP Stack v3.75.6

3.3 - Main application source code

The main application code is in the mai n. c¢ file. This file also includes the MPLAB IDE
directives for setting the configuration bits for the processor. Depending on your
particular hardware configuration and options you may have to modify or add the correct
directives to set the configuration bits consistent with your project.

The mai n. c file also includes the callback functions for the HTTP server to perform
specific actions and provide variable replacement values for dynamic pages.

If you need to add specific code for your application remember that the stack code was
written as a cooperative multitasking “multi-level” state machine with a continuous
execution loop. Your code has to take in account this context and “cooperate” with the
rest of the code and preserving the continuous execution loop.

© 2007, LJCV Electronics Preliminary Information Page 17

Building the modified Microchip’s TCP/IP Stack v3.75.6

4 - Building the code image

To build the code image you must have installed Microchip’s MPLAB IDE (version 7.61
or later), MPLAB C18 Compiler (version 3.12 or later) if you are using a PIC18 part or
MPLAB C30 Compiler (version 3.01 or later) if you are using a PIC24 or dsPIC part.

After you are done with the configuration of the stack you must include in your MPLAB
IDE project the correct linker script file (if a different processor than the existing one in
the project will be used).

For MPLAB C18 you have to use the Overlay storage class and Large data model (all
RAM banks). These two options are selected in the Projects->Build Options->Project
menu and MPLAB C18 tab, Categories General and Memory Model.

For 16-bit devices, certain parts of the code may use the UART interface as stdout for
functions like printf(), this feature requires setting some heap memory, for example 100
bytes, this option is set in the Projects->Build Options->Project menu and MPLAB
LINK30 tab.

In this version the header files for the main code and different modules are distributed in
separate include directories, then for both compilers it is necessary to include those
directories in the “search path”. The directories you must include in the search path are
“src”, “../src” and “../../src”. This is done in the Projects->Build Options-
>Project menu, Directories tab and “Show directories for: Include Serach Path’.

The dialog window should look like the one shown in Figure 1 below.

z 5 SR 3 ok
Build Options For Project "PIC10T.mcp’ | 'ﬂm
MPASM Assembler MPLINK Linker . MPLAB €18
Directoriss | Trace | MPASM/C17/C18 Suite
Directatiss and Search Paths
Show diractories for |Include Search Path ~
INew I { Delete J { Down
Sio
fsrc
e
I Suite Defaults
Build Directony Policy
(@) Assemble/Compile in source-file dirsctany, link in output directory
() Aszemble/Compils/Link in the project directory
0K Cancel I Help
Figure 1

__|
© 2007, LJCV Electronics Preliminary Information Page 18

Building the modified Microchip’s TCP/IP Stack v3.75.6

The | i nker directory includes several script files for various processors compatible
with the boards/designs included in this version.

If in the confi g. h file you enabled the HTTP server module and storage on program
memory (MPFS_USE_PGRM), previously to build the image, you must first generate a "C
language image" source file using the MPFS. EXE utility using the /c option, move the
output C file to the main source directory, include it in the project Source file list and edit
it to replace the line that has the #i nclude "..\Include\Conpiler.h" by
#i ncl ude "i ncl ude/ config. h".

The current distribution includes a C source code image of the sample website in the file
npf si ng. ¢ in the main source directory.

To build your project just use the make or build functions on MPLAB IDE.

If there are some missing configuration options or errors the compiler will stop and show
the error on the output screen.

If you use any of the existing MPLAB IDE project files to build the code image, all the
project options are pre-set and all objects will be stored under the obj subdirectory for
each module and the binary files, cof and map files will be stored in the bi n directory.

If you try to open any of the project files with an MPLAB IDE version prior to 7.61 you
will most probably get an error due the format change in the MPLAB workspace files, to
avoid this error and be able to open the project just remove the corresponding “. ncw’
file from the main directory.

The project files also assume that the C18 compiler is installed in the "C. \ MCC18"
directory and the C30 compiler in the "C.: \ MPLAB C30", if your install path is different
you will need to change the language tool suite directories accordingly.

Use your preferred PIC programmer to download the image to the microcontroller
program memory.

While it is recommended to use the MPLAB IDE, C18 and C30 versions mentioned
before, the code should compile with previous versions.

