

Bulk or On-Site Generation: What's Your Hypochlorite Solution

Kyle Novak, P.E. – Hazen and Sawyer Alana Loughlin, P.E. – Hazen and Sawyer Melanie Mann, P.E. – Hazen and Sawyer

2011 OWEA Conference June 22, 2011

Outline

- Comparison of Sodium Hypochlorite Systems
- Design Details of On-Site Hypochlorite Generation System
- Cost Evaluation of Bulk Delivery vs. On-Site Generation at 25 MGD WWTP

Chlorine Gas

- Traditional disinfectant of choice
- A gas at normal room temperature and pressure
- The gas is compressed into a liquid and delivered in 90-ton railcars, 1-ton containers, or 150 pound cylinders

- The Department of Homeland Security has concerns about chlorine gas storage and transport, proposing Chemical Security Rules and Regulations for users
- Many utilities are evaluating alternative disinfectants to address these concerns with chlorine gas

Alternative Disinfectant Strategies

- Non Chlorine Based
 - Ultraviolet Light Technologies
 - Ozone Technologies
- Chlorine Based
 - Bulk Delivered Sodium Hypochlorite
 - On-site 0.8% Sodium Hypochlorite Generation

Commercial Bulk Sodium Hypochlorite

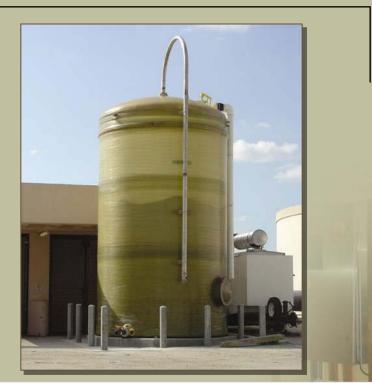


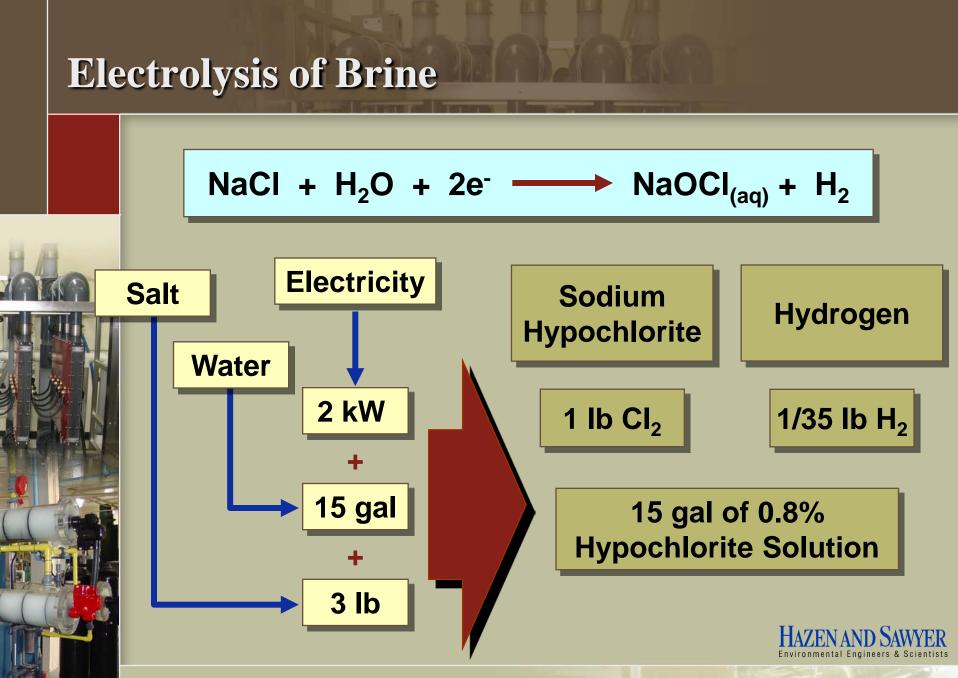
Bulk Sodium Hypochlorite Commercial Truck Delivery – Typical

- Manufactured chemically or by membrane electrolysis
- Typically delivered by tanker trucks at a concentration of 12.5% by volume
- Requires on-site tank farm for storage (30 days undiluted, 15 days diluted)
 Chlor Alkali Industry
- Typical chemical cost
 - Price continues to fluctuate
 - 2010 TN cost = \$0.79 / gallon
 (1 gal = 1 lb Cl₂)

