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Natural products have played a significant role in the drug discovery especially in 

the area of cancer.  Over the period of 1940-2010, 50% of the small molecules 

introduced as anticancer agents were either natural products or directly derived 

therefrom.   In one of the ongoing collaborative project to identify anticancer leads, 

the Mycosynthetix library, representing over 55,000 accessions of filamentous fungi, 

is being examined systematically.  The bioactive-guided fractionation methodology is 

adopted for the isolation and purification of cytotoxic lead compounds.  The first 

chapter describes the isolation of cytotoxic secondary metabolites using bio-activity 

guided fractionation scheme.  

As part of ongoing investigations of filamentous fungi for anticancer drug leads, a 

bioactivity-guided fractionation methodology utilizes chloroform in the initial 

extraction and fractionation processes.  Due to the concerns regarding human health 

and halogenated waste associated with chloroform, an attempt was made to replace 

it with more environmentally benign ester-based solvents.  In this project, ethyl 

acetate, methyl acetate and ethyl formate were used in the initial stages of 

extractions and processing.  The extraction efficiency of these was compared versus 

chloroform using two well-studied fungi.
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CHAPTER I 
 

MINIMIZING THE ENVIRONMENTAL FOOTPRINT OF NATURAL PRODUCTS* 
 
 
     *This chapter will be submitted to the Journal of Green Chemistry. 
 
 
Introduction 

Since the introduction of the term “green chemistry” 20 years ago by Drs. Paul T. 

Anastas and John C. Warner, extensive research has been conducted in all fields of 

chemistry worldwide.  One of the 12 principles proposed by Anastas and Warner was “to 

use safer solvents and auxiliaries”,1 thereby raising awareness of toxic reagents and/or 

organic solvents in chemistry research and their impact on humans and the 

environment.  Thus, the use of more green solvents is one means to minimize the 

environmental impact of chemistry research.2   

Recently, Taygerly et al.3 proposed a solvent selection guide for choosing solvent 

alternatives to dichloromethane (CH2Cl2) in chromatography procedures used frequently 

in medicinal chemistry.  While the scale of medicinal chemistry may be smaller than that 

of process chemistry, a large amount of waste can be generated across disparate labs. 

Inspired by their work, we embarked on a similar journey to identify solvent alternatives 

greener than chloroform for the extraction of natural products.  However, there is a 

fundamental difference between medicinal and natural products chemistry research.
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In the former the structures of starting materials and products are known in advance.  

In fact, Taygerly et al.3 use this to their advantage when predicting what solvents could 

be used to replace CH2Cl2 in chromatographic purifications.  In contrast, in the early 

stages of natural products research, the structures are not known.  Hence, if CHCl3 were 

to be replaced in initial processing steps, a solvent that was “general” enough to dissolve 

a broad and often unknown series of structures was desired.  While there have been 

countless advances in the separation techniques utilized for isolating natural products, 

there has been less emphasis placed on strategies to minimize or find alternatives to 

solvents used most frequently.   

Previous Jessop4 presented four grand challenges scientists face when introducing 

green solvents in to procedures: 1) finding an appropriate green solvent; 2) being able to 

identify whether a solvent is in fact green; 3) finding polar aprotic solvents that are easily 

removed; and 4) finding ways to eliminate distillation.  These challenges, particularly 1 

through 3, were considered while striving to minimize the halogenated waste associated 

with natural product extraction procedures. 

In ongoing studies to explore nature for anticancer drug leads,5,6 extracts of 

filamentous fungi from the Mycosynthetix library, representing over 55,000 accessions, 

are being investigated systematically for bioactive secondary metabolites.  In the initial 

stages of extraction and fractionation, a suite of solvents are used, particularly 

chloroform (Figure 1).  Its volatility makes it easy to evaporate.  Its polarity, being 

between the extremes of hexane and H2O, impart it with an ability to dissolve a diverse 

array of compounds.7  Moreover, its specific gravity is greater than that of H2O, making it 
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convenient for use in simple apparatus, like separatory funnels.  Hence, chloroform is 

used frequently for extracting, bioactive secondary metabolites from fungal cultures.   
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Figure 1. Extraction and partition scheme for filamentous fungi on rice. a) CHCl3 
used as an extraction solvent in the initial two stages and b) EtOAc used in place 
of CHCl3 in the initial two stages. 
 