MPLAB IDE must not be prior to 7.41 to support the include search path, C18 not prior
to 3.02 and C30 3.00. Be aware that some device specific features may not be present
or supported in earlier versions of the tools and the latest releases include fixes
associated with several devices that can be used to run the TCP/IP Stack.

© 2007, LJCV Electronics Preliminary Information Page 19

Building the modified Microchip’s TCP/IP Stack v3.75.6

5 - Uploading the HTTP documents

If you selected the MPFS_USE EEPROM option to store the HTTP documents in an
external serial EEPROM, you must upload the file system image by using FTP or via the
serial command interface with XMODEM.

First you must create a MPFS binary image of the HTTP server documents, to do so
you must use the MPFS. EXE utility passing as arguments the directory where the
source documents are located (the example website documents are in the "htm "
directory) and the name of the output file that will be later uploaded.

If your design includes the new Microchip 25LC1024 serial EEPROM, you must create
the image using the MPFS. EXE /| option (24 bit addressing). Remember also to
include the USE_25LC1024 macro in your hardware configuration file to include the
appropriate code and settings for this memory device.

Figure 2 below shows a command prompt window after generating the MPFS image.

Command Prompt e ll:l‘ﬁ
C:\LJCU_SRC\MCHPTCP>cd v3.75.6 E]

C:\LJCU_SRCAMCHPTCP\uU3.T75.86>tools\mpfs /1 html mpfsimg_l.bin
Adding "htm1\NARCH.HTM® . ..
MPFS Size so far 2738...
Adding "html\NARCH.JPG® . ..
MPFS Size so far 18848...
Adding "html\BDATE.CGI"...
MPFS Size so far 10855...
Adding "html\FEAT.HTH". ..
MPFS Size so far 13257...
Adding "htm1\INDEX.CGI"...
MPFS Size so far 16906. ..
Adding "htm1\INDEX_.HTM" ...
MPFS Size so far 22298...
Adding "html\LINKS.HTM" ...
MPFS Size so far 25035...
Adding "html\MCHP.GIF". ..
MPFS Size so far 27466. ..
Adding "html\STATUS.CGI'...
MPFS Size so far 27844. ..
Adding "html\UVERSION.CGI'...
MPFS Size so far 27851...

C:\LJCU_SRC\MCHPTCP\L3.T75.6>

Figure 2

Double check that your image file does not exceed the available capacity of the
EEPROM memory, the stack reserves the first 64 bytes to save the application
configuration information and the rest of the memory is available for the HTTP
documents image (which includes a simple File Allocation Table).

__|
© 2007, LJCV Electronics Preliminary Information Page 20

Building the modified Microchip’s TCP/IP Stack v3.75.6

Nor FTP or the XMODEM uploading options check for available memory space, if you
exceed the actual available memory, the code will wraparound and start writing over the
previously written FAT and documents.

The current distribution includes MPFS images generated from the sample HTTP
documents located in the ht m directory. The file npf si ng. bi n is the MPFS binary
image with the standard 16 bit addressing (for a 25LC256 or 24L.C256/512) and the
npf si ng_I . bi n the binary image with 24 bit addressing (for a 25LC1024), both files
are located in the current version top directory.

|
© 2007, LJCV Electronics Preliminary Information Page 21

Building the modified Microchip’s TCP/IP Stack v3.75.6

6 - Testing the TCP/IP Stack

After building the code and programming the microcontroller, you may have to perform
a Power-On-Reset (power cycle) if you changed the microcontroller’s configuration bits
since the microcontroller only loads them after a Power-On-Reset and not after a
normal Reset.

If everything is correct the LED connected to the pin mapped to LEDO_| O will start
blinking about once a second, and if you have a LCD module, it will show a series of
message screens that will include an initial screen with the software version number,
and then after a small delay the current time (if you compiled the time and SNTP
modules using the USE_TI ME and STACK USE_SNTP options in the config.h file) and
the values for the IP Transmit and Receive packet counters.

For designs or boards with a two line LCD module, the LCD will cycle between two
screens showing for about 5 seconds the current time (or version number if time support
has not been included) and then for about 10 seconds the IP packet counters.