Bulk Sodium Hypochlorite Commercial Truck Delivery – Typical

Stability


- Off-gassing (difficult to pump)
- Strength degrades over time
- Use climate control or 50% dilution for longer storage life and reduced off-gassing
- Safety
 - Concentrated solution presents risk
 - Chemical containment required



On-Site Sodium Hypochlorite Generation

On-Site Hypochlorite Generation Schematic

Salt and Product Storage

- High Density Polyethylene
 - Low cost
 - Limited capacities
 - Lifespan (2-5 years)
- Fiberglass Reinforced Plastic
 - Moderate cost
 - Larger capacities
 - Lifespan (10-20 years)
- PVC Lined Concrete Tank
 - Most efficient use of space

Electrolyzer Cell

- Multiple titanium anode / cathode plates
- Bi-polar & mono-polar plate designs
- Anode plates are coated to produce Cl₂ instead of O₂
- Typically, anodes require replacement after
 7 10 years
 of service

 $NaCI + H_2O$

DC

Power

NaOCI (aq)

H_{2 (g)}

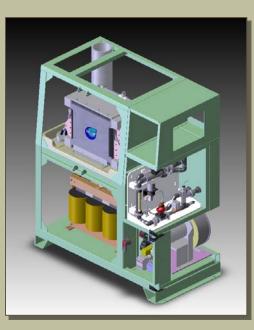
Cell Configurations

- Horizontal tubes with vertical plates
- Rectangular cassettes with vertical plates

On-Site Hypochlorite Generation System Efficiencies

- Typical electrolyzer skid efficiency:
 - Power consumption = $2.0 \text{ kWh} / \text{ lb } \text{Cl}_2$
 - Salt consumption = 2.5 lb salt / lb Cl₂
- Variables affecting electrolyzer skid efficiency:
 - Water temperature (55° < TEMP < 80 °F)
 - Brine concentration
 - Anode coating life
 - Deposits on cathode surface
- Efficiency will change over the life of system until plates are replaced (7-10 year life cycle)

On-Site Hypochlorite Generation System Summary


- Generate dilute sodium hypochlorite solution (0.8%)
 - Typically higher capital cost but lower operating cost relative to bulk delivery
- Safety
 - Dilute hypochlorite solution reduces risk
 - Electrolyzer vessels could over-pressurize
 - Requires appropriate safeguards
 - Hydrogen gas by product can be hazardous
 - Proper venting and dilution is KEY
- Dilute hypochlorite product is stable Longer shelf life

On-Site Hypochlorite Generation Vendors

- Severn Trent: CLORTEC
- Siemens: OSEC
- Process Solutions, Inc.: MicrOclor
- Miox
- Pepcon

Facility Design Considerations – Hydrogen Gas Management

- High room air exchange rate: 18-24 changes/hr.
- Standpipe and storage tank purge air dilution ratio 100:1
- Each riser pipe to include redundant purge air blowers, air flow sensors and hydrogen gas monitor

 Each storage tank to include redundant purge air blowers, air flow sensors and hydrogen gas monitor

> Riser Pipe Vent System

Recommended Design Criteria

- <u>Hypochlorite Generators:</u> Typically size to meet the maximum day chlorine demand
- Operation:
 - Generally runs as a batch operation to maintain storage tank level
 - Consider 20 hour/day (or less) operating cycle
 - Consider plant power load management control.

- <u>Hypochlorite Storage:</u>
 1.5 days of storage for the maximum day chlorine demand
- <u>Salt Storage:</u> 30 days of storage for the annual average chlorine demand
 - Feed Pumps: Size to provide peak hour chlorine demand

Recommended Design Criteria

- **Bulk Chemical Backup:** Provisions for backup delivery and storage of 12.5% bulk hypochlorite in the event of an extended power outage or catastrophic equipment failure
- **Dilution System:** Provide dilution / product transfer system with bulk backup system

- Back-up Power System Option A: Provide backup power sized to provide power for the bulk backup feed system with dilution
- Back-up Power System **Option B:** Same as option A except that the backup power system would be sized to provide power to the hypochlorite generators and the auxiliary systems

Cost Evaluation: Clarksville, TN WWTP

- Plant was severely damaged by flood in 2010, completely destroying existing UV disinfection system
- Owner combined flood recovery effort with long-term improvements to evaluate new disinfection system
- Currently disinfecting with temporary bulk sodium hypochlorite storage and feed system

