
Introduction Bundled Suffix Trees An application

BUNDLED SUFFIX TREES

Luca Bortolussi1 Francesco Fabris2 Alberto Policriti1

1Department of Mathematics and Computer Science
University of Udine

2Department of Mathematics and Computer Science
University of Trieste

IFIP TCS 2006, Santiago, Chile, 23rd–24th August 2006

Introduction Bundled Suffix Trees An application

Outline

1 Introduction
Suffix Trees

2 Bundled Suffix Trees
Encoding Approximate Information
Definition
Size and Construction

3 An application
Computing Surprise Measures
Summary

Introduction Bundled Suffix Trees An application

Suffix Trees

bcabbabc#

Gusfield D., Algorithms on strings, trees and
sequences, Cambridge University Press, 1997.

E. Ukkonen. On-line construction of suffix-trees.
Algorithmica, 14:249-260, 1995.

A Suffix Tree is a data structure
revealing the internal structure
of a string.
They occupy O(n) space and
can be built in O(n) time.

They are efficient for:

Exact String Matching

Longest Exact Common
Substring Problem

Identifying Exactly
Repeated Patterns

Introduction Bundled Suffix Trees An application

Limitations of Suffix Trees

bcabbabc#

Gusfield D., Algorithms on strings, trees and
sequences, Cambridge University Press, 1997.

Landau G.M., Vishkin U., Efficient String
Matching with k Mismatches, Theoretical
Computer Science, 43, 239-249, 1986.

Suffix Trees cannot deal
naturally with approximate
string matching problems.
(Hamming or Edit distance)

Two difficult problems:

Longest Common
Approximate Substring
Problem

Extraction of approximately
repeated patterns

Introduction Bundled Suffix Trees An application

Extending Suffix Trees

THE TARGET
Extending Suffix Trees in order to solve in a simple way some
classes of approximate string matching problems.

Bundled Suffix Trees
Bundled Suffix Trees extend suffix Trees.

They incorporate approximate information;
They can be used like Suffix Trees for:

Longest Common Approximate Substring Problem
Extraction of approximately repeated patterns

Introduction Bundled Suffix Trees An application

Approximate Matching

Character matching is a relation among letters
(in fact, it is the equality relation)

We model approximate matching as a non-transitive relation
among letters:

two strings “match” if all their letters are in relation.

Introduction Bundled Suffix Trees An application

Approximate Matching

Character matching is a relation among letters
(in fact, it is the equality relation)

We model approximate matching as a non-transitive relation
among letters:

two strings “match” if all their letters are in relation.

Introduction Bundled Suffix Trees An application

Non-Transitive Relation: An Example

Modeling a relation based on Hamming Distance

Start from a basic alphabet (e.g. binary: A = {0, 1})
Construct an alphabet composed of macrocharacters
(e.g. A = {00, 01, 10, 11})
Two letters x , y ∈ A are in relation if and only if
dH(x , y) ≤ D (e.g. D = 1).

The Relation Graph

00 ↔ 01
l l

10 ↔ 11

Relation is non-transitive

It encapsulates a
(restricted) form of
distance.

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc
a ↔ b ↔ c We start from the suffix

tree for the string.

Let’s compare suffix 3 and
suffix 1:

b c a b b a b c
m m m m m 6m
a b b a c c

After bcabb in the tree, we
put a red node with label 3.

Due to symmetry, there is
also a red node with label
1 after abbab .

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc
a ↔ b ↔ c We start from the suffix

tree for the string.

Let’s compare suffix 3 and
suffix 1:

b c a b b a b c
m m m m m 6m
a b b a c c

After bcabb in the tree, we
put a red node with label 3.

Due to symmetry, there is
also a red node with label
1 after abbab .

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc
a ↔ b ↔ c We start from the suffix

tree for the string.

Let’s compare suffix 3 and
suffix 1:

b c a b b a b c
m m m m m 6m
a b b a c c

After bcabb in the tree, we
put a red node with label 3.

Due to symmetry, there is
also a red node with label
1 after abbab .

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc
a ↔ b ↔ c We start from the suffix

tree for the string.

Let’s compare suffix 3 and
suffix 1:

b c a b b a b c
m m m m m 6m
a b b a c c

After bcabb in the tree, we
put a red node with label 3.

Due to symmetry, there is
also a red node with label
1 after abbab .