If you included the time and SNTP module, until the unit is able to communicate with the
NTP server to obtain the reference clock you will see the legend “--/--/-- --:--*
on the display indicating that the current clock is not valid, and as soon the unit
successfully receives a time update from the NTP server the display will start showing
the current date and time.

Figures 3 and 4 below shows an example of the different messages you will see on the
LCD for both two and four lines LCD modules.

. | #WMicrochir TCF
UIF U3.TS.E

e

2 1 192.168.1.201

B7-11-87 1&6:88
192.168.1.281

. | Tx=6792
Ry=6791

Figure 3

© 2007, LJCV Electronics Preliminary Information Page 22

Building the modified Microchip’s TCP/IP Stack v3.75.6

Figure 4

Also if you have connected serial interface and a terminal program (the stack default
configuration for the serial interface is 19,200 bps, 8 bits, 1 stop bit, no parity) you will
see the current IP address on the terminal screen.

6.1 - Sending ICMP echo requests (ping)

The most popular program today available in almost any operating system to test if you
can reach a remote IP host is “ping”, which sends an ICMP message packet to a remote
host requesting an “echo reply”. The stack (unless it was disabled in the configuration
file) includes a basic ICMP module that will reply to an “echo request”. Be aware that
the current version only supports ICMP requests with a payload no larger than 32 bytes,
then in some operating systems (Windows default is 32 bytes) you will need to specify
the packet size.

Figure 5 shows the command screen after running a ping to a PICNet 1 board running
the TCP/IP Stack.

. __|]
© 2007, LJCV Electronics Preliminary Information Page 23

Building the modified Microchip’s TCP/IP Stack v3.75.6

3 Command Prompt —_lE‘ﬁ

C:\LJCU_SRC\MCHPTCP\u3.75.6>ping 192.168.1.201 :j
Pinging 192.168.1.201 with 32 bytes of data:

192.168.1.201: bytes=32 time=1ms TTL=100
192.168.1.201: bytes=32 time=1ms TTL=100
192.168.1.201: bytes=32 time=Tms TTL=100
192.168.1.201: bytes=32 time=1ms TTL=100

Ping statistics for 192.168.1.201:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 1ms, Average = 1ms

C:\LJCU_SRCAMCHPTCP\uL3.75.6>_

Figure 5

6.2 - Using Microchip’s Ethernet Discoverer

One of the utilities from Microchip included in the distribution is the “Ethernet Device
Discoverer”.

If you compiled the code with the STACK USE_ANNOUNCE macro defined, the stack
includes a simple UDP daemon that listens to the ANNOUNCE_PORT (defined as 30303
in the code) for a discovery request.

If the request is received, the daemon will send back to the requesting host the current
NetBIOS hostname, MAC and IP addresses.

Just run the executable MCHPDi scover . exe available in the t ool s directory and you
will see a windows screen as in Figure 6 below.

|
© 2007, LJCV Electronics Preliminary Information Page 24

Building the modified Microchip’s TCP/IP Stack v3.75.6

- : : : - ————
3 | Microchip Ethernet Device Discoverer |_ “@@
Discover Devices
[P Address HostMame MAC Address Other Info
192 168.1.201 PICNET1 00-04-43-00-02-00
Figure 6

6.3 - Using the serial interface

When the TCP/IP Stack code starts to run after Reset, the code will send the current IP
address via the serial interface.

If you compiled the stack code with the ENABLE_BUTTONO_CONFI G option, when you
reset the microcontroller and hold low for an instant the 1/0 pin mapped to BUTTONO_| O
the code will run the configuration routine via the serial interface.

Note about configuration information stored in EEPROM:

If you use an external serial EEPROM, the current stack code will reserve the first 64
bytes to write the configuration information, such as IP address, netmask, etc.

When you run the stack code for the very first time the default configuration hard coded
in program memory will be written to the serial EEPROM. The next time the stack code
starts will load the previously stored configuration from the serial EEPROM.

If you change the default hard coded configuration in the confi g. h file, you must
invalidate the previously stored configuration in the serial EEPROM.

To do so hold low the I/O port mapped to BUTTONO for at least 4 seconds after reset or
while in the serial configuration menu, the old configuration in the serial EEPROM will
be marked as invalid, and the serial interface will show a message, the LDEs will turn
on for few seconds and the microcontroller will reset automatically.

