
Building Trust Despite
Digital Personal Devices

Javier González - jgon@itu.dk
Philippe Bonnet - phbo@itu.dk

by
Javier González

OpenIT - 07.03.2014

mailto:jgon@itu.dk
mailto:phbo@itu.dk

Users Service Providers

Personal Devices

Personal
Information Services

!
Information

Flow

Distrust

Digital Society

mails

passwords
ssh-keys

media content

certificatespictures apps

Digital Society

Privacy Control

Personal Devices

Privacy?

define: privacy

The social science viewpoint

What are the social norms around privacy and personal
data processing? How do they evolve in time? How do
they evolve with respect to IT evolution?

Getting beyond the lame meme
- “Privacy is dead – deal with it”
- “I’ve done nothing wrong, why should I care?”
- “In Denmark, people are very trusting, so privacy is not
an issue” !

Contextual Integrity
Helen Nissenbaum. Privacy in Context, 2010

Exchange/sharing of personal data is at the core of any
social interaction

- Privacy is not about “not sharing” personal data!

Any social context (work, education, health, ...) defines –
more or less explicitly – a social norm, i.e., an appropriate
behaviour that is to be expected.

Contextual integrity gives a framework to reason about the
norms that apply, in a given social context, to the flows of
personal data (i.e., information norms)

Users Service Providers

Personal Devices

Information
Flow

Digital Society

Contextual Integrity

Social Science
Framework

Computer Science
Implementation

UCONABC

Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Trans. Inf. Syst.
Secur., 7(1):128–174, February 2004.

Audit: a posteriori control
of how rights were used

Enforcement: a priori
control of usage rights

Formal Model

Strong security Assumptions

No implementation!

Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Trans. Inf. Syst.
Secur., 7(1):128–174, February 2004.

Can model complex
frameworks

UCONABC

Implementing UCONABC

Sensitive Data

Untrusted Storage

Program Program

Usage Control

Access Control

UCON
Program

root

Security Perimeter
beyond root
domains

Requirements UCONABC

UCON needs to be implemented within a security
perimeter protected by hardware so that attackers with
root privileges cannot disable it using software.

From inside the security perimeter it should be possible to
“monitor” programs outside the security perimeter

Communicating with programs in the security perimeter
should entail a low overhead

Secure Platforms
Level of

Protection Communication
Execution

Environment

Only Software Rich OS

Rich OS + TEE

SW and Tamper
resistant HW

Secure
Ad-how OS

Narrow
Interfaces

Very High

Low
Messages,

Sockets, SM

Software and
Hardware

Shared
Memory

Medium/High ARM TrustZone

Examples

Android, Linux,
IOS, Windows

IBM CryptoCards,
TPM, Secure Token

Normal Execution Environment Security Perimeter
Monitor

With Low
Overhead

Protected by
HardwareAll Sorts of Applications

Monitoring
Applications

ARM TrustZone

ARM TrustZone

Secure memory, rich memory and
shared memory

Secure acquisition/release of
peripherals in runtime (e.g.,
ethernet, screen, flash)

Gatekeeper - Context switch
controlled by hardware (AMBA3)

Shared processor

Rich/Secure Abstraction

Principle 1: Self preservation first. Under the suspicion of a threat, the secure
environment isolates itself logically and gives up availability in order to protect
data integrity, confidentiality and durability.

Rich Environment Secure Environment

Client Server

User Space

Kernel Space

Secure Space

Hardware

root

root

H
ar

dw
ar

e
So

ft
w

ar
e

Principle 2: Lead all communications. The secure environment defines all
parameters that define this communication: protocol, certificates, encryption
keys, etc.

Principle 3: Secure all interactions. The secure area has priority to obtain
exclusive access to secure peripherals.

Building Trust

Users have the certainty that their sensitive information will
not be misused by the software running in their devices.

Service providers have the certainty that the devices
interacting with their systems are not compromised

Both should have the freedom to choose who they trust,
and the technology should aid giving certainty, not
enforcing

Building Trust

Protect data in
secondary storage

Monitor the integrity
of the system

Enforce usage
policies

Support different
digital contexts

Background Information
Trusted Storage Module (TSM)

A system providing trusted storage should guarantee data
confidentiality, integrity, availability, and durability

Today’s security policies rely on data encryption to support
confidentiality and integrity. However, if encryption keys
can be compromised or stolen on the client computer, then
there is not much protection left.

Approaches using tamper-resistant hardware: low
functionality, physical separated, and narrow interfaces

Thread Model
Trusted Storage Module (TSM)

Sensitive Data

Untrusted Storage

Program Program Malware

root

Memory Access to storage
Access to memory
Access to peripherals

Trusted Storage Module (TSM)
Architecture

Rich Environment Secure Environment

Data producer
App

Platform
Independent

Platform
Dependent

TSM CI

Se
cu

re

En
vi

ro
nm

en
t

CI

TSM
Secure Module

Tamper
Resistant Unit

Crypto
Module

for [i..n]

Data Chunk
(i)

(ii)

Storage

(iii)(iv) Enc. DataEnc. Keys PDS

(v)
Enc. Data

Metadata

0

0.00375

0.00750

0.01125

0.01500

1KB 10KB 20KB 50KB 100KB

Ti
m

e
[s]

Store&Object&in&Rich& Store&Object&in&Secure&

Trusted Storage Module (TSM)
Overhead

Contributions
Trusted Storage Module (TSM)

Provide a mechanism for rich apps to store securely objects
containing sensitive information introducing low overhead

Provide a mechanism to enforce access control to the files
storing those objects, i.e., encryption, secure memory and
secure peripherals

Use untrusted storage as a cheap and “unlimited” source
of secondary storage

Antifragile Storage

Can we learn from successful attacks and improve, being
better prepared for future attacks?
Successful attacks (hardware and software) that do not entail
the collapse of the system are good and welcome (if detectable),
and even intentionally provoked

The level of hardware tamper resistance is the upper boundary
to which the system can benefit from being harmed

How do we detect these attacks (e.g., traps, human
intervention)? How to learn from them (e.g., AI, machine
learning)?

