An application

BUNDLED SUFFIX TREES

Luca Bortolussi¹ Francesco Fabris² Alberto Policriti¹

¹Department of Mathematics and Computer Science University of Udine

²Department of Mathematics and Computer Science University of Trieste

IFIP TCS 2006, Santiago, Chile, 23rd–24th August 2006

An application

Outline

Suffix Trees

2 Bundled Suffix Trees

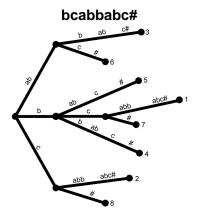
- Encoding Approximate Information
- Definition
- Size and Construction

3 An application

- Computing Surprise Measures
- Summary

An application

Suffix Trees



 Gusfield D., Algorithms on strings, trees and sequences, Cambridge University Press, 1997.

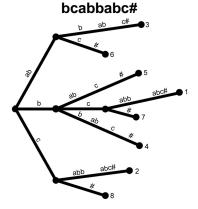
E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249-260, 1995. A Suffix Tree is a data structure revealing the internal structure of a string. They occupy O(n) space and can be built in O(n) time.

They are efficient for:

- Exact String Matching
- Longest Exact Common Substring Problem
- Identifying Exactly Repeated Patterns

An application

Limitations of Suffix Trees



 Gusfield D., Algorithms on strings, trees and sequences, Cambridge University Press, 1997.

Landau G.M., Vishkin U., Efficient String Matching with k Mismatches, Theoretical Computer Science, 43, 239-249, 1986. Suffix Trees cannot deal naturally with approximate string matching problems. (Hamming or Edit distance)

Two difficult problems:

- Longest Common Approximate Substring Problem
- Extraction of approximately repeated patterns

Extending Suffix Trees

THE TARGET

Extending Suffix Trees in order to solve *in a simple way* some classes of *approximate string matching problems*.

Bundled Suffix Trees

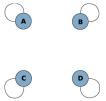
Bundled Suffix Trees extend suffix Trees.

- They incorporate approximate information;
- They can be used *like Suffix Trees* for:
 - Longest Common Approximate Substring Problem
 - Extraction of approximately repeated patterns

Introduction 000 Bundled Suffix Trees

An application

Approximate Matching



Character matching is a relation among letters (in fact, it is the equality relation)

We model *approximate matching* as a **non-transitive relation** among letters:

two strings "match" if all their letters are in relation.

Introduction

Bundled Suffix Trees

An application

Approximate Matching

Character matching is a relation among letters (in fact, it is the equality relation)

We model *approximate matching* as a non-transitive relation among letters:

two strings "match" if all their letters are in relation.

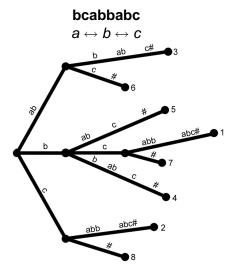
Non-Transitive Relation: An Example

Modeling a relation based on Hamming Distance

- Start from a basic alphabet (e.g. binary: $\mathcal{A} = \{0, 1\}$)
- Construct an alphabet composed of macrocharacters (e.g. $\overline{\mathcal{A}} = \{00, 01, 10, 11\})$
- Two letters $x, y \in \overline{A}$ are in *relation* if and only if $d_H(x, y) \leq D$ (e.g. D = 1).

The Relation Graph $00 \leftrightarrow 01$ \uparrow \uparrow $10 \leftrightarrow 11$

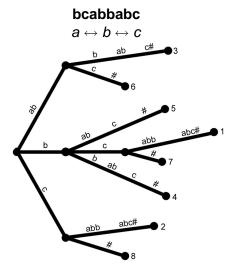
- Relation is non-transitive
- It encapsulates a (restricted) form of distance.



- We start from the *suffix tree* for the string.
- Let's compare suffix 3 and suffix 1:

b	С	а	b	b	а	b	С
а	b	b	а	С	С		

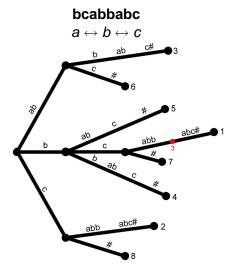
- After **bcabb** in the tree, we put a red node with label 3.
- Due to symmetry, there is also a red node with label 1 after abbab.