 

 

 

a) 

b) 
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Despite those conveniences, several research studies that applied environmental, 

health and safety assessment and life-cycle assessment ranked chloroform 

unfavorable.8  The costs associated with halogenated waste are high and improper 

handling may have carcinogenic effect.9  For example, the US Environmental Protection 

Agency (EPA), following the Pollution Prevention Act of 1990, compiled a list of 17 

priority pollutants known as EPA 33/50. Chloroform is the third solvent on the list, 

predominantly due to its anticipated human carcinogenicity.10   

The UNCG Department of Environmental Health and Safety reported close to 20,000 

pounds of waste generated at UNCG in last fiscal year out of which 1730 containers 

were marked as hazardous waste.   UNCG spends close to $20,000 per year on waste 

management, and the Department of Chemistry and Biochemistry’s’ hazardous waste 

disposal costs somewhere from $1000 up to $5000 per year.  In the light of these 

statistics, and the UNCG waste minimization policy, it would be beneficial to reduce the 

amount of hazardous waste generated on campus.   

The goal of the present study was to replace chloroform with an alternative solvent 

that was low in toxicity, environmentally benign, and inexpensive, all without introducing 

significant changes to the well-established procedures or, most importantly, 

compromising extraction efficiency (Figure  2).  Various ‘green solvent’ options listed in 

the literature were investigated, and their extraction efficiencies versus chloroform, were 

evaluated using two well-studied fungal cultures, MSX63935 and MSX45109.  To do so, 

the yields and chromatographic profiles of key compounds were compared using Ultra 

Performance Liquid Chromatography (UPLC).  



   

6 

Figure 2. Criteria for choosing an alternative green solvent. 
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Alternative Solvent Selection Strategy 

Substantial research effort is directed towards searching for alternative green 

solvents.  As reported by Jessop4, approximately 41% of the papers published in Green 

Chemistry in 2010 were on ionic liquids, 28% on water, 11% on processes using no 

solvent, and a relatively small number on the use of carbon dioxide.  In this research 

project, these particular replacements were considered as possible green alternatives to 

chloroform. 

Ideally, the best option available in terms of reducing waste would be the use of no 

solvent.  Contrary to this, most of the ‘solvent free’ procedures reported in the literature 

used solvents at some stage.  The amount of solvent used in these procedures were 

reduced compared to the conventional approaches, and therefore the methods were 

considered green.11  For the extraction of secondary metabolites from filamentous fungi, 

a solvent of some kind was required. 

Water maybe the second best candidate for a green solvent as it is plentiful and 

inexpensive.  However, most secondary metabolites have limited solubility in H2O, 

eliminate this option. 

Ionic Liquids are considered designer solvents specific for a process or reaction.   

Which are salts with low melting points, and they are popular as an alternative to volatile 

organic solvents (VOC), due to low vapor pressures.  However, due to the limited data 

available on toxicity and environmental impact, they cannot be considered green.2  Also, 

their cost is prohibitive.12  
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Carbon dioxide exists as supercritical CO2 (scCO2) above a critical pressure and 

temperature.  Due to its volatile nature, scCO2 is a well-established extraction solvent for 

natural products. By simply releasing the pressure, “solvent” is completely removed.12  It 

has very little environmental impact.  However, the biggest disadvantage of scCO2 is the 

high equipment cost, limiting its usage in research community.  

Another interesting class of solvents is esters.  Esters are generally considered 

environmentally friendly solvents, and they have relatively low health hazards. For 

example, ethyl lactate has become widely available as a bio-sourced and biodegradable 

cleaning fluid11.  Ethyl lactate is prepared by esterification of lactic acid and ethanol; both 

of them are renewable sources and maybe obtained from fermenting corn starches.  It is 

readily purified as it is prepared from natural resources and it is completely 

biodegradable to carbon dioxide and water.  Methyl acetate (MeOAc) is useful as a fast-

evaporating solvent in applications like coating and ink resins where fast solvent 

releases are needed.  Ethyl acetate (EtOAc) is normally produced by esterification of 

ethanol and acetic acid.  Currently, it is used in industrial lacquers and surface coating 

resins.13  Furthermore, it is also used as an extraction solvent in the production of 

pharmaceuticals and food, especially in decaffeination of green tea.7 
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Solvent Selection 

For a solvent to be considered as an alternative to chloroform in our lab set up, it 

should meet certain conditions.   With this in mind, the following green solvent selection 

criterion was developed; (1) it needs to be volatile – easily evaporated; (2) extraction 

efficiency (product yield) has to be equal or higher than chloroform; (3) it must be low in 

cost and easily available for purchase; (4) extraction and partition procedure shouldn’t 

be changed significantly (Figure 2).   

With these criteria in mind, esters proved to be a better alternative solvent.  But, 

which ester solvent is an optimal solvent for extraction of secondary metabolites from 

filamentous fungi?  Ideally, the aim was to find an ester that had similar properties to 

chloroform; immiscible or has low solubility in water to give high product yield and having 

a boiling point lower than n-butanol (preferably lower than 80°C).  In general, solvents 

with high boiling points are avoided due to longer evaporation time and high energy cost 

associated with separation by distillation.14   

To assist with the solvent selection, in total six esters were evaluated.  Esters were 

systematically listed according to their increasing carbon-chain lengths and properties 

like boiling point, cost per liter (US $), polarity index, density and solubility in water were 

compared to that of chloroform (Table 1). 
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Table 1. Esters and their properties compared to solvents presently used for 
extraction. 
 