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc ;
a ↔ b ↔ c

If we do this process for every
couple of suffixes, we build a
Bundled Suffix Tree!

Note that this data structure is
in the middle between a suffix
tree and a suffix trie.

Introduction Bundled Suffix Trees An application

Bundled Suffix Tree: An Example

bcabbabc ;
a ↔ b ↔ c

Bundled Suffix Trees can be
used to:

solve the Longest
Common Approximate
Substring Problem with
respect to a given relation
(just find the lowest red
node).

extract information about
approximately repeated
patterns.

Introduction Bundled Suffix Trees An application

How Big?

The number of red nodes
inserted depends on:

the relation

the structure of the text.

In the worst case, the number
of red nodes is quadratic in the
length of the text S. Example

On average, the number of red nodes is limited by

m1+δ, δ = log1/p+ C.

(m is the length of the text, p+ is the normalized frequency of the
most common letter in S, C depends on the relation)

1 + δ is slightly greater than one! Example

Introduction Bundled Suffix Trees An application

How Fast?

Naive Algorithm
The naive algorithm for building a BuST tries to “match”
every suffix of the textalong every branch of the suffix tree,
until a “mismatch” is found.

It can be quadratic in the worst case.

An analysis based on the average shape of a suffix tree
shows that its average complexity is bounded by m1+δ′

(δ′

just slightly greater that δ).

W. Szpankowski. A Generalized Suffix Tree and its (Un)expected Asymptotic Behaviors. SIAM J. Comput.
22(6): 1176-1198 (1993)

P. Jacquet, B. McVey, W. Szpankowski. Compact Suffix Trees Resemble PATRICIA Tries: Limiting
Distribution of Depth, Journal of the Iranian Statistical Society, 3, 139-148, 2004.

Introduction Bundled Suffix Trees An application

Faster

Efficient Algorithm
We found an “McCreight-like” algorithm that is linear in the size
of the output.

Intuitions
It processes the suffixes backwards.

It is based on the concept of inverse suffix links. Show Details

It identifies the red nodes for suffix i by processing the red
nodes for suffix i + 1. Show Details

Introduction Bundled Suffix Trees An application

Experimental Results

We have implemented the naive algorithm for the
construction of BuST.

We have tested it with relations induced by hamming
distance, defined over DNA-macrocharacters.

With macrocharacters of size 4 (X ↔ Y ⇔ dH(X , Y) ≤ 1)
the algorithm can process texts of length 100K in few
seconds.

The number of red nodes grows tamely. Show Details

Introduction Bundled Suffix Trees An application

Measures of surprise: exact case

z-score

δ(α) =
f (α)− E(α)

N(α)

f (α) is the observed frequency of α

E(α) is the expected frequency of α

N(α) is a normalization factor (e.g. the variance or its
first-order approximation).

Monotonicity
If f (α) = f (αβ) then δ(α) ≤ δ(αβ).

δ needs to be computed only for maximal strings at a fixed
frequency. These are exactly the strings ending at nodes
of the Suffix Tree.

Introduction Bundled Suffix Trees An application

Computing the z-score

bcabbabc# Using a Suffix Tree, we can
compute and store the
z-score for all “interesting”
substrings of a given text in
linear time and space
(given that we can
compute E and N in linear
time and space).

A. Apostolico, M.E. Block, S. Lonardi. Monotony
of surprise and the large-scale quest for unusual
words. Journal of Computational Biology, 7(3-4),
2003.

Introduction Bundled Suffix Trees An application

Measures of Surprise in the Approximate World

bcabbabc ;
a ↔ b ↔ c

Let’s consider as
occurrences of β in α all
the substrings β′ that are
in relation with β.

Reasoning as in the exact
case, we can use a BuST
to compute the z-score for
all interesting substrings of
α in time and space
proportional to the BuST’s
size.

Introduction Bundled Suffix Trees An application

Measures of Surprise in the Approximate World

If we use an Hamming-like relation built on macrocharacters,
we are counting all the occurrences of a string with distance
bounded by a threshold proportional to the string’s length.

Pros and Cons
Pros :

the algorithm runs in time proportional to the number of
maximal substrings (w.r.t. δ).
BuST provides a compact way to store and retrieve this
information.

Cons :
the macrocharacters introduce rigidity (we can count
compute the z-score only for strings of length multiple of the
macrocharacter’s size).
the distance must be distributed evenly among
macrocharacters.