- We start from the *suffix tree* for the string.
- Let's compare suffix 3 and suffix 1:

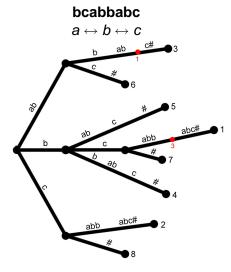
b	С	а	b	b	а	b	С
\uparrow	\updownarrow	\uparrow	\uparrow	\uparrow	¥		
	b						

- After **bcabb** in the tree, we put a red node with label 3.
- Due to symmetry, there is also a red node with label 1 after abbab.



- We start from the *suffix tree* for the string.
- Let's compare suffix 3 and suffix 1:
- С b b а b а h 1 ↕ \uparrow \uparrow ¥ h h а С
- After bcabb in the tree, we put a red node with label 3.
- Due to symmetry, there is also a red node with label
 - 1 after **abbab**.

An application



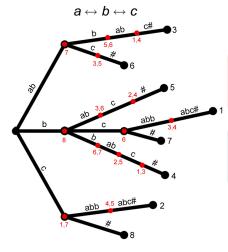
- We start from the *suffix tree* for the string.
- Let's compare suffix 3 and suffix 1:
- $\begin{array}{ccccccc} b & c & a & b & b & a & b & c \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \downarrow & \downarrow \\ a & b & b & a & c & c \end{array}$
- After bcabb in the tree, we put a red node with label 3.
- Due to symmetry, there is also a red node with label 1 after abbab.

Introduction 000 Bundled Suffix Trees

An application

Bundled Suffix Tree: An Example

bcabbabc;



If we do this process for every couple of suffixes, we build a Bundled Suffix Tree!

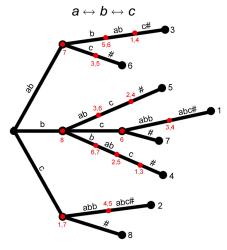
Note that this data structure is *in the middle* between a *suffix tree* and a *suffix trie*.

Introduction 000 Bundled Suffix Trees

An application

Bundled Suffix Tree: An Example

bcabbabc;



Bundled Suffix Trees can be used to:

- solve the Longest Common Approximate Substring Problem with respect to a given relation (just find the lowest red node).
- extract information about approximately repeated patterns.

How Big?

The number of red nodes inserted depends on:

- the relation
- the structure of the text.

In the worst case, the number of red nodes is quadratic in the length of the text S. • Example

On average, the number of red nodes is limited by

$$m^{1+\delta}, \ \delta = \log_{1/p^+} C.$$

(*m* is the length of the text, p^+ is the normalized frequency of the most common letter in *S*, *C* depends on the relation)

 $1 + \delta$ is slightly greater than one! • Example

How Fast?

Naive Algorithm

- The naive algorithm for building a BuST tries to "match" *every suffix* of the textalong every branch of the suffix tree, until a "mismatch" is found.
- It can be quadratic in the worst case.
- An analysis based on the average shape of a suffix tree shows that its average complexity is bounded by m^{1+δ'} (δ' just slightly greater that δ).
- W. Szpankowski. A Generalized Suffix Tree and its (Un)expected Asymptotic Behaviors. SIAM J. Comput. 22(6): 1176-1198 (1993)
- P. Jacquet, B. McVey, W. Szpankowski. Compact Suffix Trees Resemble PATRICIA Tries: Limiting Distribution of Depth, Journal of the Iranian Statistical Society, 3, 139-148, 2004.

Faster

Efficient Algorithm

We found an "McCreight-like" algorithm that is linear in the size of the output.