After Reset the code will write the new default configuration into the serial EEPROM.

Note that the BUTTONO option to rewrite the configuration in the serial EEPROM and the
configuration menu via the serial interface will be included in the code only if you define
the ENABLE_BUTTONO_CONFI Gmacro in the confi g. h file.

__|
© 2007, LJCV Electronics Preliminary Information Page 25

Building the modified Microchip’s TCP/IP Stack v3.75.6

(The stack default configuration for the serial interface is 19,200 bps, 8 bits, 1 stop bit,

no parity).

Figure 7 shows the terminal screen after forcing a configuration change.

T Tera Term Web 3.1 - COM1 VT

]

x|

Fle Edit Setup Web Control Window Help

MNew IP Address: 192.165.1.201
TCP~IP Config Application (3.75.6, Jul 15 2007)

: Change Board serial number
: Change Host bHame

: Change IP address

: Change Gateway address

: Change Hetmask

i Change DHS server address
: Enable DHCF & IP Gleaning
: Disable DHCFP & IF Bleaning
: Download MPFR image

: Dave b Quit

o T W v S O S R R N R

Enter a menu choice [(1-0):
BUTTONO held for more than 4 seconds. Vector config in EEPROM erased

HNew IP Address: 192.165.1.201

M

Figure 7

6.4 - Uploading the HTTP documents binary image with FTP

To upload your image to memory via FTP just use the FTP command available in any
Windows or Unix machine, enter the username (the default is 'f t p") and the password
(the default is 'm cr ochi p") and then execute the "put " command providing the file

name of your image file.

Figure 8 shows the command prompt window after transferring the MPFS binary image

using FTP.

© 2007, LJCV Electronics Preliminary Information

Page 26

Building the modified Microchip’s TCP/IP Stack v3.75.6

8 Command Prompt

C:\LJCU_SRC\MCHPTCP\u3.75.8>ftp 192.168.1.201
Connected to 192.168.1.201.

220 Ready

User (192.168.1.201:(none)): ftp
331 Password required

Password:

230 Logged in

ftp> put mpfsimg.bin

200 Ok

150 Transferring data. ..
CEEEGEREELEEEEEEEE R EREE R

226 Transfer Complete

ftp: 27944 bytes sent in 0.005econds 27944000.00Kbytes/sec.

- |ofx]

F

ftp> quit
221 Bye

C:\LJCU_SRCA\MCHPTCP\u3.75.6>_

Figure 8

6.5 - Testing the HTTP server

If you included the HTTP server in TCP/IP Stack code image using any web browser
you can connect to the server using the board IP address or optionally if you included
the NetBIOS Name Service module using the assigned hostname with an URL such as

http:// Pl CNET1/.

The browser window will show a screen similar to the image shown in Figure 9.

Notice that the home page includes AJAX code to continuously update the status of
several variables shown on the page such as the IP packet counters or the LEDs status.
The sample HTTP documents includes a variant of the home page without the AJAX
code but including the variables, the whole page will reload automatically every few
seconds and the variables will show the updated value.

© 2007, LJCV Electronics

Preliminary Information Page 27

Building the modified Microchip’s TCP/IP Stack v3.75.6

& Microchip TCP/IP Stack Demo - Mozilla Firefox [] X
Fle Edit WView History Bookmarks Tool Help

E -2 - % [0 hetp://192.168.1.201/ [=[®] G5 .
A8\ MicrocHIP Microchip TCP/IP Stack
Home Architecture Features Links

This is a demo wabsite that is being servad by a simple HTTP server parl of the Microchip TCPAP Stack Versiom 3756
rumring on an 8 or 16-pit Microchip microcontroller Build date: Jul 15 2007 17:37:47

The Micrachip TGP/AP Stack supports different configurations and ethemet controllers such as the 4
Migrochip ENC28J60, the Realtek RTLB01S and the new PIC18FS7.J60 fammily of 8-bit rricrocontroilers Actions

with integrated ethernat interface
Toggle LED= [LED]

Status

The Links page includes sevaral links to additional information and reference designs using the
Microchip TGR/IF Stack

The right section of this page demonstrates the ability to handle real-time control functions and how to

generate pages with dynamic contents. The Status section refrashes with board information penodically
using JavaScript showing the current status of several variables, and the Actions section sends Date: 07/1a/07
caommands like changing the status of parficular /0 ports