* Nassim Nicholas Taleb

Trusted Integrity Module (TIM)
Background Information

Secondary storage is normally attacked. To survive a reboot
or hide from system administrators, attackers make
modifications to system files, line commands and system
libraries.

Running processed produce logs, which are accessible from
users space (applications), and therefore can be tampered
with.

Storage-based integrity checks need to build on top of
trusted storage (e.g., TSM)

Architecture
Trusted Integrity Module (TIM)

Rich App

GLIBC

System-Call Interface (SCI)

VFS file Obj

dentry Obj

inode Obj

super-block
Obj

D
ep

en
d
en

ci
es

A
tt

ri
b
u
te

s

Se
cu

re

E
n

vi
ro

n
m

e
n

t
C

o
m

m
u

n
ic

a
ti

o
n

 I
n

te
rf

a
ce

open()
close()
read()
write()
flush()

struct inode {
...
uid_t //user id of owner
did_t //group id of owner
eid_t //environ. id of owner

...
};

Platform
Independent

Platform
Dependent

U
se

r
Sp

ac
e

K
er

n
el

 S
p
ac

e
Rich Environment Secure Environment

cache FSn

SEC.
FILE

SEC.
FILE

SEC.
FILE

VFS Trusted Extension

dentry Obj

inode Obj

super-block
Obj

cache FSn

Shared MemoryFS0 FS0 FSn

FSn

RICH
FILE

RICH
FILE

read / exec

all

all

read

nothing

all

all

all

VFS Metadata

TIM

...

CRYPTO

hash(file)
hash(inode)
hash(dentry)

TSM

D
ep

en
d
en

ci
es

A
tt

ri
b
u
te

s

secure
file Obj

sopen()
sclose()
sread()
swrite()
sflush()
...

Tamper
Resistant Unit

TIMTSM

FS0 FS0 FSn

History Logs

Transaction Logs

Crypto Keys

Contribution
Trusted Integrity Module (TIM)

TIM is in itself a storage-based Intrusion Detection System
(IDS) without much less assumptions than current
approaches

Provide an architecture to guarantee the integrity of system
files adding a low overhead to file system primitives

Provide an method to log actions involving system files in
trusted storage, preventing attackers to clean after
themselves

Next Steps

Implement UCON on top of TIM to add complex usage
control policies to secure file operations (i.e., enforcement,
embedded behaviour, and audit)

Extend TIM with a machine learning algorithm to learn
from past attacks - antifrigility

Exploring how to monitor running processes without
introducing a big overhead. Ideas: Use of resources,
peripherals, etc.

Example:
Supporting different
digital “social” contexts

Security today

Users Service Providers

? DRM-like

Secure Personal Devices

Imposition

Lock upDistrust

Cyberactivism:
-Software Freedom
-Privacy
-Anti Copyright
!

* some - normally those involved in media content.

*

bypass

Lockdown, Freedom, and Certainty
Cory Doctorow. The Coming Civil War
over General Purpose Computing

Lockdown: “Your TPM comes with a set of signing keys it trusts, and unless
your bootloader is signed by a TPM-trusted party, you can't run it. Moreover,
since the bootloader determines which OS launches, you don't get to control
the software in your machine.”

Certainty: “You tell your TPM which signing keys you trust - say, Ubuntu, EFF,
ACLU and Wikileaks - and it tells you whether the bootloaders it can find on
your disk have been signed by any of those parties. It can faithfully report the
signature on any other bootloaders it finds, and it lets you make up your own
damn mind about whether you want to trust any or all of the above.”

Freedom: “Android lets you tick a box to run any code you want.”

Certainty Boot

Power On

FSBL

Boot Loader

Secure OS Non Secure
Boot Loader

Non Secure
OS

SE

Verification

)6%/ 6(X�%RRW 7UXVW=RQH .HUQHO��
6\VWHP

+�)6%/�

$&.���1$&.

YHULI\���VHW�IODJ
�FRPS��ZLWK�
NQRZQ�+DVK�

ERRW

KDVK�RI�X�%RRW�
SDUWLWLRQ

+�X�%RRW�

$&.���1$&.

YHULI\���VHW�IODJ
�FRPS��ZLWK�
NQRZQ�+DVK�

+�7UXVW=RQH�

$&.�1$&.

+�.HUQHO�

$&.�1$&.

ERRW

ERRW

JHW�)6%/�X�%RRW�
YHULILFDWLRQ�IODJ

$&.�1$&.

Ubuntu
Samsung
WikiLeaks

…

Architecture

Certainty Boot
Contributions

New signing keys can be added to the SE by the user

Provide a Trusted Boot using a Secure Element (SE) and
TrustZone. The boot sequence is stored in the SE, which can only
be accessed from the secure environment. (2-phase verification)

Applications can check the boot sequence trace through the
secure environment to verify that they trust the running software

Contributions

We have a framework that can implement a usage control
model defining privacy policies (contextual integrity) in order to
build trust in digital interactions

Bottom - up: We have a prototype where storage-based usage
control policies based on trusted storage and its integrity can
easily be implemented: TSM and TIM

Top - down: We have one way to give users the freedom to
choose their software while giving certainty to both users and
and service providers

Building Trust Despite
Digital Personal Devices

Javier González - jgon@itu.dk
Philippe Bonnet - phbo@itu.dk

by
Javier González

OpenIT - 07.03.2014

mailto:jgon@itu.dk
mailto:phbo@itu.dk