Solvent Structure 
BP     
(°C) 

Cost      
(per L in 

US $) 

Polarity 
Index 

Density 
(g/cm3) 

Solubility 
in H2O 
(g/L) 

 

Ethyl acetate 

 

 70 4 4.3 0.90 80

Ethyl lactate 

 

 
154 29 7.6 1.03 Miscible

Methyl acetate 

 

 56 33 4.4 0.93 250

Ethyl formate 

 
 54 37 4.3 0.92 110

n-Propyl acetate 

 
 102 5 4.2 0.89 20

n-Butyl acetate 

 
 126 27 4.0 0.88 7

Chloroform CHCl3 61 11 4.1 1.48 8

n-Butanol  118 15 4.0 0.81 80

Methanol CH3OH 65 0.95 5.1 0.79 Miscible

 

 

O

OH

O

H O

O
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Ethyl lactate, n-propyl acetate and n-butyl acetate were eliminated due to their higher 

boiling points in comparison with n-butanol.  Additionally, ethyl lactates’ miscibility in 

water made it an unfavorable extraction solvent.  Although MeOAc had a higher 

solubility in water than preferred, the low boiling point made it an eligible candidate for 

analysis.   

EtOAc, MeOAc and ethyl formate were further investigated in an attempt to replace 

CHCl3 as an extraction solvent for filamentous fungi.  In order to assess the extraction 

efficiency of these solvents versus CHCl3, they were tested against well-studied 

filamentous fungi, MSX63935 and MSX45109.   

Method 

General experimental information: 

The fresh cultures of MSX63935 and MSX45109 on rice medium, from 

Mycosynthetix library were grown in parallel.  To check solvents’ extraction 

reproducibility, three separate rounds of extractions were done for each solvent.  All 

solvents used for analysis were obtained from Fischer Scientific and were used without 

further purification.  The solvent prices were obtained from PHARMO-AAPER at UNCG 

contracted price.  UPLC was carried out on Waters Acquity system with data collected 

and analyzed using Empower software. 

Producing Organisms And Fermentation: 

Mycosynthetix fungal strain MSX63935 was isolated in 1992 from a leaf litter and the 

fungal strain MSX45109 was isolated in 1989 from a stump of banana tree in a 
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mangrove area, by Dr. Barry Katz of MYCOsearch. The cultures were stored on a malt 

extract slants and were transferred periodically.  Fresh cultures were grown on a similar 

slant, and a piece was transferred to a medium containing 2% soy peptone, 2% 

dextrose, and 1% yeast extract (YESD media).  Following incubation (7 days) at 22°C 

with agitation, the cultures were used to inoculate 50 mL of a rice medium, prepared 

using rice to which was added a vitamin solution and twice the volume of rice with H2O, 

in a 250 mL Erlenmeyer flask.  This was incubated at 22°C until the cultures showed 

good growth (approximately 14 days) to generate the screening cultures.14, 15 

Extraction And Fractionation: 

To each flask of solid fermentation culture, a mixture of 60 mL of 1:1 

methanol/solvent was added (solvent = either CHCl3, EtOAc, MeOAc, or Ethyl formate).  

Then, the samples were chopped with a spatula and stirred overnight (16 h) in a shaker 

at 100 rpm at room temperature.  The samples were filtered by vacuum filtration into 250 

mL sidearm flasks.  The remaining residues were washed with small volumes of MeOH.  

To the filtrate, 90 mL of the investigated solvent and 150 mL of H2O were added.  The 

biphasic solutions were stirred on a stir plate for 30 min, and then transferred to 

separatory funnels. 

The bottom layers for CHCl3 were drawn off into round-bottom flasks and evaporated 

to dryness.  For EtOAc, MeOAc and ethyl formate, top layers were drawn off into round-

bottom flasks and evaporated to dryness.  The organic extracts were then brought up in 

50 mL of 1:1 ACN/MeOH and 50 mL of hexanes.  The biphasic solutions were mixed for 
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an hour and transferred to separatory funnels.  The ACN:MeOH layer were evaporated 

to dryness under vacuum and yields were taken. 

UPLC Analysis: 

Chromatography was performed using an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 

µm) column (Waters Corp., Milford, MA, USA) equilibrated at 30 °C. A mobile phase 

consisting of ACN and H2O (acidified with 0.1% formic acid) was used, starting with 

40:60 ACN/H2O, going to 55:45 over 5 min, then re-equilibrating at 40:60 for 1 min. 

Chromatograms were collected at 233 nm. 