Time: 17:40
If available you can push the an-board switch(es) or change the voltage on the analeg Inputs and see ANO: 2
the new data updated on this page. You can also click on one ofthe two LED command buttons to
toggle the on-board LEDs Buttons: 1111

LEDs: 00000000

Ifyour browser dees not support AJAX, you can check a static version of this page here

For more infarmation about how to put together a simple hardware design to wn the Micrachip TCPAP

Stack and for products and tools available for deveioping applications like this one, wsit the LICV I Facket Counters

Electronics Projects Page Tx 1894
Rx: 1694
Done /]

Figure 9

© 2007, LJCV Electronics Preliminary Information Page 28

Building the modified Microchip’s TCP/IP Stack v3.75.6

7 - The udptest module

This version of the modified TCP/IP Stack distribution includes the udptest module that
implements a throughput test using UDP.

To include this module you have to define the STACK USE_UDPTEST macro in the
confi g. hfile.

Every time that the UDPTest () function is called it will send over the network a UDP
datagram to a broadcast address or to a specific target address defined in the
udpt est. h header file (UDP_TST_TARGET_MAC and UDP_TST_TARGET I|P).
Datagrams are sent to the UDP port defined by UDP_TST_TARGET_PORT.

Datagram size is determined by the MAX_UDP_DATA value defined in the code, and all
data bytes will be filled with the value 0x41 (A).

If you will be using a specific host address as a target is recommended that on the
target host you run a process able to listen on the UDP target port, if there is no process
listening to the port depending on the TCP/IP implementation you may start getting back
ICMP messages reporting that the service is not available.

In Unix you can use nc or net cat for this purpose.

WARNING: While the number of packets per second and traffic wlume this function
generates is not very high, if the target address is configured as a broadcast address,
depending on the configuration of your network or other network devices this function
can produce a broadcast storm or other undesirable network problems. Use for testing
purposes only.

The table in Figure 10 shows the results obtained by running the udptest module in
different hardware implementations, with different microcontrollers and clock speeds.

The image code was compiled only with the ICMP and udptest modules and underlying
protocols (IP and UDP) and the LCD drivers if the hardware platform included a display.

The bits per second and packets per second metrics were obtained from the interface
statistics of a Cisco Catalyst switch after running the test for more than 30 minutes for
each tested device and configuration, the target was a dual processor Pentium server
running RedHat Linux.

__|
© 2007, LJCV Electronics Preliminary Information Page 29

Version 3.75.5b

Building the modified Microchip’s TCP/IP Stack v3.75.6

Microchip TCP/IP Stack

UDP Test Metrics 5/19/07

Board or Mcu CPU Memory UDP Test
Reference Design CLOCK | Program RAM bps pPps
elP10 PIC18F2620 40 6446 779 392000 86
elP10 + LCD PIC18F2620 40 7159 869 391000 84
elP10 + SPI LCD PIC18F2620 40 7225 875 390000 54
Explarer 16 dsPIC33FJ256GPT710 80 6023 278 1642000 354
Explorer 16 PIC24HJ256GPE610 80 6023 278 1642000 354
PIC10T PIC18F4620 40 7230 832 394000 85
PICDEM net PIC18F4620 19,66 6612 750 156000 19
PICDEMZ2+nic28 PIC18F4620 16 7160 821 160000 34
PICDEM2+nic28 PIC18F4620 25 7160 821 243000 54
PICDEM2+nic28 PIC18F4620 40 7162 821 393000 85
PICHNet1 PIC18F4620 25 6517 788 251000 54
PICNet1 PIC18F4620 40 6519 788 397000 85
PICNet1 + SPI LCD PIC18F4620 25 7293 836 248000 53
PICNet1 + SPI LCD PIC18F4620 40 7295 836 392000 84

Figure 10

© 2007, LJCV Electronics

Preliminary Information

Page 30

Building the modified Microchip’s TCP/IP Stack v3.75.6

8 — Connecting to the Internet

If you are planning to get your embedded IP board access some services over the
Internet, for example if you included the SNTP module to retrieve the time reference
from a remote time server, there are some configuration details for your board and
network setup that you must take in account.