	Maximum	Average	Blended w/ Secondary Bypass
Plant Flow, mgd	75	25	50
Chlorine Dose, mg/l	8	6	10

Bulk Sodium Hypochlorite Equipment

Equipment Red	quirements
----------------------	------------

	Bulk Storage	Two (2) 20,000-gallon tanks 15 days storage of 6.25% hypo @ avg flow & dose
T	Water Softener	One (1) 30-gpm dilution water softener
10.000	Recirculation/Transfer Pumps	Two (2) 200-gpm pumps Recirculate bulk tank in under 2 hours
	Metering Pumps	Three (3) 125-gph metering pumps for secondary effluent Two (2) 250-gph metering pumps for blended primary and secondary effluent

Bulk Sodium Hypochlorite Construction Cost

Construction Cost Estimate

4	Structural (\$200/ft ²)	\$400,000
	Bulk Hypochlorite Equipment (Includes Installation)	\$335,000
	Electrical and Instrumentation	\$53,600
	Contingencies and Contractor OH&P	\$390,400
	Total Construction Cost (Sept 2010 dollars)	\$1,179,000

Bulk Sodium Hypochlorite O&M Cost

Hypochlorite (\$0.74/gallon @ 12.5%)	\$204,600
Potable Water (\$9.22/1000 gallons)	\$2,400
Power (\$0.077/kW-hr)	\$7,400
Equipment Maintenance	\$14,000
Total Annual O&M Cost	\$228,400

Bulk Sodium Hypochlorite Life Cycle Cost

	Cost Summary			
	Total Construction Cost	\$1,179,000		
	Total Annual O&M Cost	\$228,400		
	Present Worth of Total Annual O&M (20 years, 8% discount rate, 0% inflation)	\$3,398,000		
	Life Cycle Cost	\$4,577,000		

On-site Hypochlorite Generation Equipment

Equipment Requirements

Brine Saturator	One (1) 80-ton brine saturator
Water Softeners	Three (3) 20-gpm water softeners
Brine Pumps	Three (3) 25-gph brine metering pumps
Hypochlorite Generators	Two (2) 1,500-ppd hypochlorite generators
Solution Tanks	Three (3) 20,000-gallon storage tanks 3 days storage of 0.8% hypo @ avg flow & dose 25 days storage of 6.25% hypo @ avg flow & dose
Hydrogen Gas Blowers	Four (4) blowers 2 @ 2,200 scfm, 2 @ 300 scfm
Recirculation Pumps	Two (2) 200-gpm pumps
Metering Pumps	Three (3) 1,000-gph and three (3) 125-gph (6.25% bulk hypo) metering pumps for secondary effluent Three (3) 2,000-gph metering pumps for blended primary and secondary effluent
	Water SoftenersBrine PumpsHypochlorite GeneratorsSolution TanksHydrogen Gas BlowersRecirculation Pumps

On-site Hypochlorite Generation Construction Cost

Construction Cost Estimate

	Structural (\$200/ft ²)	\$430,500
	Bulk Hypochlorite Equipment (Includes Installation)	\$1,927,500
	Electrical and Instrumentation	\$308,000
	Contingencies and Contractor OH&P	\$1,320,000
	Total Construction Cost (Sept 2010 dollars)	\$3,986,000

On-Site Hypochlorite Generation O&M Cost

Annual Operation and Maintenance Cost Estimate

Salt (\$180/ton)	\$61,700
Potable Water (\$9.22/1000 gallons)	\$37,900
Power (\$0.077/kW-hr)	\$52,300
Equipment Maintenance	\$16,600
Total Annual O&M Cost	\$168,500

On-Site Hypochlorite Generation Life Cycle Cost

	Cost Summary	
	Total Construction Cost	\$3,986,000
	Total Annual O&M Cost	\$168,500
	Present Worth of Total Annual O&M (20 years, 8% discount rate, 0% inflation)	\$2,506,000
	Life Cycle Cost	\$6,492,000

Sodium Hypochlorite Systems Cost Comparison

	Bulk Delivery	On-Site Generation
Construction Costs	\$1,179,000	\$3,986,000
Present Worth of Annual O&M	\$3,398,000	\$2,506,000
Life Cycle Cost	\$4,577,000	\$6,492,000

Recommended Bulk Delivery of Sodium Hypochlorite over On-Site Generation based on \$1.9M savings on a 20-year life cycle cost basis.

Questions