Results 

EtOAc, MeOAc and ethyl formate were used as solvents to extract secondary 

metabolites from well-studied fungi, designated by MSX63935 and MSX45109.  CHCl3 

was used as a control to compare the extraction efficiencies.  Analyses were carried out 

in five replicates to test the reproducibility of the solvents.  

In our research lab, investigation of filamentous fungi for anti-cancer leads is the 

largest project.  The group continually searches fungal extracts from the Mycosynthetix 

library throughout the year.  On average, some 400 small-scale solid culture samples 

are being processed every year.  In the light of that, it is imperative for us to compare the 

costs of EtOAc, MeOAc, ethyl formate against CHCl3 (Table 2). 
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Table 2. Cost comparison of alternative solvents to CHCl3. 
 

 
1 fungus sample 
extraction (L) 

400 samples per 
year (L) 

Cost per liter 
(US $)  

Total cost            
(US $ per year) 

Chloroform 0.15 60 11 660 

Ethyl acetate 0.15 60 4 240 

Methyl acetate 0.30 120 33 3960 

Ethyl formate 0.15 60 37 2220 

 

Method Validation: 

MSX63935: Previous research on an extract of filamentous fungi, MSX63935, 

showed promising cytotoxic activity against a human tumor panel. These results 

commenced a bioactivity-directed fractionation study and a series of resorcylic acid 

lactones (zeanols) were isolated and characterized (Figure 3).14 
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Figure 3. Structures of resorcylic acid lactone (zeaenols) in MSX63935 and 
secalonic acid in MSX45109. 
 

MSX63935 

 

O

OOH

H3CO

OH

OH

OH  

O

OOH

H3CO

O

OH

OH  

Zeaenol (1) 7-epi-zeaenol (2) 5E-7-oxozeaenol (3) 

   

 

5Z-7-oxozeaenol (4) LL-Z1640-1 (5)  

MSX45109  

 

Secalonic acid A (6) Secalonic acid G (7) Secalonic acid E (8) 

 
 

MeOAc fractions had relatively high yields (375 mg) compared to the other solvents 

(Table 3).  The two solvents, MeOAc and H2O, were miscible in each other at the ratio 

that was used in the standard procedure.  Hence, additional MeOAc was added to get 

the phases separated, thus increasing costs, time and higher yields. 
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Table 3. Average of extract yields (mg) of MSX63935 for multiple rounds of 
extraction in solvents. 
 

The extraction yield of EtOAc (348 mg) was analogous to that of CHCl3 (322 mg) 

(Table 3).   Ethyl formate also had a yield (313 mg) comparable to CHCl3 extracts but 

with a much higher solvent cost; it does not make for a cost effective alternative solvent. 

The yields and chromatographic profiles of key compounds in MSX63935 were 

compared with EtOAc, MeOAc and ethyl formate against CHCl3 using UPLC.  The stack 

plot of extract of MSX63935 in CHCl3 and EtOAc were compared (Figure 4).  The 

percent peak area was calculated by averaging the percent peak area for the replicates 

done in particular solvent.  EtOAc and ethyl formate had similar peak areas to CHCl3 for 

most of the compounds.  Due to the high cost associated with ethyl formate it was 

eliminated as not being very economical and MeOAc miscibility in H2O caused excess 

use of the solvent, therefore cannot be considered very green.   

MSX45109:  To check the efficiency of EtOAc as an extraction solvent, another well-

studied fungus MSX45109 was extracted with CHCl3 and EtOAc.  This fungus was found 

to produce dimeric ergochromes, also known as secalonic acids, a biologically important 

class of mycotoxins (Figure 3). 

 Yield mg ± SD(%RSD) 

Chloroform 322 ± 73(23) 

Ethyl acetate 348 ± 88(25) 

Methyl acetate 375 ± 105(28) 

Ethyl formate 313 ± 52(17) 
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There are 3 distinct peaks in the UPLC chromatogram (Figure 5).  The yields and 

chromatographic profiles were compared for CHCl3 and EtOAc.  The average yield of 5 

rounds of extraction in CHCl3 was 149 mg ± 21 and in EtOAc it was 144 mg ± 9.  

Secalonic acid A, secalonic acid G and secalonic acid E were distinct in both 

chromatograms.  The total percent peak area for all the secalonic acids extracted in 

EtOAc were very similar to the CHCl3extract. 
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Figure 4. UPLC chromatogram stack plot of extract of fungus MSX63935 in CHCl3 
versu EtOAc extract. 
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Figure 5. UPLC chromatogram stack plot of extract of fungus MSX45109 in CHCl3 
versus EtOAc extract.   
 

 

 

 

  

CHCl3 

EtOAc 

6

7

8

6

7

8



   

20 

Conclusion 

The extraction with EtOAc yielded the best results based on UPLC chromatogram 

and  the peak areas per milligram were very similar between CHCl3 and EtOAc.  