This section will provide a brief description about the overall network setup and
configuration settings for a standard home office network. You must have a basic
understanding of the TCP/IP protocol suite, IP addressing, routing, DHCP and NAT
(there are plenty of on-line resources and publications to learn more about TCP/IP
basics and related services and protocols).

The following diagram shows the typical situation in a Small Office/Home Office (SOHO)
with a broadband connection to the Internet.

Broadband

SOHO
Router/Switch
Modem
o s s Y s 192.168.11
Your LAN
192,168.1.0
255.255.255.0
192.168.1.201 192.168.1.2 1921681z
H nu ------------------------- g
Your embedded PCA PCZ

IP board

In this example Internet access is provided via a broadband connection such as cable
or DSL, the broadband modem is connected to the Internet Port of a broadband
router/switch. Switch ports of the broadband router are used to connect different
devices to the Local Area Network, including your embedded IP board.

The Internet Service Provider dynamically assigns a public IP address (in the example
24. 0. x.y). The Local Area Network uses the private network address 192. 168. 1. 0
with netmask 255. 255. 255. 0, making the 192. 168. 1. 1- 192. 168. 1. 254 range
available for devices in the LAN.

__|
© 2007, LJCV Electronics Preliminary Information Page 31

Building the modified Microchip’s TCP/IP Stack v3.75.6

The broadband router is also configured to provide dynamic IP address assignments for
the LAN using DHCP with the 192. 168. 1. 100- 192. 168. 1. 149 address range
reserved for the DHCP server allocations.

The router LAN Ethernet interface has the statically assigned 192. 168. 1. 1 address;
PC1 is configured with static IP 192. 168. 1.2 and the embedded IP board
192.168. 1. 201 all with netmask 255.255.255.0 and default gateway
192. 168. 1. 1; and PC2 will obtain its IP address, netmask and gateway via DHCP.

You also have the option to obtain the IP address for your embedded IP board via
DHCP, but if you are planning to provide access to your board from remote sites in the
Internet you will have better chances of success using the static IP address.

As an example the figure below shows the configuration screen of a Linksys BEFSR81
broadband switch/router based on the parameters mentioned above.

2 Setup: - Mozilla Firefox
File. Edit Miew Go Bookmarks Tools Help

A Divigion of isen Systems, ing. Fimiate rsin: 2465

Etherfastf Cahle/DSL Router BEFSR81 V3

Setup

Security % i Status

Internet Connection Type |:F_>EFLDI_E |
Uzer Mame: Ea:ct@yoprlsp. com |
Passwvorct Forpemeamaoren:
Service Mame: i.SBC |
) connect on Demand: Max Idie Time I5—| Min,

@ HKeep Alive: Redial Period !SO iSec.

Optional Settings

{required by some I5Ps) Host hame: |—|

Domain Mame: | |

ML @Enable O Disable Size:|1452|
Metwork Setup
! s
Router IP Local P Adoress: [132].[1es] [1 |11
Subriet Mask: |zs5.255.285.0 %
Hetwork Address o~ "
I 5 i Y &y
Server Settings (DHCP) Local DHCP Server: - () Enabile: () Disable

StertlP Address: 182488.4./100]
Mumber of Tetrn:
Addrass: !i!
DHCP Sddress yooigaq100 to 1921681149
Ranige:

=1

Client Lesse Time: E_D {minutes (0 means onie day)

Cisco SYSTEMS

Dore

© 2007, LJCV Electronics Preliminary Information Page 32

Building the modified Microchip’s TCP/IP Stack v3.75.6

Now to provide access to your embedded IP board for connections originated from a
remote site in the Internet you have to enable port forwarding in your broadband router.

As you should know your router performs Network Address Translation in both
directions, since your embedded IP board has a private |IP address there is no way for
the remote host to known how to reach it, the only public address you have is the one
assigned to your router by your ISP, then your router must support this feature and has
to be configured to forward packets to a specific port (UDP, TCP or both) to a specific IP
address in your LAN, in our case 192. 168. 1. 201.

If you are planning to provide access to the HTTP server included in the Microchip
TCP/IP stack from a remote site, it is recommended that you change the HTTP server
port to avoid conflicts with the internal HTTP server in the broadband router.