Intuitions

- It processes the suffixes backwards.
- It is based on the concept of inverse suffix links. Show Details
- It identifies the red nodes for suffix *i* by processing the red nodes for suffix *i* + 1. Show Details

Experimental Results

- We have implemented the naive algorithm for the construction of BuST.
- We have tested it with relations induced by hamming distance, defined over DNA-macrocharacters.
- With macrocharacters of size 4 (X ↔ Y ⇔ d_H(X, Y) ≤ 1) the algorithm can process texts of length 100K in few seconds.
- The number of red nodes grows tamely.
 Show Details

Measures of surprise: exact case

z-score

$$\delta(\alpha) = \frac{f(\alpha) - E(\alpha)}{N(\alpha)}$$

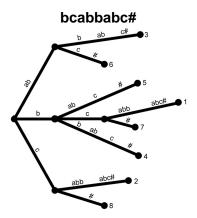
- $f(\alpha)$ is the observed frequency of α
- $E(\alpha)$ is the expected frequency of α
- N(α) is a normalization factor (e.g. the variance or its first-order approximation).

Monotonicity

- If $f(\alpha) = f(\alpha\beta)$ then $\delta(\alpha) \le \delta(\alpha\beta)$.
- δ needs to be computed only for *maximal strings* at a fixed frequency. These are exactly the strings ending at nodes of the Suffix Tree.

An application

Computing the z-score

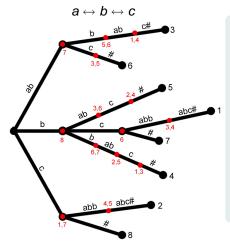


- Using a Suffix Tree, we can compute and store the z-score for all "interesting" substrings of a given text in linear time and space (given that we can compute *E* and *N* in linear time and space).
 - A. Apostolico, M.E. Block, S. Lonardi. Monotony of surprise and the large-scale quest for unusual words. *Journal of Computational Biology*, 7(3-4), 2003.

An application

Measures of Surprise in the Approximate World

bcabbabc;



- Let's consider as occurrences of β in α all the substrings β' that are in relation with β.
- Reasoning as in the exact case, we can use a BuST to compute the z-score for all interesting substrings of α in time and space proportional to the BuST's size.

Measures of Surprise in the Approximate World

If we use an Hamming-like relation built on macrocharacters, we are counting all the occurrences of a string with *distance bounded by a threshold proportional to the string's length.*

Pros and Cons

- Pros:
 - the algorithm runs in time proportional to the number of maximal substrings (w.r.t. δ).
 - BuST provides a compact way to store and retrieve this information.

• Cons:

- the macrocharacters introduce rigidity (we can count compute the z-score only for strings of length multiple of the macrocharacter's size).
- the distance must be distributed evenly among macrocharacters.

Intr	od	u	cti	0	n
00	0				

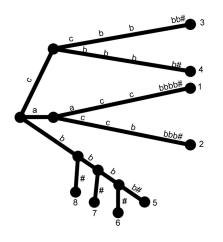
Conclusions

- We have introduced Bundled Suffix Trees, a new data structure extending suffix trees.
- Given a relation among characters encoding some sort of approximate information, a BuST reveals the inner structure of the strings w.r.t. this relation (all this information is internal w.r.t. the processed string).
- BuST can be used for all the problems related to the inner structure of the string, like computation of approximated frequency.
- The structure is based on a very general concept of non-transitive relation among characters. The use of Hamming-like relation on tuples is just a possible example.
- Its size is slightly more than linear on average, and there's a fast (McCreight-like) algorithm to build it.

Dimension of BuST

Efficient Algorithm

Quadratic BuST



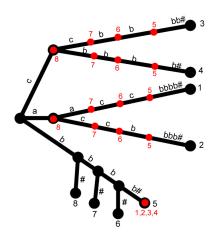
• Let's consider the text $\underbrace{a \dots a \dots c}_{m} \underbrace{c \dots c}_{2m} \underbrace{b \dots b}_{2m},$ over $\{a, b, c, d\}$, with $\begin{array}{c}a \leftrightarrow b\\ \uparrow & \uparrow\\ d \leftrightarrow c\end{array}$

• The number of nodes surrounded by the red box is quadratic in *m*!

Dimension of BuST

Efficient Algorithm

Quadratic BuST

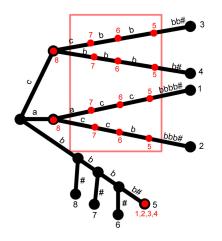


• Let's consider the text $\underbrace{a \dots a \underbrace{c \dots c}_{m} \underbrace{b \dots b}_{2m}}_{m},$ over $\{a, b, c, d\}$, with $a \leftrightarrow b$ $\uparrow \qquad \uparrow$ $d \leftrightarrow c$

• The number of nodes surrounded by the red box is quadratic in *m*!