Additionally, EtOAc is confirmed to be a good alternative solvent for CHCl3 as it gave 

similar yields to CHCl3 and it is much less expensive.  EtOAc is also considered a 

greener solvent, as it has a much lower environmental impact and a relatively low health 

hazard.  Based on the extract yield and other properties, EtOAc is considered as a 

promising alternative solvent to replace traditional CHCl3 extractions in our lab. 
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CHAPTER II 

ISOLATION AND STRUCTURE ELUCIDATION OF CYTOTOXIC SECONDARY 
METABOLITES FROM FILAMENTOUS FUNGI 

 
 

In the history of pharmaceutical industry, natural products have always played an 

important role.   Over the period of 30 years from 1981-2010, approximately 50% of new 

approved drugs were either naturally derived or natural product inspired.16   Newman 

and Cragg reported that of the 175 small molecules, which were approved as the 

anticancer drugs between 1940 and 2010, 74.8% - were other than synthetic, with 

48.6% were either natural products or directly derived a natural product.16  Today, 

natural products are widely accepted for their chemical diversity and well suited to 

provide good scaffolds for the drug design.    

Cancer is the fastest growing disease worldwide and leading cause of death in the 

US; one out of four deaths in US is due to cancer.  In 2008, about 12.7 million people 

were diagnosed with cancer and 7.6 million deaths were caused by cancer worldwide.17  

It is estimated that over 1.6 million Americans will be diagnosed with cancer this year 

while the estimated number of deaths is 577, 190.18  Every day, over 1500 Americans 

are dying of cancer.  Breast cancer was the leading cause of death in women while the 

lung cancer was the leading cause of death in males in 2008.17  In the light of these 

statistics, it is necessary to continue search for anti-cancer agents to inhibit cell survival  
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pathways in tumor cells and increase the survival rates of cancer patients.The natural 

product-based drugs cover variety of therapeutic indications including anti-infective, anti-

diabetic and anti-cancer.   Since the discovery of Penicillin G19 in 1940, the first natural 

antibiotic isolated from Penicillium chrysogenum , interest in screening the micro-

organisms like bacteria and fungi for drug discovery has grown significantly.    

The role fungi have played in drug discovery cannot be ignored.  For example, 

recently U.S. Food and Drug Administration (FDA) approved a natural product analogue 

fingolimod for the treatment of multiple sclerosis (MS);20 a synthetic compound based on 

fungal secondary metabolite, which clearly demonstrates the importance of fungi as a 

valuable resource for bioactive secondary metabolites.  Earlier publications have pointed 

out that very little of the world’s microbial biodiversity has been available for screening.21  

Hence, targeting fungi may provide isolation of many new cytotoxic compounds for use 

in anticancer drug discovery assays. 

One of the ongoing collaborative projects of our group is to examine the extracts of 

filamentous fungi from the Mycosynthetix library, representing over 55,000 accessions, 

for anti-cancer leads.  Mycosynthetix library has been screened for many biological 

assays but not for the anticancer leads.  Hence, it is a unique and underexplored 

resource for anticancer drug discovery lead.   

This part of the research is focused on using bioactivity-guided fractionation 

methodology for the isolation and purification of bioactive compounds from the 

filamentous fungi, in which purification is guided by the bioassay results.  The primary 

goal was to isolate and structurally elucidate cytotoxic fungal metabolites. Based on the 
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bioactivity for the crude extract, fungus (MSX47782, Mycosynthetix Inc.) was selected 

for further study. 

The Mycosynthetix fungal strains were stored on malt extract slants and a fresh 

culture was grown on a screener scale on solid media, extracted and evaluated for 

cytotoxicity activity. 

 The cytotoxicity measurements against the NCI-H460 human large cell lung 

carcinoma (HTB-177, American Type Culture Collection (ATCC)),22 the MDA-MB-435 

human melanoma (HTB-38, ATCC) and the SW-620 human colon (ATCC) cell lines 

were performed on crude extracts and resulting moderately active fungal samples were 

further analyzed.   

The screener cultures were dereplicated against an in-house library of known 

secondary metabolites in crude culture extracts to avoid re-isolation and re-

characterization of previously known compounds.  Dereplicated samples were 

fractionated via silica gel flash chromatography.    The resulting fractions were submitted 

for bioassay testing.   The active ones were purified via preparative and semi preparative 

HPLC yielding three fungal derived compounds (one new and two known) that displayed 

moderate cytotoxicity against the cancer cell lines.     