We'll use then for example 8080. (The HTTP server port in the current version is
defined by the macro HTTP_PORT in the confi g. h file)

The following figure shows the Linksys BEFSR81 configuration screen where any TCP
connection with destination port 8080 will be forwarded to the 192. 168. 1. 201
address in your LAN and port 8080, ie your embedded IP board HTTP server.

% application & Gaming - Mozilla Firefox E@g]
Fle. Edt Yiew Go Bookmarks Tooks Help ;

Ly

A Division of Cison Systems, Inc. Firmipare \ersion: 2465

Etherfast® Cable/DSL Router, Bersre v3

Applications

& Gaming Setup o
" Port Range Forvwarding

Applil:alil]n| Start ‘ End l Protocol ‘ IP Address Enabled

jmene | [eoso | 1o [eeso | [TCP w| 1meassafeor] [

o

[Both | 1s21e81f0 |

O

[Both ¥ 1azsrjo |

i"Elmh_ | 1021881 EﬁJ

i

[Both w| 1s21881f0 |

182268100 |

[Bath | 1sziss1 o]

o 8] 2]

[Both = 192168100 |

[Both w| 12168400]

S

o

[2]] [
<
I [T [T AT T |

[Both | 1s21884f8 |

Save Setfings || Cancel Changes

. __|]
© 2007, LJCV Electronics Preliminary Information Page 33

Building the modified Microchip’s TCP/IP Stack v3.75.6

Once you have your router configured you will be able to access the HTTP server on
the board using the URL=ht t p: // 24. 0. x. y: 8080/ .

Now it will be much easier and fancy to access your board using a host name and
domain name. Also the IP address dynamically assigned by your ISP is subject to
change and there are no guarantees that you will be assigned always the same
address.

Then for this you need what is called Dynamic DNS or DDNS, mapping a fully qualified
domain name to the current IP address in use by your router.

There are several DDNS service providers that offer this service on a temporary basis
for free (if you want a permanent assigned name you must pay for the service), and
many standard broadband routers include this feature and support several DDNS
providers.

The following figure shows the DDNS configuration screen for the Linksys BEFSR81
using the services of DynDNS.com and the hostname nyboar d and dnsal i as. net
domain.

) Setup - Mozilla Firefox g@@]

Ele Edit Miew Go Bookmarks Tools Help

A Division of Clseo Systems, inc. Firmuare \ersion: 2.45 6

Etheifast: Cahle/DSLE Router| persret v

Setup

jusernane

Host Name: |myboard.dnsalias.net ‘
Internet P Address: 24.0.x.y
Shatus: DDNS is updated successfully,

| Cancel Changes

© 2007, LJCV Electronics Preliminary Information Page 34

Building the modified Microchip’s TCP/IP Stack v3.75.6
. __|]

With this feature enabled and configured, when your router starts up or when the IP
address changes it will register the IP address with DynDNS.com associated with
nyboar d. dnsal i as. net, and you will be able to access your HTTP server on the
embedded IP board by using the URL=htt p: // nyboar d. dnsal i as. net : 8080/ .

__|
© 2007, LJCV Electronics Preliminary Information Page 35

Building the modified Microchip’s TCP/IP Stack v3.75.6

Revision History:

June 2007, Original en002.

July 2007, Updated en002b for software release v3.75.6.

Notes:

Information provided in this document is believed to be
accurate and reliable. However LJCV Electronics assumes
no responsibility for errors or omissions. LICV Electronics
assumes no responsibility for the use of this information or
the devices and/or systems referenced in this document.
This document may be subject of future updates and LJCV
reserves the right to discontinue production and change
specifications and prices without notice. LICV Electronics
makes no warranty of merchantability or fitness for any
purposes.

©2007, LJCV Electronics, All Rights Reserved.
www.ljcv.net

SPI is a registered trademark of Motorola Corporation.

The Microchip name and logo, PIC, PICmicro, MPLAB, ICSP
are registered trademarks of Microchip Technology Inc.
The Ethernet Boot Loader is copyrighted by Brush
Electronics and Andrew Smallridge and is provided for non-
commercial use. Reverse Engineering of the code is strictly
prohibited.

All other trademarks mentioned in this document are
property of their respective companies.

© 2007, LJCV Electronics

Preliminary Information

Page 36