Dimension of BuST ●○○ Efficient Algorithm

Quadratic BuST

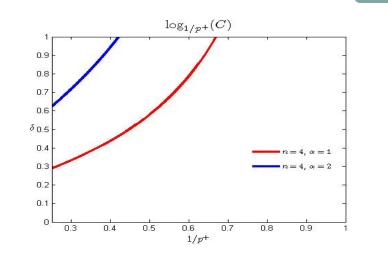


- Let's consider the text $\underbrace{a \dots a \underbrace{c \dots c}_{m} \underbrace{b \dots b}_{2m}}_{m},$ over $\{a, b, c, d\}$, with $a \leftrightarrow b$ $\uparrow \qquad \uparrow$ $d \leftrightarrow c$
- The number of nodes surrounded by the red box is quadratic in *m*!

Dimension of BuST ○●○

Efficient Algorithm

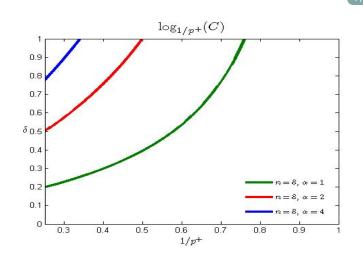
The exponent δ

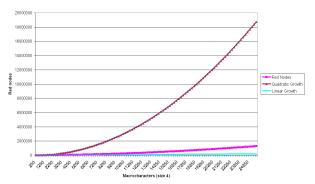


Dimension of BuST ○●○

Efficient Algorithm

The exponent δ





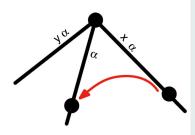
Number of red nodes for uniform distribution

Number of macrocharacters of length 4 over DNA alphabet. Test strings are generated according to a uniform p.d.

Dimension of BuST

Efficient Algorithm

Inverse Suffix Links

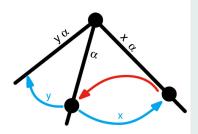


- A crucial role in the fast construction of suffix trees is played by suffix links.
- Suffix links are pointers from nodes with path label xα to nodes with path label α.
- Whenever there is a node with path label *x*α, there's also a node with path label α.

Dimension of BuST

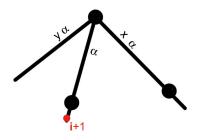
Efficient Algorithm

Inverse Suffix Links



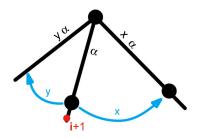
- Inverse suffix links are pointers from nodes with path label α to positions in the tree labeled xα, for each x in the alphabet such that xα is a substring of S.
- They can point in the middle of an arc.
- If a ISL takes from α to xα, it is labeled with x.

The Algorithm



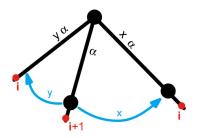
- Red nodes for suffix S[i] can be computed from red nodes for suffix S[i + 1], using Inverse Suffix Links.
- Suppose a red node for suffix S[i + 1] is just under a "black" node with path label α.
- From this node, we can cross all inverse suffix links labeled with characters in relation with *S*(*i*).
- With a skip and count trick, we can identify the positions of red nodes for S[i].

The Algorithm



- Red nodes for suffix S[i] can be computed from *red nodes for suffix* S[i + 1], using *Inverse Suffix Links*.
- Suppose a red node for suffix S[i + 1] is just under a "black" node with path label α.
- From this node, we can cross all inverse suffix links labeled with characters in relation with *S*(*i*).
- With a skip and count trick, we can identify the positions of red nodes for *S*[*i*].

The Algorithm



- Red nodes for suffix S[i] can be computed from *red nodes for* suffix S[i + 1], using Inverse Suffix Links.
- Suppose a red node for suffix S[i + 1] is just under a "black" node with path label α.
- From this node, we can cross all inverse suffix links labeled with characters in relation with *S*(*i*).
- With a skip and count trick, we can identify the positions of red nodes for S[i].