Method 

Producing Organisms And Fermentation: 

The Mycosynthetix fungal strain (MSX47782) were stored on malt extract slant and 

transferred periodically.  For the analysis of this fungal strain, fresh cultures were grown 

on a similar slant, and a piece was transferred to a medium containing 2% soy peptone, 
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2% dextrose, and 1% yeast extract (YESD media).  Following incubation (7 days) at 

22°C with agitation, the cultures were used to inoculate 50 mL of a rice medium, 

prepared using rice to which was added a vitamin solution and twice the volume of rice 

with H2O, in a 250 mL Erlenmeyer flask.  This was incubated at 22°C until the cultures 

showed good growth (approximately 14 days) to generate the screening cultures.14,15 

Bioactivity-Guided Fraction: 

To each flask of solid fermentation culture, a mixture of 60 mL of 1:1 MeOH/CHCl3, 

Then, the sample was cut into small pieces with a spatula and stirred overnight (16 h) in 

a shaker at 100 rpm at room temperature.  The sample was filtered by vacuum filtration 

into 250 mL sidearm flasks.  The remaining residues were washed with small volumes of 

MeOH.  To the filtrate, 90 mL of CHCl3 and 150 mL of H2O were added.  The biphasic 

solutions were stirred on a stir plate for 30 min, and then transferred to separatory 

funnels. 

The bottom layers for were drawn off into round-bottom flasks and evaporated to 

dryness.  The organic extracts were then brought up in 50 mL of 1:1 ACN/MeOH and 50 

mL of hexanes.  The biphasic solutions were mixed for an hour and transferred to 

separatory funnels.  The ACN:MeOH layer were evaporated to dryness under vacuum 

and then submitted for bioassay.  This crude extract was tested in the cancer bioassay 

for activity and active ones were dereplicated via methodology developed in Oberlies lab 

using HRESIMS/MS, and samples with no hits proceeded to the fractionation step.    

The dereplicaiton methodology was developed to avoid re-isolation of known fungal 

secondary metabolites in crude extracts.  An in house database was constructed by 
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recording HRMS and MS/MS spectra of compounds isolated to date in the Oberlies lab, 

utilizing both positive and negative ionizations modes, additional information like UV-

absorption maxima and retention times were recorded.  This methodology was 

developed to focus resources on those cultures that are most likely to yield new 

bioactive compounds.  

Fractionation: 

The dereplicated sample was fractionated by normal phase flash silica gel 

chromatography. (Figure 6)  The dereplicated sample was prepared by dissolving it in 

1:1 CHCl3/MeOH and adsorbed onto Celite 545 (Sigma-Aldrich).  Solvent conditions 

were 100% hexane to 100% CHCl3 followed by increasing amounts of MeOH and then 

100% MeOH for the remainder of the run. There were 3 fractions collected. The fractions 

collected were pooled based on their UV/ELSD profiles, dried down and weighed.  

These fractions were screened against, the MDA-MB-435 human melanoma (HTB-38, 

ATCC) and the SW-620 human colon (ATCC) cancer cell lines (Table 4). 
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Figure 6. ISCO flash chromatography of organic extract from MSX47782.* 
 

 

*Blue line is the gradient. Orange line is all wavelength UV.  Green line is ELS detection. 

Pool Fraction Sample Code Weight (mg) 

1 01-12 01020-37-1 1.6 

2 14-27 01020-37-2 9.1 

3 28-End 01020-37-3 37.1 

  Total recovery 47.7 

  % Recovery 70% 

 
 
Human Cancer Cell Panel: 

The human cancer cell panel growth and testing were conducted at the University of 

Illinois at Chicago, College of Pharmacy in the laboratory of Steven M. Swanson.  Initial 

crude extract and the ISCO fractionation bioassays were at concentrations of 20 µg/mL 

and 2 µg/mL.   All samples were dissolved in DMSO and the final concentration was 

≤0.5%. 
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The human cancer cell panel consisted of MDA-MB-435 human melanoma cancer 

cells and SW-620 human cancer cells, both purchased from the American Type Culture 

collection (Manassas, VA).   All cell lines were propagated at 37°C in 5% CO2 in RPMI 

1640 medium supplemented with fetal bovine serum (10%) penicillin (100 units/mL) and 

streptomycin (100 µg/mL).  All cells used were in log phase growth.   The positive control 

was vinblastine tested at 2ng/mL and 1ng/mL:  MDA-MB 435 cells had 30% and 46% 

viable cells, and SW-620 cells had 75% and 74% viable cells, respectively. 

 
Table 4. Bioassay data obtained for flash chromatography fractions of MSX47782.  
All data is percent survival of cell line (sm=starting material prior to fractionation). 
 