Introduction Bundled Suffix Trees An application

Conclusions

We have introduced Bundled Suffix Trees, a new data
structure extending suffix trees.

Given a relation among characters encoding some sort of
approximate information, a BuST reveals the inner
structure of the strings w.r.t. this relation (all this
information is internal w.r.t. the processed string).

BuST can be used for all the problems related to the inner
structure of the string, like computation of approximated
frequency.

The structure is based on a very general concept of
non-transitive relation among characters. The use of
Hamming-like relation on tuples is just a possible example.

Its size is slightly more than linear on average, and there’s
a fast (McCreight-like) algorithm to build it.

Dimension of BuST Efficient Algorithm

Quadratic BuST

Let’s consider the text

a . . . a︸ ︷︷ ︸
m

c . . . c︸ ︷︷ ︸
m

b . . . b︸ ︷︷ ︸
2m

,

over {a, b, c, d}, with

a ↔ b
l l
d ↔ c

The number of nodes
surrounded by the red box
is quadratic in m!

Return

Dimension of BuST Efficient Algorithm

Quadratic BuST

Let’s consider the text

a . . . a︸ ︷︷ ︸
m

c . . . c︸ ︷︷ ︸
m

b . . . b︸ ︷︷ ︸
2m

,

over {a, b, c, d}, with

a ↔ b
l l
d ↔ c

The number of nodes
surrounded by the red box
is quadratic in m!

Return

Dimension of BuST Efficient Algorithm

Quadratic BuST

Let’s consider the text

a . . . a︸ ︷︷ ︸
m

c . . . c︸ ︷︷ ︸
m

b . . . b︸ ︷︷ ︸
2m

,

over {a, b, c, d}, with

a ↔ b
l l
d ↔ c

The number of nodes
surrounded by the red box
is quadratic in m!

Return

Dimension of BuST Efficient Algorithm

The exponent δ

Return

Dimension of BuST Efficient Algorithm

The exponent δ

Return

Dimension of BuST Efficient Algorithm

Test

Number of macrocharacters of length 4 over DNA alphabet.
Test strings are generated according to a uniform p.d.

Return

Dimension of BuST Efficient Algorithm

Inverse Suffix Links

A crucial role in the fast
construction of suffix trees is
played by suffix links.

Suffix links are pointers from
nodes with path label xα to
nodes with path label α.

Whenever there is a node with
path label xα, there’s also a node
with path label α.

Return

Dimension of BuST Efficient Algorithm

Inverse Suffix Links

Inverse suffix links are pointers
from nodes with path label α to
positions in the tree labeled xα,
for each x in the alphabet such
that xα is a substring of S.

They can point in the middle of
an arc.

If a ISL takes from α to xα, it is
labeled with x .

Return

Dimension of BuST Efficient Algorithm

The Algorithm

Red nodes for suffix S[i] can be
computed from red nodes for
suffix S[i + 1], using Inverse
Suffix Links.

Suppose a red node for suffix
S[i + 1] is just under a “black”
node with path label α.

From this node, we can cross all
inverse suffix links labeled with
characters in relation with S(i).

With a skip and count trick, we
can identify the positions of red
nodes for S[i].

Return

Dimension of BuST Efficient Algorithm

The Algorithm

Red nodes for suffix S[i] can be
computed from red nodes for
suffix S[i + 1], using Inverse
Suffix Links.

Suppose a red node for suffix
S[i + 1] is just under a “black”
node with path label α.

From this node, we can cross all
inverse suffix links labeled with
characters in relation with S(i).

With a skip and count trick, we
can identify the positions of red
nodes for S[i].

Return

Dimension of BuST Efficient Algorithm

The Algorithm

Red nodes for suffix S[i] can be
computed from red nodes for
suffix S[i + 1], using Inverse
Suffix Links.

Suppose a red node for suffix
S[i + 1] is just under a “black”
node with path label α.

From this node, we can cross all
inverse suffix links labeled with
characters in relation with S(i).

With a skip and count trick, we
can identify the positions of red
nodes for S[i].

Return

	Introduction
	Suffix Trees

	Bundled Suffix Trees
	Encoding Approximate Information
	Definition
	Size and Construction

	An application
	Computing Surprise Measures
	Summary

	Appendix
	Dimension of BuST
	
	
	

	Efficient Algorithm
	
	