Sample ID 
% survival 

(MDA-MB-435) 
% survival 
(SW-620) 

 
20 µg/mL 20 µg/mL 

01020-37-sm 59 39 

01020-37-1 96 92 

01020-37-2 49 33 

01020-37-3 77 57 
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Purification: 

 Active fractions were purified and isolated via preparative and semi preparative 

HPLC.  The preparative HPLC using a gradient that initiated with 40:80 consisting of 

MeCN:H2O (0.1% formic acid) and increased linearly to 40:80 MeCN/H2O within 30 

minutes, at a flow rate of 21 mL/min.  The column used was Phenomenex Synergy C12, 

4µm, 250 x 21.20mm.  Spectra were collected at 204 nm (Figure 7).  In total 9 fractions 

were collected, dried down and yields taken (Table 5).  They were pooled based on the 

UV chromatogram and PDA profiles; the vertical black bars represent fractions.  Based 

on the yields and analytical HPLC profiles, purified fractions 01021-86-2, 01021-86-4 

and 01021-86-5 were further analyzed by NMR and HRMS for chemical structure 

elucidation. 
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Figure 7. a) Preparative HPLC chromatogram of 01020-37-2 @ 335 nm and b) the 
chromatogram showing fractions. 
 

a)   

 

b)   
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Table 5. Preparative HPLC fractions (01020-37-2) pooled based on the 
chromatogram. 
 

Pool Fraction Sample Code Weight (mg)  

1 13-14 01021-86-1 0.65  

2 15-16 01021-86-2 1.18 Compound 1 

3 22-23 01021-86-3 0.72  

4 25 01021-86-4 7.19 Compound 2 

5 34-35 01021-86-5 1.87 Compound 3 

6 44 01021-86-6 0.65  

7 45 01021-86-7 0.22  

8 46-47 01021-86-8 0.49  

9 All Others 01021-86-9 5.46  

 
 
Structure Elucidation Of Active Compounds: 

Isolated fractions, 01021-86-2, 01021-86-4 and 01021-86-5 will be further analyzed 

by 1D-NMR (1H, 13C, DEPT-135), , 2D-NMR (edited-HSQC, HMBC, COSY and NOESY) 

and HRMS for chemical structure elucidation.  

Results And Conclusion 

Throughout the ongoing exploration of extracts of filamentous fungi for cytotoxicity, 

the crude extract of the small scale fermentation of MSX47782 showed moderate activity 

in the human cancer cell panel, 21% cell survival of H460 cells when tested at 20µg/mL.  

This moderately active screener culture was chosen for further analysis due to the belief 

that the cytotoxicity activity of some low concentration compound is masked by other 

high yield non-bioactive compounds.   The crude extract was then fractionated via ISCO 

normal phase chromatography to yield 3 fractions.  These fractions were tested against 
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the MDA-MB-435 and SW-620 human cancer cell lines and fraction 2 showed marginal 

cytotoxic activities on the two cancer cell lines.  Fraction 2 was subjected to further 

purification via preparative HPLC to yield three compounds (1-3).   

Structure Elucidation Of 01021-86-2 (Compound 1): 

01021-86-2 was isolated after one round of prep-HPLC (Figure 7).   Dereplication of 

the compound was attempted by inputting the HRMS (Figure 9) into the Dictionary of 

Natural Products database (DNP ver. 20.1); no matches were found.   

Compound 1 was a white powder (1.18 mg).  The HRMS data was m/z = 213.11232 

[M + H]+ with a second mass peak at m/z = 425.21777 [2M + H]+.  Using the HRMS data, 

a chemical formula of C11H16O4 was calculated, corresponding to an Index of Hydrogen 

Deficiency (IHD) of 4.  The 13C NMR (Figure 10) data showed 11 peaks in total, with 4 of 

those being quaternary carbons [δC 165.9 (C-1), δC 111.1 (C-2), δC 166.6 (C-3), and δC 

120.7 (C-4)], with a peak at δC 61.4 denoting a methoxy group.  

These results were combined with 1H NMR data (Figure 11), the substituents were 

determined as terminal ethyl [δH 0.96 (CH3) and δH 1.70 (CH2)], methoxy (δH 3.95), 

oxymethine (δH 4.55), olifinic (δH 7.35) and methyl (δH 2.09) groups.  The complete 1H 

and 13C NMR data are shown in Table 6.   

The positions of the substituents and aromatic protons were determined by 2D-NMR.  

The three 2D-NMR experiments utilized here were: COSY (Correlation spectroscopy, 

1H-1H correlations of adjacent protons, Figure 12) , HMBC (Heteronuclear multiple bond 

correlation, long range (2-4 bonds, 3 typically) 1H-13C correlations, Figure 13) and 
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HSQC-edited (Heteronuclear single quantum coherence, direct 1H-13C connectivity 

phase edited giving results similar to DEPT-135 13C NMR, Figure 14).   

Only one spin system was observed in the COSY spectrum (Figure 12) for 

correlations between H-7 (δH 1.70), H-8 (δH 1.49), and H-9 (δH 0.96).  In the HMBC 

experiment (Figure 13), the methyl group at δC 14.0 (C-9) correlated to the adjacent 

methalene carbon at δC 19.3 (C-8) and second correlation observed for the carbon at δC 

39.1 (C-7).  The two methylene groups at δC 39.1 (C-7) and δC 19.3 (C-8) respectively, 

showed correlations to oxymethine at δC 67.9 (C-6) in the HMBC spectrum.  A broad 

singlet corresponding to one of the protons at H-6 (δH 4.55) showed no HSQC 

correlations (Figure 14) to any of the carbons, but useful HMBC correlations were 

observed which helped assign the proton to Hydroxyl group.  Some relevant correlations 

from the olifinic proton helped assemble this unit and carbon NMR shifts justify the 

substitution patterns. At this point only 2 carbons were left to account for; chemical shift 

of this methyl group is consistent with the presence of this subunit to complete the 

structure.   The structure of compound 1 was established as depicted in Figure 8.  

 
Figure 8. Structure of New Compound 1 (01021-86-2). 
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Figure 9. HRMS spectrum for Compound 1 (01021-86-2). 
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Figure 10. 13C NMR of Compound 1 (CDCl3). 
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Figure 11. 1H NMR spectrum of Compound 1 (01021-86-2). 
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Figure 12. COSY Spectrum of Compound 1 (01021-86-2). 
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Figure 13. HMBC spectrum of Compound 1 (01021-86-2). 
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Figure 14. HSQC-edited NMR spectrum of Compound 1 (01021-86-2). 
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Table 6. NMR Data for Compound 1 (700 MHZ for 1H, 176 MHz for 13C; Chemical 
Shifts in δ, CDCL3). 
 

Position δC δH Mult  

1 165.9  

2 111.1  

3 166.6  

4 120.7  

5 146.0 7.35 (s) 

6 67.9 4.55 (t) 

7 39.1 1.70 (m) 

8 19.3 1.49 (m) 

9 14.0 0.96 (s) 

10 11.2 2.09 (s) 

11 61.4 3.95 (s) 

 
 

Compound 2 (01021-86-4, 7.19mg) was obtained as an oily sample.  The molecular 

formula was determined as C30H39NO5 by HRMS.  The NMR data, in conjunction with 

HRMS data, identified 2 to be the known compound Cytochalasin H., reported by Tao et 

al in 2007 from the mangrove endophytic fungus Phomopsis sp (ZZF08) obtained from 

the South China Sea coast (Figure 15).24 

Compound 3 (01021-86-5, 1.87mg) was obtained as a yellowy powder.  The HRMS 

data suggested a molecular formula of C15H12O5.  The compound showed distinctive UV 

maxima at 222, 256, 287, 300 and 340 nm, having the typical pattern of alternariol 

derivatives. Positive ESI MS showed molecular ion peak at m/z 273.0761[M+H]+.  The 

spectral data of compound 3 were found in full agreement with those reported for 

Alternariol monomethyl ether, a compound reported in 1983 by Holker et al from the 

Penicillium diversum, (Figure 15).25  
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Figure 15. Chemical structures of compounds 2-3. 
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Table 7. Comparison of 1H and 13C NMR data of Compound 2 (δ in ppm) with 
literature Cytochalasin H., recorded in CDCl3 at 17°C at 500 MHz for 1H and 125 
MHz for 13C. 
 

 Cytochalasin H.23 Compound 2 

Position 13C 1H 13C 1H 

1 174.3 - 174.4 - 
2 - 5.6 - 5.5 
3 53.8 3.23 53.9 3.2 
4 50.3 2.12 50.5 2.11 
5 32.8 2.77 32.9 2.78 
6 148.0 - 147.9 - 
7 69.7 3.82 69.8 3.82 
8 47.2 2.93 47.3 2.93 
9 51.5 - 51.8 - 

10 45.6 2.85 
2.64 

45.7 2.85 
2.64 

11 14.1 1.0 14.2 0.98 
12 114.1 5.15 

5.35 
114.3 5.11 

5.34 
13 125.9 5.75 127.2 5.72 
14 138.1 5.40 138.8 5.39 
15 42.8 1.77 

2.0 
42.8 1.79 

2.03 
16 31.1 1.8 31.2 1.34 
17 53.8 1.56 

1.86 
53.8 1.57 

1.88 
18 74.3 - 74.5 - 
19 127.0 5.56 126.0 5.84 
20 138.6 5.86 138.2 5.52 
21 77.5 5.55 77.6 5.55 
22 26.5 1.05 26.6 1.04 
23 28.4 1.32 28.5 1.78 
24 170.1  170.3 - 
25 20.9 2.23 21.0 2.23 
26 137.4 - 137.5 - 

27,31 128.9 7.14 129.0 7.14 
28,30 128.9 7.30 129.1 7.31 

29 127.0 7.25 127.2 7.24 
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